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Problems and Solutions Section 1.1 (1.1 through 1.19) 
 
1.1 The spring of Figure 1.2 is successively loaded with mass and the corresponding (static) 

displacement is recorded below.  Plot the data and calculate the spring's stiffness.  Note 
that the data contain some error.  Also calculate the standard deviation. 

 
m(kg) 10 11 12 13 14 15 16 
x(m) 1.14 1.25 1.37 1.48 1.59 1.71 1.82 

 
 Solution: 
 
 Free-body diagram: 
 

 

m

k

kx

mg
  

Plot of mass in kg versus displacement in m     
Computation of slope from mg/x 
m(kg) x(m) k(N/m) 

10 1.14 86.05 
11 1.25 86.33 
12 1.37 85.93 
13 1.48 86.17 
14 1.59 86.38 
15 1.71 86.05 
16 1.82 86.24 
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From the free-body diagram and static 
equilibrium: 

 

 
kx = mg (g = 9.81m / s 2)

k = mg / x
 

 

µ =
!ki

n
= 86.164 

The sample standard deviation in 
computed stiffness is: 

! =

(ki " µ)2

i=1

n

#

n "1
= 0.164

  

 

 
 



1.2 Derive the solution of m˙ ̇ x + kx = 0  and plot the result for at least two periods for the case 
with ωn = 2 rad/s, x0 = 1 mm, and v0 = 5  mm/s. 

 
 Solution: 
 
 Given:   

0=+ kxxm !!   (1) 
 Assume:  x(t) = aert .  Then:  rtarex =!  and rtearx 2

=!! .  Substitute into equation (1) to 
get:   

  

mar2ert
+ kaert

= 0

mr2
+ k = 0

r = ±
k

m
  i

 

 Thus there are two solutions: 

  
x1 = c1e
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i
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'
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where (n =
k

m
= 2 rad/s

 

 The sum of x1 and x2 is also a solution so that the total solution is: 
 
  itit ececxxx 2

2
2

121
!

+=+=  
 
 Substitute initial conditions: x0 = 1 mm, v0 = 5  mm/s 
 

 

 

x 0( ) = c1 + c2 = x0 = 1! c2 = 1" c1,   and  v 0( ) = !x 0( ) = 2ic1 " 2ic2 = v0 = 5  mm/s

!"2c1 + 2c2 = 5 i.   Combining the two underlined expressions (2 eqs in 2 unkowns):

"2c1 + 2 " 2c1 = 5 i ! c1 =
1

2
"

5

4
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1
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4
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 Therefore the solution is: 
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Using the Euler formula to evaluate the exponential terms yields:

                           x =
1

2
!

5

4
i

"

#$
%
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cos2t + i sin2t( ) +

1

2
+

5

4
i

"
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cos2t ! i sin2t( )

( x(t) = cos2t +
5

2
sin2t =

3

2
sin 2t + 0.7297( )

 



 Using Mathcad the plot is: 
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1.3 Solve m˙ ̇ x + kx = 0  for k = 4 N/m, m = 1 kg, x0 = 1 mm, and v0 = 0.  Plot the solution. 
 
 Solution: 
 

 This is identical to problem 2, except v0 = 0.  !n =
k

m
= 2 rad/s

"

#$
%

&'
.  Calculating the 

initial conditions: 

  

x 0( ) = c1 + c2 = x0 = 1! c2 =1 " c1

v 0( ) = ˙ x 0( ) = 2ic1 " 2ic2 = v0 = 0! c2 = c1

c2 = c1 = 0.5

x t( ) =
1

2
e2it

+
1

2
e"2it

=
1

2
cos2t + isin 2t( ) +

1

2
cos2t " i sin2t( )

 

x(t)= cos (2t ) 
 The following plot is from Mathcad: 
  

 Alternately students may use equation (1.10) directly to get 
 

x(t) =
22 (1)2

+ 02

2
sin(2t + tan!1[

2 "1

0
])

      = 1sin(2t +
#

2
) = cos2t
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1.4 The amplitude of vibration of an undamped system is measured to be 1 mm.  The phase 
shift from t = 0 is measured to be 2 rad and the frequency is found to be 5 rad/s.  
Calculate the initial conditions that caused this vibration to occur.  Assume the response 
is of the form x(t) = Asin(!nt + ").  

 
 Solution: 
 
 Given:  rad/s5,rad2,mm1 === !"A .  For an undamped system: 

  

 

x t( ) = Asin !nt + "( ) = 1sin 5t + 2( )    and

v t( ) = !x t( ) = A!n cos !nt + "( ) = 5cos 5t + 2( )
 

 Setting t = 0 in these expressions yields: 
  x(0) = 1sin(2) = 0.9093 mm 
      v(0) = 5 cos(2) = - 2.081 mm/s 
 
1.5 Find the equation of motion for the hanging spring-mass system of Figure P1.5, and 

compute the natural frequency.  In particular, using static equilibrium along with 
Newton’s law, determine what effect gravity has on the equation of motion and the 
system’s natural frequency.  

 
Figure P1.5 

 
 Solution: 
 The free-body diagram of problem system in (a) for the static case and in (b) for the 

dynamic case, where x is now measured from the static equilibrium position. 

 
                                                 (a)                      (b) 
 From a force balance in the static case (a): mg = kxs , where xs  is the static deflection of 

the spring.  Next let the spring experience a dynamic deflection x(t) governed by 
summing the forces in (b) to get 



 

m!!x(t) = mg ! k(x(t) + xs ) " m!!x(t) + kx(t) = mg ! kxs

                                          " m!!x(t) + kx(t) = 0 "#n =
k

m

 

 since mg = kxs  from static equilibrium. 
 
1.6 Find the equation of motion for the system of Figure P1.6, and find the natural frequency.  

In particular, using static equilibrium along with Newton’s law, determine what effect 
gravity has on the equation of motion and the system’s natural frequency. Assume the 
block slides without friction. 

 

 
Figure P1.6 

 
 Solution: 
 Choosing a coordinate system along the plane with positive down the plane, the free-

body diagram of the system for the static case is given and (a) and for the dynamic case 
in (b): 

 

          
 In the figures, N is the normal force and the components of gravity are determined by the 

angle θ as indicated.  From the static equilibrium: !kxs + mgsin" = 0 .  Summing forces 
in (b) yields: 



 

Fi! = m!!x(t) " m!!x(t) = #k(x + xs ) + mgsin$

                    " m!!x(t) + kx = #kxs + mgsin$ = 0

                     " m!!x(t) + kx = 0

                                             "%n =
k

m
 rad/s

 

 
 
1.7 An undamped system vibrates with a frequency of 10 Hz and amplitude 1 mm.  Calculate 

the maximum amplitude of the system's velocity and acceleration. 
 
 Solution: 
 
 Given: First convert Hertz to rad/s:  !n = 2"fn = 2" 10( ) = 20" rad/s.  We also have that 

A= 1 mm. 
 
 For an undamped system: 
 
  ( ) ( )!" += tAtx nsin  

 
 and differentiating yields the velocity:  v t( ) = A!n cos !nt + "( ) .  Realizing that both the 

sin and cos functions have maximum values of 1 yields: 
 
  ( ) mm/s 62.8=== !" 201max nAv  

 
 Likewise for the acceleration:  ( ) ( )!"" +#= tAta nn sin2  

 

  ( )
2mm/s 3948===

22
max 201 !" nAa  

 



1.8 Show by calculation that A sin (ωnt + φ) can be represented as Bsinωnt + Ccosωnt and 
calculate C and B in terms of A and φ. 

 
 Solution: 
 
 This trig identity is useful:  sin a + b( ) = sinacosb + cosasinb  

 
 Given:  ( ) ( ) ( ) ( ) ( )!"!"!" sincoscossinsin tAtAtA nnn +=+  

 

  
             = Bsin!nt + C cos!nt

where B = A cos"      and C = A sin"
 

 
 
 
1.9 Using the solution of equation (1.2) in the form  x(t) = Bsin!nt + Ccos!nt  
 calculate the values of B and C in terms of the initial conditions x0 and v0. 
 
 Solution: 
 Using the solution of equation (1.2) in the form 

 

  x t( ) = Bsin!nt + Ccos!nt  

 and differentiate to get: 

˙ x (t) = !n Bcos(!nt) " !nCsin(!nt)  

 Now substitute the initial conditions into these expressions for the position and velocity 

to get: 

x0 = x(0) = Bsin(0) + C cos(0) = C

v0 = ˙ x (0) = !nB cos(0) " !nC sin(0)

              = !nB(1) "! nC(0) =! nB

 

 Solving for B and C yields: 

B =
v0

!n

,  and C = x0  

 Thus  x(t) =
v0

!n

sin!nt + x0 cos! nt  



1.10  Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. 
 

Solution: Following the lead given in Example 1.1.2, write down the general expression 
of the velocity by differentiating equation (1.10): 

 
x(t) = Asin(! nt + ") # ˙ x (t) = A!n cos(!nt + ")

# v(0) = A!n cos(!n 0 + ") = A!n cos(")
 

From the figure:  

  
Figure 1.6 

 

A = x0
2

+
v0
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"
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Substitution of these values into the expression for v(0) yields 
 

v(0) = A!n cos" = x0
2

+
v0

!n

#

$%
&

'(

2

(!n )

v0

!n

x0
2

+
v0

!n

#
$%

&
'(

2
= v0  

verifying the agreement between the figure and the initial velocity condition. 



 

1.11 (a)A 0.5 kg mass is attached to a linear spring of stiffness 0.1 N/m.  Determine the natural 

frequency of the system in hertz.  b) Repeat this calculation for a mass of 50 kg and a 

stiffness of 10 N/m.  Compare your result to that of part a. 

 

 Solution: From the definition of frequency and equation (1.12) 

 

a( )          !n =
k

m
=

.5

.1
= 0.447 rad/s

      fn =
!n

2"
=

2.236

2"
= 0.071 Hz

b( )            !n =
50
10

= 0.447rad/s, fn =
!n

2"
= 0.071 Hz

 

 

 Part (b) is the same as part (a) thus very different systems can have same natural 

frequencies. 

 



1.12 Derive the solution of the single degree of freedom system of Figure 1.4 by writing 

Newton’s law, ma = -kx, in differential form using adx = vdv and integrating twice. 

 

Solution:  Substitute a = vdv/dx into the equation of motion ma = -kx, to get mvdv = -
kxdx.  Integrating yields: 

v2

2
= !"n

2 x2

2
+ c2 ,   where c is a constant

or     v2
= !"n

2x2
+ c2 #

v =
dx

dt
= !"n

2x2
+ c2 #

dt =
dx

!"n
2x2

+ c2
,   write u = "nx to get:

t ! 0 =
1

"n

du

c2 ! u2$ =
1

"n

sin!1 u

c
%
&'

(
)*

+ c2

 

 
Here c2 is a second constant of integration that is convenient to write as c2 = -φ/ωn.  
Rearranging yields 

!nt + " = sin#1 !nx

c
$
%&

'
()
*

!nx

c
= sin(!nt + ") *

               x(t) = Asin(!nt + "),    A =
c

!n

 

 in agreement with equation (1.19). 
 
 
 



 

1.13 Determine the natural frequency of the two systems illustrated. 

                          

(a)                                                   (b) 

Figure P1.13 

 Solution:  
 (a)  Summing forces from the free-body diagram in the x direction yields: 

-k1x

+x

 -k2x

 
Free-body diagram for part a 

m˙ ̇ x = !k1 x ! k2 x "
m˙ ̇ x + k1x + k2 x = 0

m˙ ̇ x + x k1 + k2( ) = 0,  dividing by m yields :

˙ ̇ x +
k1 + k2

m
# 

$ 

% 

& 
x = 0

 

 Examining the coefficient of x 
yields: 

!n =
k1 + k2

m
 

 

 (b)  Summing forces from the free-body diagram in the x direction yields: 

-k1x

-k2x

+x

-k3x

 
Free-body diagram for part b 

 

 

m!!x = !k1x ! k2x ! k3x,"

m!!x + k1x + k2x + k3x = 0 "

m!!x + (k1 + k2 + k3)x = 0 " !!x +
(k1 + k2 + k3)

m
x = 0

                     "#n =
k1 + k2 + k3

m

 

 



 

1.14* Plot the solution given by equation (1.10) for the case k = 1000 N/m and m = 10 kg for 

two complete periods for each of the following sets of initial conditions: a) x0 = 0 m, v0 = 

1 m/s, b) x0 = 0.01 m, v0 = 0 m/s, and c) x0 = 0.01 m, v0 = 1 m/s. 

 

 Solution:  Here we use Mathcad: 
 a) all units in m, kg, s 
 

 
 parts b and c are plotted in the above by simply changing the initial conditions as 

appropriate 
 

 
 

m 10

x0 0.0

T
.2 !

"nfn
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.2 "

x t .A sin .!n t "
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1.15* Make a three dimensional surface plot of the amplitude A of an undamped oscillator 

given by equation (1.9) versus x0 and v0 for the range of initial conditions given by –0.1 < 

x0 < 0.1 m and -1 < v0 < 1 m/s, for a system with natural frequency of 10 rad/s. 

Solution: Working in Mathcad the solution is generated as follows: 
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N 25 i ..0 N
j ..0 N

v0j 1 .2

N
j

A ,x0 v0 .1

!n
.!n

2
x0 2 v0 2

M ,i j A ,x0i v0j

Amplitude vs initial conditions

0
10

20

0

10

20

0

0.05

0.1

M

x0i 0.1 .0.2

N
i



 

 

 

1.16 A machine part is modeled as a pendulum connected to a spring as illustrated in Figure 
P1.16.  Ignore the mass of pendulum’s rod and derive the equation of motion.  Then 
following the procedure used in Example 1.1.1, linearize the equation of motion and 
compute the formula for the natural frequency. Assume that the rotation is small enough 
so that the spring only deflects horizontally. 

 

 
Figure P1.16 

 
Solution: Consider the free body diagram of the mass displaced from equilibrium: 

 

 There are two forces acting on the system to consider, if we take moments about point O 

(then we can ignore any forces at O). This yields 

 

MO! = JO" # m!2 ""$ = %mg!sin$ % k!sin$ • !cos$

             # m!2 ""$ + mg!sin$ + k!2 sin$ cos$ = 0
 



 Next consider the small θ  approximations to that  sin! ! !  and cos!=1.   Then the 

linearized equation of motion becomes: 

 

!!!(t) +
mg + k"

m"
"
#$

%
&'
!(t) = 0  

 Thus the natural frequency is  

 

!n =
mg + k!

m!
 rad/s  

 

 

1.17 A pendulum has length of 250 mm.  What is the system’s natural frequency in Hertz? 

 

Solution: 

 Given:  l =250 mm 

 Assumptions:  small angle approximation of sin 

From Window 1.1, the equation of motion for the pendulum is as follows: 

IO
˙ ̇ ! + mg! = 0,   where IO = ml2

! ˙ ̇ " +
g

l
" = 0  

 The coefficient of θ yields the natural frequency as: 

 

 

 

  
f

n
=
!

n

2"
= 0.996  Hz  

 

1.18 The pendulum in Example 1.1.1 is required to oscillate once every second.  What length 

should it be? 

  

 Solution: 

 Given: f = 1 Hz  (one cycle per second) 

 

  

  
!

n
=

g

l
=

9.8 m/s2

0.25 m
= 6.26 rad/s  

l

g
fn == !" 2  



 

 

 

 

 

 

 

 

 

m
f

g
l 248.0

4

81.9

)2( 22
===!

""
 



1.19 The approximation of sin θ = θ, is reasonable for θ less than 10°.  If a pendulum of length 

0.5 m, has an initial position of θ(0) = 0, what is the maximum value of the initial angular 

velocity that can be given to the pendulum with out violating this small angle 

approximation? (be sure to work in radians) 

 

 Solution:  From Window 1.1, the linear equation of the pendulum is 

 

 

 

 For zero initial position, the solution is given in equation (1.10) by 

 

 

 

since sin is always less then one.  Thus if we need θ < 10°= 0.175 rad, then we need to 

solve: 

 

 

 

 for v0 which yields: 

v0 < 0.773  rad/s. 

 

0)()( =+ t
g

t !!
!

""

 

  

! (t) =
v0 !

g
sin(

g

!
t) " ! #

v0 !

g
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Problems and Solutions for Section 1.2 and Section 1.3 (1.20 to 1.51) 
 
Problems and Solutions Section 1.2   (Numbers 1.20 through 1.30) 
 
1.20* Plot the solution of a linear, spring and mass system with frequency ωn =2 rad/s, 

x0 = 1 mm and v0 =  2.34 mm/s, for at least two periods. 

 Solution: From Window 1.18, the plot can be formed by computing: 

  

A =
1

!n

!n
2 x0

2
+ v0

2
= 1.54 mm,  " = tan #1(

!n x0

v0

) = 40.52!  

x(t) = Asin(! nt + ")  

 This can be plotted in any of the codes mentioned in the text.  In Mathcad the 

program looks like.   

 

 In this plot the units are in mm rather than meters.



 

 

1.21* Compute the natural frequency and plot the solution of a spring-mass system with 

mass of 1 kg and stiffness of 4 N/m, and initial conditions of x0 = 1 mm and v0 =  

0 mm/s, for at least two periods. 

 Solution: Working entirely in Mathcad, and using the units of mm 

yields:

 

 Any of the other codes can be used as well. 

 



 

 

1.22  To design a linear, spring-mass system it is often a matter of choosing a spring 

constant such that the resulting natural frequency has a specified value.  Suppose 

that the mass of a system is 4 kg and the stiffness is 100 N/m.  How much must 

the spring stiffness be changed in order to increase the natural frequency by 10%? 

Solution:  Given m =4 kg and k = 100 N/m the natural frequency is  

!n =
100

4
= 5 rad/s  

Increasing this value by 10% requires the new frequency to be 5 x 1.1 = 5.5 rad/s.  

Solving for k given m and ωn yields: 

5.5 =
k

4
! k = (5.5)2(4) =121 N/m  

Thus the stiffness k must be increased by about 20%. 



 

 

 

 
 
 
1.23 Referring to Figure 1.8, if the maximum peak velocity of a vibrating system is 

200 mm/s at 4 Hz and the maximum allowable peak acceleration is 5000 mm/s2, 

what will the peak displacement be? 

 

  

mm/sec200=v

x (mm) a = 5000 mm/sec2

f = 4 Hz

 

  

 Solution: 

 Given:  vmax = 200 mm/s   @  4 Hz 

              amax = 5000 mm/s  @  4 Hz 

 xmax = A 

 vmax = Aωn 

 amax = Aω n
 2 

 ! xmax =
vmax

"n

=
vmax

2# f
=

200

8#
= 7.95 mm  

 

 At the center point, the peak displacement will be x = 7.95 mm 



1.24 Show that lines of constant displacement and acceleration in Figure 1.8 have 

slopes of +1 and –1, respectively.  If rms values instead of peak values are used, 

how does this affect the slope? 

 

 Solution: Let 

x = xmax sin!nt

˙ x = xmax!n cos!nt

˙ ̇ x = "xmax!n
2 sin!nt

 

 Peak values: 

    
 

!xmax = xmax!n = 2" fxmax

!!xmax = xmax!n
2

= (2" f )2 xmax

 

 Location: 

    
fxx

fxx

!

!

2lnlnln

2lnlnln

maxmax

maxmax

"=

+=

!!!

!

 

 Since xmax is constant, the plot of ln maxx!  versus ln 2πf is a straight line of slope 

+1.  If ln maxx!!  is constant, the plot of ln maxx!  versus ln 2πf is a straight line of 

slope –1.  Calculate RMS values 

 Let 

    

x t( ) = Asin!nt

˙ x t( ) = A!n cos!nt

˙ ̇ x t( ) = "A! n
2 sin!nt

 

  



Mean Square Value: x 2
=

T!"
lim

1

T
x2

0

T

# (t) dt  

x 2
=

T!"
lim

1

T
A2 sin2 #n t

0

T

$ dt =
T!"
lim

A2

T
(1 % cos 2#n t

0

T

$ ) dt =
A2

2
 

 

x
.

2
=

T!"
lim

1

T
A2#n

2 cos2#n t
0

T

$ dt =
T!"
lim

A2#n
2

T

1

2
(1 + cos 2#n t

0

T

$ ) dt =
A2#n

2

2
 

x
..

2
=

T!"
lim

1

T
A2#n

4 sin2# n t
0

T

$ dt =
T!"
lim

A2#n
4

T

1

2
(1 + cos 2#n t

0

T

$ ) dt =
A2#n

4

2
 

 

Therefore, 

 Axxrms 2

22
==  

x
.

rms = x
.

2
=

2

2
A!n  

x
..

rms = x
..

2
=

2

2
A!n

2  

 The last two equations can be rewritten as:  

rmsrmsrms xfxx !="= 2
.

 

rmsrmsrms xfxx
.

2
..

2!="=  

The logarithms are: 

 fxx !+= 2lnlnln maxmax

.

 

 fxx !+= 2lnlnln max

.

max

..

 

The plots of rmsx
.

ln  versus f!2ln  is a straight line of slope +1 when xrms is constant, and 

–1 when rmsx
..

  is constant. Therefore the slopes are unchanged. 



 

 

 

1.25 A foot pedal mechanism for a machine is crudely modeled as a pendulum 
connected to a spring as illustrated in Figure P1.25.  The purpose of the spring is 
to keep the pedal roughly vertical.  Compute the spring stiffness needed to keep 
the pendulum at 1° from the horizontal and then compute the corresponding 
natural frequency.  Assume that the angular deflections are small, such that the 
spring deflection can be approximated by the arc length, that the pedal may be 
treated as a point mass and that pendulum rod has negligible mass. The values in 
the figure are m = 0.5 kg, g = 9.8 m/s2, 

 
!1 = 0.2 m and !2 = 0.3 m.   

 

 
Figure P1.25 

Solution: You may want to note to your students, that many systems with springs are 
often designed based on static deflections, to hold parts in specific positions as in this 
case, and yet allow some motion.  The free-body diagram for the system is given in 
the figure.   
 



 
For static equilibrium the sum of moments about point O yields (θ1 is the static 
deflection): 

 

 

M 0! = "!1#1(!1)k + mg!2 = 0

           $ !1
2
#1k = mg!2                                        (1)

            $ k =
mg!2

!1
2
#1

=
0.5 %0.3

(0.2)2 &

180

=  2106 N/m

 

Again take moments about point O to get the dynamic equation of motion: 

 
MO! = J !!" = m"2

2 !!" = #"1
2k(" +"1) + mg"2 = #"1

2k" + "1
2k"1 # mg"2"  

Next using equation (1) above for the static deflection yields: 

 

m!2
2 ""! + !1

2k! = 0

                               " ""! +
!1

2k

m!2
2

#

$%
&

'(
! = 0

                                            ")n =
!1

!2

k

m
=

0.2

0.3

2106

0.5
= 43.27  rad/s

 

 

1.26 An automobile is modeled as a 1000-kg mass supported by a spring of 

stiffness k = 400,000 N/m.  When it oscillates it does so with a maximum 

deflection of 10 cm.  When loaded with passengers, the mass increases to as much 

as 1300 kg.  Calculate the change in frequency, velocity amplitude, and 

acceleration amplitude if the maximum deflection remains 10 cm. 

 

 Solution: 

 Given: m1 = 1000 kg 

  m2 = 1300 kg 

k = 400,000 N/m  



xmax =  A  = 10 cm  

 

 

 

 

 

 

 

 

 

v1  =  Aωn1  = 10  cm  x  20  rad/s  = 200 cm/s 

v2  =  Aωn2  = 10  cm  x  17.54  rad/s  = 175.4 cm/s  

Δv  =  175.4 -  200  =  -24.6  cm/s 

 

a1  =  Aωn1
2  = 10  cm  x  (20  rad/s)2  = 4000 cm/s2 

a2  =  Aωn2
2  = 10  cm  x  (17.54  rad/s)2  = 3077 cm/s2  

Δa  =  3077 -  4000  =  -923  cm/s2 

srad
m

k
n /20

1000

000,400

1
1 ===!  

srad
m

k
n /54.17

1300

000,400

2
2 ===!  

srad /46.22054.17 !=!="#  

!f =
!"

2#
=

$2.46

2#
= 0.392 Hz  



 

1.27 The front suspension of some cars contains a torsion rod as illustrated in Figure 
P1.27 to improve the car’s handling.  (a) Compute the frequency of vibration of 
the wheel assembly given that the torsional stiffness is 2000 N m/rad and the 
wheel assembly has a mass of 38 kg.  Take the distance x = 0.26 m.  (b) 
Sometimes owners put different wheels and tires on a car to enhance the 
appearance or performance.  Suppose a thinner tire is put on with a larger wheel 
raising the mass to 45 kg.  What effect does this have on the frequency? 

 
 
 

 
Figure P1.27 

 Solution:  (a) Ignoring the moment of inertial of the rod, and computing the 

moment of inertia of the wheel as   mx2 , the frequency of the shaft mass system is  

!n =
k

mx2
=

2000 N "m

38 "kg (0.26 m)2
= 27.9 rad/s  

 (b)  The same calculation with 45 kg will reduce the frequency to 

!n =
k

mx2
=

2000 N "m

45 "kg (0.26 m)2
= 25.6 rad/s  

This corresponds to about an 8% change in unsprung frequency and could 
influence wheel hop etc.  You could also ask students to examine the effect of 
increasing x, as commonly done on some trucks to extend the wheels out for 
appearance sake. 

 



1.28 A machine oscillates in simple harmonic motion and appears to be well modeled 

by an undamped single-degree-of-freedom oscillation.  Its acceleration is 

measured to have an amplitude of 10,000 mm/s2 at 8 Hz.  What is the machine's 

maximum displacement?  

 

 Solution: 

 Given: amax = 10,000 mm/s2 @  8 Hz 

The equations of motion for position and acceleration are: 

  
 

x = Asin(!nt + ")             (1.3)

!!x = #A!n
2 sin(!nt + ")      (1.5)

 

 The amplitude of acceleration is 000,102
=nA!  mm/s2 and ωn = 2πf = 2π(8) = 

16π rad/s, from equation (1.12). 

 The machine's displacement is 
( )

22 16

000,10000,10

!"

==

n

A  

 A = 3.96 mm 

 

 

1.29 A simple undamped spring-mass system is set into motion from rest by giving it 

an initial velocity of 100 mm/s.  It oscillates with a maximum amplitude of 10 

mm.  What is its natural frequency? 

  

Solution: 

 Given: x0 = 0, v0 = 100 mm/s, A = 10 mm 

 From equation (1.9), 
n

v
A

!

0
=  or 

10

1000
==

A

v
n! ,  so that:   ωn= 10 rad/s 



1.30 An automobile exhibits a vertical oscillating displacement of maximum amplitude 

5 cm and a measured maximum acceleration of 2000 cm/s2.  Assuming that the 

automobile can be modeled as a single-degree-of-freedom system in the vertical 

direction, calculate the natural frequency of the automobile. 

  

Solution: 

 Given:  A = 5 cm.  From equation (1.15) 

  cm/s 20002
== nAx !!!  

 Solving for ωn yields: 

  

  

!n =
2000

A
=

2000

5

!n = 20rad/s

 



Problems Section 1.3  (Numbers 1.31 through 1.46) 
 
1.31 Solve 04 =++ xxx !!!  for x0 = 1 mm, v0 = 0 mm/s.  Sketch your results and 

determine which root dominates. 

 Solution: 

 Given 0 mm, 1  where04 00 ===++ vxxxx !!!  

 Let 
Substitute these into the equation of motion to get: 

ar2ert
+ 4arert

+ aert
= 0

! r2
+ 4r + 1 = 0 ! r1,2 = "2 ± 3

 

 So 

 
x = a1e

!2 + 3( ) t
+ a2e

!2 ! 3( ) t

˙ x = ! 2 + 3( )a1e
!2+ 3( ) t

+ ! 2 ! 3( )a2e
!2! 3( ) t

 

Applying initial conditions yields, 
 
 
 

Substitute equation (1) into (2) 
 

 
 
 Solve for a2 

      
 
Substituting the value of a2 into equation (1), and solving for a1 yields, 
 
 
 

! x(t) =

v0 + 2 + 3( )x0

2 3
e

"2+ 3( ) t
+

"v0 + " 2 + 3( )x0

2 3
e

"2" 3( ) t
 

The response is dominated by the root:  !2 + 3    as the other root dies off 

very fast. 

x0 = a1 + a2 ! x0 " a2 = a1 (1)

v0 = " 2 + 3( ) a1 + " 2 " 3( )a2 (2)
 

v0 = ! 2 + 3( )(x0 ! a2 ) + ! 2 ! 3( )a2

v0 = ! 2 + 3( )x0 ! 2 3 a2

 

a2 =
!v0 + ! 2 + 3( ) x0

2 3
 

a1 =
v0 + 2 + 3( ) x0

2 3
 

 x = aert
! !x = arert

! !!x = ar2ert  



 

1.32 Solve 022 =++ xxx !!!  for x0 = 0 mm, v0 = 1 mm/s and sketch the response.  You 

may wish to sketch x(t) = e-t and x(t) =-e-t first. 

 Solution: 

 Given 02 =++ xxx !!!  where x0 = 0, v0 = 1 mm/s 

 Let: x = aert
! !x = arert

! !!x = ar2ert  

 Substitute into the equation of motion to get 

 ar2ert
+ 2arert

+ aert
= 0 ! r2

+ 2r + 1 = 0 ! r1,2 = "1 ± i  

 So 

 
 
x = c1e

!1+ i( ) t
+ c2e

!1! i( ) t
" !x = !1+ i( )c1e

!1+ i( ) t
+ !1! i( )c2e

!1! i( ) t  

 Initial conditions: 

 

 

 

Substituting equation (1) into (2) 

  

 

 

 

 

Applying Euler’s formula 
 
 
 

 

Alternately use equations (1.36) and (1.38).  The plot is similar to figure 1.11.

x0 = x 0( ) = c1 + c2 = 0 ! c2 = "c1 (1)

v0 = ˙ x 0( ) = "1+ i( )c1 + "1" i( )c2 =1 (2)
 

v0 = !1 + i( )c1 ! !1! i( )c1 = 1

c1 = !
1

2
i, c2 =

1

2
i

x t( ) = !
1

2
ie !1+i( ) t

+
1

2
ie !1! i( ) t

= !
1

2
ie! t eit

! e!it
( )

 

x t( ) = !
1

2
ie !t cos t + isin t ! (cos t ! i sin t)( )  

x t( ) = e! t sin t  



1.33 Derive the form of λ1 and λ2 given by equation (1.31) from equation (1.28) 
and the definition of the damping ratio. 

 

 Solution: 

 Equation (1.28): kmc
mm

c
4

2

1

2
2

2,1 !±!="  

 Rewrite, !1,2 = "
c

2 m m

#
$%

&
'(

k

k

#

$%
&

'(
±

1

2 m m

k

k

#

$%
&

'(
c

c
#
$%

&
'(

c2 " 2 km
2

( )
c

c
#
$%

&
'(

2

 

 Rearrange,!1,2 = "
c

2 km

#
$%

&
'(

k

m

#

$%
&

'(
±

c

2 km

k

m

#

$%
&

'(
1

c
#
$%

&
'(

c2 1"
2 km

c

#

$%
&

'(

2)

*
+
+

,

-
.
.

 

 Substitute: 

!n =
k

m
 and " =

c

2 km
#$1,2 = %"!n ±"!n

1

c
&
'(

)
*+

c 1%
1

" 2

&
'(

)
*+

                                           #$1,2 = %"!n ±!n " 2 1%
1

" 2

&
'(

)
*+

,

-
.

/

0
1

                                           #$ 1,2 = %"!n ±!n " 2 %1

 



1.34 Use the Euler formulas to derive equation (1.36) from equation (1.35) and to 

determine the relationships listed in Window 1.4. 

 Solution: 

 Equation (1.35):  x t( ) = e!"# nt a1e( )
j# n 1!"

2
t
! a2e

! j# n 1!"
2

t  

 From Euler,  

  

x t( ) = e!"# nt(a1 cos #n 1 !" 2 t( ) + a1 j sin #n 1 !" 2 t( )

                        + a2 cos #n 1 !" 2 t( ) ! a2 j sin #n 1 !" 2 t( ))

= e!"# nt a1 + a2( )cos#d t + j a1 ! a2( )sin#d t

 

  Let:  A1=( )21 aa + , A2=( )21 aa ! , then this last expression becomes 

  x t( ) = e!"# nt A1 cos# dt + A2 sin#d t  

  Next use the trig identity: 

  
2

11
21 tan,

A

A
AAA !

="+=  

  to get: x t( ) = e!"#nt Asin(#dt + $)  

  



1.35 Using equation (1.35) as the form of the solution of the underdamped 

system, calculate the values for the constants a1 and a2 in terms of the initial 

conditions x0 and v0. 

 Solution: 

 Equation (1.35):  

x t( ) = e!"# nt a1e
j# n 1!"

2
t
+ a2e

! j# n 1!"
2

t( )  

˙ x t( ) = (!"#n + j#n 1! "2 )a1e
!"#n + j#n 1!" 2

( )t
+ (!"#n ! j# n 1 !" 2 )a2 e

!"# n ! j#n 1!" 2
( )t

 

 Initial conditions 

  x0 = x(0 ) = a1 + a2 ! a1 = x0 " a2      (1) 

  v0 = ˙ x (0) = (!"# n + j#n 1 !" 2 )a1 + (!"#n ! j#n 1 !" 2 )a2  (2) 

 Substitute equation (1) into equation (2) and solve for a2 

  
v0 = !"#n + j# n 1!" 2( )(x0 ! a2 ) + !"#n ! j# n 1!" 2( )a2

v0 = !"#n + j# n 1!" 2( )x0 ! 2 j# n 1! " 2 a2

 

 

 Solve for a2 

  a2 =
!v0 !"#nx0 + j#n 1!" 2 x0

2 j#n 1!" 2
 

 Substitute the value for a2 into equation (1), and solve for a1 

a1 =
v0 + !"nx0 + j"n 1#! 2 x0

2 j"n 1#! 2
  



1.36 Calculate the constants A and φ in terms of the initial conditions and thus 

verify equation (1.38) for the underdamped case. 

Solution:  

From Equation (1.36),  

x(t) = Ae!"#nt sin #dt + $( )  

 Applying initial conditions (t  = 0) yields, 

!= sin0 Ax                   (1) 

        !"+!#"$== cossin00 AAxv dn!           (2) 

Next solve these two simultaneous equations for the two unknowns A and φ.  

From (1),   

!sin
0x

A =                 (3) 

Substituting (3) into (1) yields 

!

"
+#"$=

tan
0

00

x
xv d

n    !    tan! =
x0"d

v0 +#"nx0

 .    

Hence,      

! = tan"1 x0#d

v0 +$#nx0

%

&
'

(

)
*             (4) 

From (3),   
A

x0sin =!                                                      (5) 

and From (4),  cos! =
v0 +"#nx0

x0# d( )
2

+ v0 +"#nx0( )
2    (6)  

 

Substituting (5) and (6) into (2) yields, 

2

2
0

2
00 )()(

d

dn xxv
A

!

!"! ++
=  

which are the same as equation (1.38)  

   



 

1.37 Calculate the constants a1 and a2 in terms of the initial conditions and thus verify  

equations (1.42) and (1.43) for the overdamped case. 

 

Solution:   From Equation (1.41) 

 x t( ) = e!"# nt a1e
#n "

2
!1 t

+ a2e
!# n "

2
!1 t( )  

taking the time derivative yields: 

˙ x t( ) = (!"#n +#n " 2
!1)a1e

!"# n +#n " 2
!1( )t

+ (!"# n !#n "2
!1)a2 e

!"# n !# n " 2
!1( )t

 

 Applying initial conditions yields, 

 

x0 = x 0( ) = a1 + a2 ! x0 " a2 = a1             (1)

v0 = !x 0( ) = "#$n +$n # 2 " 1( )a1 + "#$n "$n # 2 " 1( )a2 (2)
        

   Substitute equation (1) into equation (2) and solve for a2 

                         
v0 = !"#n + #n " 2 !1( )(x0 ! a2 ) + ! "# n !#n " 2 !1( )a2

v0 = !"#n + #n " 2
!1( ) x0 ! 2#n " 2

!1 a2

        

 Solve for a2 

a2 =
!v0 !"# n x0 +#n " 2 !1 x0

2#n " 2 !1
 

 Substitute the value for a2 into equation (1), and solve for a1 

a1 =
v0 +!"nx0 +"n ! 2 #1 x0

2"n ! 2 #1
 

 

 

 

 

 

 

 



1.38     Calculate the constants a1 and a2 in terms of the initial conditions and thus verify  

equation (1.46) for the critically damped case. 

 

Solution: 

From Equation (1.45), 

 x(t) = (a1 + a2t)e!" nt  

 
 
! !x0 = "#na1e

"#nt
" #na2te

"#nt
+ a2e

"#nt  

 Applying the initial conditions yields: 

10 ax =    (1) 

and 

  120 )0( aaxv n!"== !   (2) 

solving these two simultaneous equations for the two unknowns a1 and a2.  

Substituting (1) into (2) yields,   

 01 xa =  

  002 xva n!+=   

which are the same as equation (1.46). 



1.39 Using the definition of the damping ratio and the undamped natural frequency, 

derive equitation (1.48) from (1.47). 

 

Solution:  

m

k
n =!   thus,  2

nm

k
!=  

km

c

2
=!  thus,  nm

km

m

c
!"=

!
= 2

2
 

Therefore, 0=++ x
m

k
x

m

c
x !!!  

becomes,  

 ˙ ̇ x (t) + 2!"n
˙ x (t) +"n

2 x(t ) = 0  

 

1.40 For a damped system, m, c, and k are known to be m = 1 kg, c = 2 kg/s, k = 10 

N/m. Calculate the value of ζ and ωn. Is the system overdamped, underdamped, or 

critically damped? 

 Solution: 

Given: m = 1 kg, c = 2 kg/s, k = 10 N/m 

 

Natural frequency: srad
m

k
n /16.3

1

10
===!  

Damping ratio: 316.0
)1)(16.3(2

2

2
==

!
="

m

c

n

 

Damped natural frequency: 

  

!
d

= 10 1"
1

10

#

$%
&

'(

2

= 3.0  rad/s  

 
Since 0 < ζ < 1, the system is underdamped. 
 
 
 
 
 
 
 



 
 
 

1.41 Plot x(t) for a damped system of natural frequency ωn = 2 rad/s and initial 
conditions x0 = 1 mm, v0 = 1 mm, for the following values of the damping ratio: 

  ζ = 0.01, ζ = 0.2, ζ = 0.1, ζ = 0.4, and ζ = 0.8.  
 

 Solution: 
  
 Given: ωn = 2 rad/s, x0 = 1 mm, v0 = 1 mm, ζi = [0.01;  0.2;  0.1;  0.4;  0.8] 

 Underdamped cases: 
  
  !"di = "n 1 # $ i

2  

 
 From equation 1.38, 
 

 Ai =
v0 +! i"nx0( )

2
+ x0"di( )

2

"di
2   !i = tan "1 x0#di

v0 + $i#n x0

 

 
The response is plotted for each value of the damping ratio in the following using 
Matlab: 
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t
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m



1.42 Plot the response x(t) of an underdamped system with ωn = 2 rad/s, ζ = 0.1, and  
v0 = 0 for the following initial displacements: x0 = 10 mm and x0 = 100 mm. 
 
Solution: 
 
Given: ωn = 2 rad/s, ζ = 0.1, v0 = 0, x0 = 10 mm and x0 = 100 mm. 
 
Underdamped case: 

  

 !"d = "n 1 # $ i
2

= 2 1#0.12
= 1.99 rad/s  

 

 A =
v0 +!" nx0( )

2
+ x0"d( )

2

"d
2 = 1.01 x0   

 

 ! = tan "1 x0#d

v0 + $#n x0

= 1.47 rad  

 
where 
 
 x(t) = Ae!"#nt sin #dt + $( )  

 
 
The following is a plot from Matlab. 
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1.43 Solve 0=+! xxx !!!  with x0 = 1 and v0 =0 for x(t) and sketch the response. 

Solution:  This is a problem with negative damping which can be used to tie into 
Section 1.8 on stability, or can be used to practice the method for deriving the 
solution using the method suggested following equation (1.13) and eluded to at 
the start of the section on damping.   To this end let x(t) = Ae!t  the equation of 
motion to get: 

(!2
" ! +1)e!t

= 0  
This yields the characteristic equation: 

!
2
" ! + 1 = 0 #! =

1

2
±

3

2
j,   where  j = "1  

There are thus two solutions as expected and these combine to form 

x(t) = e0.5t (Ae
3

2
jt

+ Be
!

3

2
jt

)  
Using the Euler relationship for the term in parenthesis as given in Window 1.4, 
this can be written as 

x(t) = e0.5t(A1 cos
3

2
t + A2 sin

3

2
t)  

Next apply the initial conditions to determine the two constants of integration:  
x(0) = 1 = A1(1) + A2(0)! A1 =1 

 
Differentiate the solution to get the velocity and then apply the initial velocity 
condition to get 

 

!x(t) =

1

2
e0 (A1 cos

3

2
0 + A2 sin

3

2
0) + e0 3

2
(!A1 sin

3

2
0 + A2 cos

3

2
0) = 0

" A1 + 3(A2 ) = 0 " A2 = !
1

3
,

                        " x(t) = e0.5t (cos
3

2
t !

1

3
sin

3

2
t)

 

This function oscillates with increasing amplitude as shown in the following plot 
which shows the increasing amplitude.  This type of response is referred to as a 
flutter instability. This plot is from Mathcad. 



 
 
 
 

 

1.44 A spring-mass-damper system has mass of 100 kg, stiffness of 3000 N/m and 

damping coefficient of 300 kg/s.  Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency.  Does the solution oscillate? 

 Solution: Working straight from the definitions: 

 

!n =
k

m
=

3000 N/m

100 kg
= 5.477 rad/s

" =
c

ccr

=
300

2 km
=

300
2 (3000)(100)

= 0.274

 

 

Since ζ is less then 1, the solution is underdamped and will oscillate.  The damped 

natural frequency is!d = !n 1 "#2
= 5.27 rad/s. 

 

 
 



1.45 A sketch of a valve and rocker arm system for an internal combustion engine is 
give in Figure P1.45.  Model the system as a pendulum attached to a spring and a 
mass and assume the oil provides viscous damping in the range of ζ = 0.01. 
Determine the equations of motion and calculate an expression for the natural 
frequency and the damped natural frequency.  Here J is the rotational inertia of 
the rocker arm about its pivot point, k is the stiffness of the valve spring and m is 
the mass of the valve and stem.  Ignore the mass of the spring. 

 
 

 
Figure P1.45 

Solution: The model is of the form given in the figure. You may wish to give this figure 

as a hint as it may not be obvious to all students. 

 

 Taking moments about the pivot point yields: 

 

(J + m!2 )""!(t) = "kx! " c"x! = "k!2
! " c!2 "!

             # (J + m!2 )""!(t) + c!2 "! + k!2
! = 0

 

 Next divide by the leading coefficient to get; 

 

!!!(t) +
c"2

J + m"2

"
#$

%
&'
!!(t) +

k"2

J + m"2
!(t) = 0  



 From the coefficient of q, the undamped natural frequency is 

 

!n =
k!2

J + m!2
 rad/s  

 From equation (1.37), the damped natural frequency becomes 

 

!d = !n 1"# 2
= 0.99995

k!2

J + m!2
"

k!2

J + m!2
 

 This is effectively the same as the undamped frequency for any reasonable 

accuracy.  However, it is important to point out that the resulting response will 

still decay, even though the frequency of oscillation is unchanged.  So even 

though the numerical value seems to have a negligible effect on the frequency of 

oscillation, the small value of damping still makes a substantial difference in the 

response.  

  

1.46 A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and 

damping coefficient of  200 kg/s.  Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency.  Is the system overdamped, 

underdamped or critically damped?  Does the solution oscillate? 

 Solution: Working straight from the definitions: 

 

!n =
k

m
=

1500 N/m

150 kg
= 3.162 rad/s

" =
c

ccr

=
200

2 km
=

200
2 (1500)(150)

= 0.211

 

This last expression follows from the equation following equation (1.29).  Since ζ 

is less then 1, the solution is underdamped and will oscillate.  The damped natural 

frequency is!d = !n 1 "# 2
= 3.091 rad/s , which follows from equation (1.37). 



1.47* The system of Problem 1.44 is given a zero initial velocity and an initial 

displacement of 0.1 m.  Calculate the form of the response and plot it for as long 

as it takes to die out. 

Solution: Working from equation (1.38) and using Mathcad the solution is: 

 



1.48* The system of Problem 1.46 is given an initial velocity of 10 mm/s and an initial 

displacement of -5 mm.  Calculate the form of the response and plot it for as long 

as it takes to die out.  How long does it take to die out? 

Solution: Working from equation (1.38), the form of the response is programmed 
in Mathcad and is given by: 

 
 
It appears to take a little over 6 to 8 seconds to die out.  This can also be plotted in 
Matlab, Mathematica or by using the toolbox. 
 



1.49* Choose the damping coefficient of a spring-mass-damper system with mass of 

150 kg and stiffness of 2000 N/m such that it’s response will die out after about 2 

s, given a zero initial position and an initial velocity of 10 mm/s. 

Solution: Working in Mathcad, the response is plotted and the value of c is 

changed until the desired decay rate is meet: 

 

 

 

 

 

 In this case ζ = 0.73 which is very large!  

k 2000
x0 0

v0 0.010

m 150

c 800

!n
k

m

!
c

.2 .m k
!d .!n 1 "

2

! atan
."d x0

v0 ..# "n x0

x t ..A sin .!n t " e
..# !n t

0 0.5 1 1.5 2 2.5 3

0.002

0.002

x t
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1.50 Derive the equation of motion of the system in Figure P1.50 and discuss the effect 

of gravity on the natural frequency and the damping ratio. 

 

Solution: This requires two free body diagrams.   One for the dynamic case and 

one to show static equilibrium. 

!x

mg         x(t)            mg         y(t)

ky      cdy /dt                       k!x

 
    (a)   (b) 

From the free-body diagram of static equilibrium (b) we have that mg = kΔx, 
where Δx represents the static deflection.  From the free-body diagram of the 
dynamic case given in (a) the equation of motion is: 

m˙ ̇ y ( t) + c˙ y (t) + ky(t) ! mg = 0  
From the diagram, y(t) = x(t) + Δx.  Since Δx is a constant, differentiating and 
substitution into the equation of motion yields: 

  

˙ y (t) = ˙ x (t)  and  ˙ ̇ y ( t) = ˙ ̇ x ( t)!

m˙ ̇ x (t) + c ˙ x ( t) + kx(t) + (k"x # mg)
= 0

! " # $ # 
= 0  

where the last term is zero from the relation resulting from static equilibrium.  
Dividing by the mass yields the standard form 

˙ ̇ x (t) + 2!"n
˙ x (t) +"n

2x(t ) = 0 

It is clear that gravity has no effect on the damping ratio ζ or the natural 
frequency ωn.  Not that the damping force is not present in the static case because 
the velocity is zero. 
 

  



 

1.51 Derive the equation of motion of the system in Figure P1.46 and discuss the effect 

of gravity on the natural frequency and the damping ratio.  You may have to make 

some approximations of the cosine.  Assume the bearings provide a viscous 

damping force only in the vertical direction. (From the A. Diaz-Jimenez, South 

African Mechanical Engineer, Vol. 26, pp. 65-69, 1976) 

 

 Solution: First consider a free-body diagram of the system: 

 x(t)

c ˙ x (t)
  k!!

 

Let α be the angel between the damping and stiffness force.  The equation of 

motion becomes 

  
m˙ ̇ x (t) = !c˙ x (t) ! k("! +# s )cos$  

From static equilibrium, the free-body diagram (above with c = 0 and stiffness 
force kδs) yields: Fx = 0 = mg ! k" s cos#$ .  Thus the equation of motion 
becomes 

  m˙ ̇ x + c ˙ x + k!!cos" = 0     (1) 
Next consider the geometry of the dynamic state: 



   h

   x        !

  

    !

"

  ! +# !

 
From the definition of cosine applied to the two different triangles: 

  

cos! =
h

!
   and  cos" =

h + x

! + #!
   

Next assume small deflections so that the angles are nearly the same cos α = cos 
θ, so that 

  

h

!
!

h + x

!+ "!
# "! ! x

!

h
# "! !

x

cos$
 

For small motion, then this last expression can be substituted into the equation of 
motion (1) above to yield: 

m˙ ̇ x + c ˙ x + kx = 0 , α and x small 
Thus the frequency and damping ratio have the standard values and are not 
effected by gravity.  If the small angle assumption is not made, the frequency can 
be approximated as 

 

!n =
k

m
cos2" +

g

h
sin2 " ,    # =

c

2m! n

 

as detailed in the reference above.  For a small angle these reduce to the normal 
values of 

!n =
k

m
,    and  " =

c

2m! n

 

as derived here. 
 

 

 



Problems and Solutions Section 1.4 (problems 1.52 through 1.65) 

1.52 Calculate the frequency of the compound pendulum of Figure 1.20(b) if a mass mT 

is added to the tip, by using the energy method. 

 Solution Using the notation and coordinates of Figure 1.20 and adding a tip mass 

the diagram becomes: 

 

 If the mass of the pendulum bar is m, and it is lumped at the center of mass the 

energies become: 

 Potential Energy:               

 

U =
1

2
(! ! !cos")mg + (! ! !cos")mt g

   =
!

2
(1! cos")(mg + 2mt g)

 

 Kinetic Energy:             

  

T =
1

2
J ˙ ! 

2
+

1

2
Jt

˙ ! 
2

=
1

2

m!2

3
˙ ! 

2
+

1

2
mt!

2 ˙ ! 
2

   = (
1

6
m +

1

2
mt )!

2 ˙ ! 
2

 

 Conservation of energy (Equation 1.52) requires T + U = constant: 

  

!

2
(1! cos")(mg + 2mtg) + (

1

6
m +

1

2
mt )!

2 ˙ " 
2

= C  

 Differentiating with respect to time yields:  

 

!

2
(sin!)(mg + 2mt g) "! + (

1

3
m + mt )!

2 "! ""! = 0

      " (
1

3
m + mt )! ""! +

1

2
(mg + 2mt g)sin! = 0

 

 Rearranging and approximating using the small angle formula sin θ ~ θ, yields: 

 θ          mt 



 

!!!(t) +

m

2
+ mt

1
3

m + mt

g

"

"

#

$
$
$

%

&

'
'
'
!(t) = 0 ()n =

3m + 6mt

2m + 6mt

g

"
 rad/s  

 Note that this solution makes sense because if mt = 0 it reduces to the frequency of 

the pendulum equation for a bar, and if m = 0 it reduces to the frequency of a 

massless pendulum with only a tip mass.   

 

1.53 Calculate the total energy in a damped system with frequency 2 rad/s and 

damping ratio ζ = 0.01 with mass 10 kg for the case x0 = 0.1 and v0 = 0.  Plot the 

total energy versus time. 

 Solution: Given:  ωn = 2 rad/s, ζ = 0.01, m = 10 kg, x0 = 0.1 mm, v0 = 0. 

 Calculate the stiffness and damped natural frequency: 

 

k = m! n
2

=10(2)2
= 40 N/m

!d = !n 1"# 2
= 2 1 "0.012

= 2 rad/s
 

 The total energy of the damped system is 

E(t ) =
1

2
m ˙ x 2 (t) +

1

2
kx(t)  

 where 
x(t) = Ae!0.02 t sin(2t +" )

˙ x (t) = !0.02Ae!0.02 t sin(2t + ") + 2Ae!0.02t cos(2t + ")
 

 Applying the initial conditions to evaluate the constants of integration yields: 

x(0) = 0.1 = Asin!

˙ x (0) = 0 = "0.02Asin! + 2A cos!

#! = 1.56 rad/s,   A = 0.1  m

 

 Substitution of these values into E(t) yields: 





 

1.54 Use the energy method to calculate the equation of motion and natural frequency 
of an airplane's steering mechanism for the nose wheel of its landing gear.  The 
mechanism is modeled as the single-degree-of-freedom system illustrated in 
Figure P1.54. 

   
 The steering wheel and tire assembly are modeled as being fixed at ground for 

this calculation.  The steering rod gear system is modeled as a linear spring and 
mass system (m, k2) oscillating in the x direction.  The shaft-gear mechanism is 
modeled as the disk of inertia J and torsional stiffness k2.  The gear J turns 
through the angle θ such that the disk does not slip on the mass.  Obtain an 
equation in the linear motion x. 

 Solution: From kinematics: x = r! ," ˙ x = r ˙ !  

 Kinetic energy: 22

2

1

2

1
xmJT !! += !  

 Potential energy: 2
1

2
2 2

1

2

1 !kxkU +=  

 Substitute 
r

x
=! : 2

2
12

2
22

2 2

1

2

1

2

1

2

1
x

r

k
xkxmx

r

J
UT +++=+ !!  

 Derivative: 
( )

0=
+

dt

UTd
 

  

J

r 2
˙ ̇ x ̇  x + m˙ ̇ x ̇  x + k2 x˙ x +

k1

r 2
x˙ x = 0

J

r2 + m
! 

" 

# 

$ 
˙ ̇ x + k2 +

k1

r 2

! 

" 

# 

$ 
x

% 

& ' 

( 

) * 
˙ x = 0

 

 Equation of motion: 
J

r2 + m
! 

" 

# 

$ 
˙ ̇ x + k2 +

k1

r 2

! 

" 

# 

$ 
x = 0  

 Natural frequency: 

  

!
n

=

k
2

+
k

1

r 2

J

r 2
+ m

=
k

1
+ r 2k

2

J + mr 2
 



1.55  A control pedal of an aircraft can be modeled as the single-degree-of-freedom 

system of Figure P1.55.  Consider the lever as a massless shaft and the pedal as a 

lumped mass at the end of the shaft.  Use the energy method to determine the 

equation of motion in θ and calculate the natural frequency of the system.  Assume 

the spring to be unstretched at θ = 0. 

 

  Figure P1.55 

Solution: In the figure let the mass at θ = 0 be the lowest point for potential energy.  
Then, the height of the mass m is (1-cosθ)2.  
 Kinematic relation:  x = 1θ 

 Kinetic Energy: 
  

T =
1

2
m ˙ x 2 =

1

2
m!2

2 ˙ ! 
2  

 Potential Energy: 
  

U =
1

2
k(!1!)2

+ mg!2(1 " cos! ) 

 Taking the derivative of the total energy yields: 

  

d

dt
(T + U ) = m!2

2 ˙ ! ˙ ̇ ! + k(!1
2
!) ˙ ! + mg!2 (sin! ) ˙ ! = 0 

 Rearranging, dividing by dθ/dt and approximating sinθ with θ yields: 

  

m! 2
2˙ ̇ ! + (k!1

2
+ mg!2 )! = 0

               "# n =
k!1

2
+ mg!2

m!2
2

 

 



1.56 To save space, two large pipes are shipped one stacked inside the other as 
indicated in Figure P1.56.  Calculate the natural frequency of vibration of the 
smaller pipe (of radius R1) rolling back and forth inside the larger pipe (of radius 
R).  Use the energy method and assume that the inside pipe rolls without slipping 
and has a mass m. 

 
Solution: Let θ be the angle that the line between the centers of the large pipe and 
the small pipe make with the vertical and let α be the angle that the small pipe 
rotates through.  Let R be the radius of the large pipe and R1 the radius of the 
smaller pipe. Then the kinetic energy of the system is the translational plus 
rotational of the small pipe.  The potential energy is that of the rise in height of 
the center of mass of the small pipe. 

R        !  

R – R1

y
R1 x

 
From the drawing:  
y + (R! R1)cos" + R1 = R

     # y = (R ! R1)(1! cos")

               # ˙ y = (R ! R1)sin(") ˙ " 

 

Likewise examination of the value of x yields: 
x = (R ! R1)sin"

       # ˙ x = (R! R1)cos" ˙ " 
 

Let β denote the angle of rotation that the small pipe experiences as viewed in the 
inertial frame of reference (taken to be the truck bed in this case).  Then the total 



kinetic energy can be written as: 

T = Ttrans + Trot =
1

2
m ˙ x 2 +

1

2
m ˙ y 2 +

1

2
I0

˙ ! 
2

     =
1

2
m(R" R1 )2(sin2

# + cos2
#) ˙ # 

2
+

1

2
I0

˙ ! 
2

                           $ T =
1

2
m(R " R1)

2 ˙ # 
2

+
1

2
I0

˙ ! 
2

 

The total potential energy becomes just: 
V = mgy = mg(R! R1)(1! cos")  
Now it remains to evaluate the angel β.   Let α be the angle that the small pipe 
rotates in the frame of the big pipe as it rolls (say) up the inside of the larger pipe.  
Then 
β = θ – α 
were α is the angle “rolled” out as the small pipe rolls from a to b  in figure 
P1.56. The rolling with out slipping condition implies that arc length a’b must 
equal arc length ab.  Using the arc length relation this yields that  Rθ =R1α.  
Substitution of the expression β = θ – α yields: 
 

R! = R1(! " # ) = R1! " R1# $ (R " R1 )! = "R1#

    $ # =
1

R1

(R1 " R)!  and   ˙ # =
1

R1

(R1 " R) ˙ ! 
 

which is the relationship between angular motion of the small pipe relative to the 
ground (β) and the position of the pipe (θ). Substitution of this last expression into 
the kinetic energy term yields: 

T =
1

2
m(R! R1)

2 ˙ " 
2

+
1

2
I0(

1

R1

(R1 ! R) ˙ " )2

            #  T = m(R! R1)
2 ˙ " 

2

 

 
Taking the derivative of T + V  yields 

d

d!
T + V( ) = 2m(R" R1 )2 ˙ ! ˙ ̇ ! + mg(R" R1 )sin! ˙ ! = 0

         # 2m(R " R1)
2 ˙ ̇ ! + mg(R " R1 )sin! = 0

 

Using the small angle approximation for sine this becomes 
2m(R ! R1)

2 ˙ ̇ " + mg(R ! R1)" = 0

         # ˙ ̇ " +
g

2(R ! R1)
" = 0

                   #$ n =
g

2(R ! R1 )

 

 

   



1.57 Consider the example of a simple pendulum given in Example 1.4.2.  The 

pendulum motion is observed to decay with a damping ratio of ζ = 0.001.  

Determine a damping coefficient and add a viscous damping term to the 

pendulum equation. 

 

 Solution: From example 1.4.2, the equation of motion for a simple pendulum is 

  0=+ !!
!

""
g

 

 So 
  

!n =
g

!
.  With viscous damping the equation of motion in normalized form 

becomes: 

  
˙ ̇ ! + 2"#n

˙ ! +#n
2! = 0  or with " as given :

                     $ ˙ ̇ ! + 2 .001( )# n
˙ ! + #n

2! = 0
 

 The coefficient of the velocity term is 

  

  

c

J
=

c

m!2 = .002( )
g

!

c = 0.002( )m g!3
 



1.58 Determine a damping coefficient for the disk-rod system of Example 1.4.3.  

Assuming that the damping is due to the material properties of the rod, determine 

c for the rod if it is observed to have a damping ratio of ζ = 0.01. 

 Solution: The equation of motion for a disc/rod in torsional vibration is 

  0=+ !! kJ !!  

 or ˙ ̇ ! + "n
2
! = 0 where "n =

k

J
 

 Add viscous damping: 

  

˙ ̇ ! + 2"#n
˙ ! +#n

2! = 0

˙ ̇ ! + 2 .01( )
k

J
˙ ! + #n

2! = 0
 

 From the velocity term, the damping coefficient must be 

  

  

c

J
= 0.02( )

k

J

   ! c = 0.02 kJ

 

 

1.59 The rod and disk of Window 1.1 are in torsional vibration.  Calculate the damped 

natural frequency if J = 1000 m2 ⋅  kg, c = 20 N⋅  m⋅ s/rad, and k = 400 N⋅m/rad. 

 Solution: From Problem 1.57, the equation of motion is 

  0=++ !!! kcJ !!!  

 The damped natural frequency is 

  !d = !n 1 "# 2  

 where !n =
k

J
=

400

1000
= 0.632 rad/s  

 and ! =
c

2 kJ
=

20

2 400 "1000
= 0.0158 

 Thus the damped natural frequency is   !d = 0.632 rad/s  



1.60 Consider the system of P1.60, which represents a simple model of an aircraft 

landing system.  Assume, x = rθ.  What is the damped natural frequency? 

 

 Solution:  From Example 1.4.1, the undamped equation of motion is 

  m +
J

r2

! 

" 

# 

$ 
˙ ̇ x + kx = 0 

 From examining the equation of motion the natural frequency is: 

!n =
k

meq

=
k

m +
J

r2

 

 An add hoc way do to this is to add the damping force to get the damped equation 

of motion: 

  m +
J

r2

! 

" 

# 

$ 
˙ ̇ x + c˙ x + kx = 0  

 The value of ζ is determined by examining the velocity term: 

c

m +
J

r2

= 2!"n #! =
c

m +
J

r2

1

2
k

m +
J

r2

                #! =
c

2 k m +
J

r2

$
%&

'
()

 

 Thus the damped natural frequency is 



!d = !n 1"# 2
=

k

m +
J

r2

1"
c

2 k m +
J

r2

$
%&

'
()

$

%

&
&
&
&

'

(

)
)
)
)

2

                       *!d =
k

m +
J

r2

"
c2

4 m +
J

r2

$
%&

'
()

2 =
r

2(mr2
+ J )

4(kmr2
+ kJ ) " c2r2

 

 

    

 

1.61 Consider Problem 1.60 with k = 400,000 N⋅m, m = 1500 kg, J = 100 m2⋅kg, r = 25 

cm, and c = 8000 N⋅m⋅s.  Calculate the damping ratio and the damped natural 

frequency.  How much effect does the rotational inertia have on the undamped 

natural frequency? 

 Solution: From problem 1.60: 

  ! =
c

2 k m +
J

r 2

" 

# 

$ 

% 

 and &d =
k

m +
J

r2

'
c2

4 m +
J
r 2

" 

# 

$ 

% 

2  

 Given: 

  

k = 4 ! 105  Nm/rad

m = 1.5 !103  kg

J = 100 m2 kg

r = 0.25 m and

c = 8 !103  N "m " s/rad

 

 Inserting the given values yields 

  ! = 0.114 and "d = 11.16 rad/s 

 For the undamped natural frequency, !n =
k

m + J / r2  

 With the rotational inertia, !n = 36.886 rad/s  

 Without rotational inertia, !n = 51.64 rad/s 



 The effect of the rotational inertia is that it lowers the natural frequency by almost 

33%. 

 
1.62 Use Lagrange’s formulation to calculate the equation of motion and the natural 

frequency of the system of Figure P1.62.  Model each of the brackets as a spring 
of stiffness k, and assume the inertia of the pulleys is negligible. 

                         
                                                 Figure P1.62 
 
Solution: Let x denote the distance mass m moves, then each spring will deflects 
a distance x/4.  Thus the potential energy of the springs is  

  
U = 2 !

1

2
k

x

4

"
#$

%
&'

2

=
k

16
x2  

The kinetic energy of the mass is  

   
T =

1

2
m!x2  

Using the Lagrange formulation in the form of Equation (1.64): 

   

d

dt

!
!!x

1

2
m!x2"

#$
%
&'

"

#$
%

&'
+

!
!x

kx2

16

"

#$
%

&'
= 0 (

d

dt
m!x( ) +

k

8
x = 0

                                 ( m!!x +
k

8
x = 0 ()

n
=

1

2

k

2m
 rad/s

 

 
1.63 Use Lagrange’s formulation to calculate the equation of motion and the natural 

frequency of the system of Figure P1.63.  This figure represents a simplified 
model of a jet engine mounted to a wing through a mechanism which acts as a 
spring of stiffness k and mass ms. Assume the engine has inertial J and mass m 
and that the rotation of the engine is related to the vertical displacement of the 
engine, x(t) by the “radius” r0 (i.e.   x = r

0
! ). 

 
 



 
Figure P1.63 

 Solution: This combines Examples 1.4.1 and 1.4.4.  The kinetic energy is  

   

T =
1

2
m!x2

+
1

2
J !! 2

+ T
spring

=
1

2
m +

J

r
0
2

"

#
$

%

&
' !x

2
+ T

spring
 

The kinetic energy in the spring (see example 1.4.4) is 

   
T

spring
=

1

2

m
s

3
!x2  

Thus the total kinetic energy is  

   

T =
1

2
m +

J

r
0
2

+
m

s

3

!

"
#

$

%
& !x

2  

The potential energy is just  

  
U =

1

2
kx2  

Using the Lagrange formulation of Equation (1.64) the equation of motion results 
from: 

   

d

dt

!
!!x

1

2
m +

J

r
0
2

+
m

s

3

"

#
$

%

&
' !x

2
"

#
$

%

&
'

"

#
$$

%

&
''

+
!
!x

1

2
kx2"

#$
%
&'

= 0

                           ( m +
J

r
0
2

+
m

s

3

"

#
$

%

&
' !!x + kx = 0

                                          ()
n

=
k

m +
J

r
0
2

+
m

s

3

"

#
$

%

&
'

 rad/s

 

 
1.64 Lagrange’s formulation can also be used for non-conservative systems by adding 

the applied non-conservative term to the right side of equation (1.64) to get  

   

d

dt

!T

! !q
i

"

#$
%

&'
(
!T

!q
i

+
!U

!q
i

+
!R

i

! !q
i

= 0  



Here Ri is the Rayleigh dissipation function defined in the case of a viscous 
damper attached to ground by 

   
R

i
=

1

2
c !q

i
2  

Use this extended Lagrange formulation to derive the equation of motion of the 
damped automobile suspension of Figure P1.64 

 
 

Figure P1.64 
 
 Solution: The kinetic energy is (see Example 1.4.1): 

   
T =

1

2
(m +

J

r 2
) !x2  

 The potential energy is: 

  
U =

1

2
kx2  

 The Rayleigh dissipation function is 

   
R =

1

2
c !x2  

 The Lagrange formulation with damping becomes 

   

d

dt

!T

! !q
i

"

#$
%

&'
(
!T

!q
i

+
!U

!q
i

+
!R

i

! !q
i

= 0

          )
d

dt

!
!!x

1

2
(m +

J

r 2
) !x2"

#$
%
&'

"

#$
%

&'
+

!
!x

1

2
kx2"

#$
%
&'

+
!
!!x

1

2
c !x2"

#$
%
&'

= 0

                                         ) (m +
J

r 2
)!!x + c !x + kx = 0

 



1.65 Consider the disk of Figure P1.65 connected to two springs.  Use the energy 

method to calculate the system's natural frequency of oscillation for small angles 

θ(t). 

 

 Solution: 

 Known:  x = r! , ˙ x = r ˙ !  and 2

2

1
mrJ o =  

 Kinetic energy: 

  

Trot =
1
2

Jo
˙ ! 

2
=

1
2

mr2

2

" 

# 

$ % 

& 
!2

=
1
4

mr2 ˙ ! 
2

Ttrans =
1

2
m ˙ x 2 =

1

2
mr2 ˙ ! 

2

T = Trot + Ttrans =
1

4
mr2 ˙ ! 

2
+

1

2
mr2 ˙ ! 

2
=

3

4
mr2 ˙ ! 

2

 

 Potential energy: U = 2
1

2
k a + r( )![ ]

2" 

# 

$ 

% 
= k a + r( )

2!2  

 Conservation of energy: 

  

T + U =  Constant

d
dt

T + U( ) = 0

d

dt

3

4
mr2 ˙ ! 

2
+ k a + r( )

2! 2" 

# 

$ 

% 
= 0

3

4
mr2 2 ˙ ! ˙ ̇ ! ( ) + k a + r( )

2 2 ˙ ! !( ) = 0

3
2

mr2˙ ̇ ! + 2k a + r( )
2! = 0

 

 Natural frequency: 

  

!n =
keff

meff

=
2k a + r( )

2

3

2
mr 2

!n = 2
a + r

r

k

3m
 rad/s

 

 
 



Problems and Solutions Section 1.5 (1.66 through 1.74)  
 
1.66 A helicopter landing gear consists of a metal framework rather than the coil 

spring based suspension system used in a fixed-wing aircraft.  The vibration of the 

frame in the vertical direction can be modeled by a spring made of a slender bar 

as illustrated in Figure 1.21, where the helicopter is modeled as ground.  Here l = 

0.4 m, E = 20 × 1010 N/m2, and m = 100 kg.  Calculate the cross-sectional area that 

should be used if the natural frequency is to be fn = 500 Hz. 

 Solution:  From Figure 1.21 

  !n =
k

m
=

EA

lm
 (1) 

 and 

  !n = 500 Hz
2" rad

1 cycle

# 

$ 

% & 

' 
= 3142 rad/s 

 Solving (1) for A yields: 

A =
!n

2lm
E

=
3142( )

2 .4( ) 100( )

20 "1010

A = 0.0019 m2
= 19cm2

 



1.67 The frequency of oscillation of a person on a diving board can be modeled as the 

transverse vibration of a beam as indicated in Figure 1.24.  Let m be the mass of 

the diver (m = 100 kg) and l = 1 m.  If the diver wishes to oscillate at 3 Hz, what 

value of EI should the diving board material have? 

  

 Solution: From Figure 1.24, 

  !n
2

=
3EI

ml3  

 and 

  !n = 3Hz
2" rad

1 cycle

# 

$ 

% & 

' 
= 6" rad/s 

 Solving for EI 

  
  
EI =

!
n
2ml3

3
=

6"( )
2

100( ) 1( )
3

3
= 11843.5 Nm2  

 

 

1.68 Consider the spring system of Figure 1.29.  Let k1 = k5 = k2 =100 N/m, k3 = 50 

N/m, and k4 = 1 N/m.  What is the equivalent stiffness? 

  

 Solution: Given: k1 = k2 = k5 = 100 N/m,k3 = 50 N/m,  k4 = 1 N/m  

 From Example 1.5.4 

  
keq = k1 + k2 + k5 +

k3k4

k3 + k4

                        ! keq = 300.98 N/m
 



1.69 Springs are available in stiffness values of 10, 100, and 1000 N/m.  Design a 

spring system using these values only, so that a 100-kg mass is connected to 

ground with frequency of about 1.5 rad/s. 

  

 Solution: Using the definition of natural frequency: 

  !n =
keq

m
 

 With m = 100 kg and ωn = 1.5 rad/s the equivalent stiffness must be: 

 keq = m!n
2

= 100( ) 1.5( )
2

= 225 N/m   

There are many configurations of the springs given and no clear way to determine 
one configuration over another.  Here is one possible solution.  Choose two 100 
N/m springs in parallel to get 200 N/m, then use four 100 N/m springs in series to 
get an equivalent spring of 25 N/m to put in parallel with the other 3 springs since 

keq =
1

1

k1

+
1

k2

+
1

k3

+
1

k4

=
1

4 100
= 25  

Thus using six 100 N/m springs in the following arrangement will produce an 
equivalent stiffness of 225 N/m 

 

 
 
 

1 
 
2 
 
3 
 
4 

5 6 



1.70 Calculate the natural frequency of the system in Figure 1.29(a) if k1 = k2 = 0.  

Choose m and nonzero values of k3, k4, and k5 so that the natural frequency is 100 

Hz. 

  

 Solution: Given:  k1 = k2 = 0 and ! n = 2" 100( ) = 628.3 rad/s  

 From Figure 1.29, the natural frequency is 

  !n =
k5k3 + k5k4 + k3k4

m k3 + k4( )
and keq = k5 +

k3k4

k3 + k4

" 

# 

$ 
% 

& 

'  

 Equating the given value of frequency to the analytical value yields: 

  !n
2

= 628.3( )
2

=
k5k3 + k5k4 + k3k4

m k3 + k4( )
 

 Any values of k3, k4, k5, and m that satisfy the above equation will do.  Again, the 

answer is not unique.  One solution is 

  kg 127.0 and N/m, 000,50 N/m, 1,N/m 1 543 ==== mkkk  

1.71* Example 1.4.4 examines the effect of the mass of a spring on the natural 

frequency of a simple spring-mass system.  Use the relationship derived there and 

plot the natural frequency versus the percent that the spring mass is of the 

oscillating mass.  Use your plot to comment on circumstances when it is no longer 

reasonable to neglect the mass of the spring. 

Solution: The solution here depends on the value of the stiffness and mass ratio 
and hence the frequency.  Almost any logical discussion is acceptable as long as 
the solution indicates that for smaller values of ms, the approximation produces a 
reasonable frequency.  Here is one possible answer.  For 



 
From this plot, for these values of m and k it looks like a 10 % spring mass 
causes less then a 1 % error in the frequency. 

 
 

  



1.72    Calculate the natural frequency and damping ratio for the system in Figure P1.72 

given the values m = 10 kg, c = 100 kg/s, k1 = 4000 N/m, k2 = 200 N/m and k3 = 

1000 N/m.  Assume that no friction acts on the rollers.  Is the system overdamped, 

critically damped or underdamped? 

 

     Figure P1.72 
 Solution: Following the procedure of Example 1.5.4, the equivalent spring 

constant is:   

� 

keq = k1 +
k2k3

k2 + k3

= 4000 +
(200)(1000)

1200
= 4167 N/m 

Then using the standard formulas for frequency and damping ratio: 

� 

!n =
keq

m
=

4167

10
= 20.412 rad/s

" =
c

2m!n

=
100

2(10)(20.412)
= 0.245

 

Thus the system is underdamped. 

 

1.73   Repeat Problem 1.72 for the system of Figure P1.73. 

 

Figure P1.73 

Solution: Again using the procedure of Example 1.5.4, the equivalent spring 
constant is:   

keq = k1 + k2 + k3 +
k4k5

k4 + k5

= (10 +1 + 4 +
2 !3

2 +3
)kN/m = 16.2 kN/m  

Then using the standard formulas for frequency and damping ratio: 



!n =
keq

m
=

16.2 "103

10
= 40.25 rad/s

# =
c

2m!n

=
1

2(10)(40.25)
= 0.00158

 

Thus the system is underdamped. 
 

1.74 A manufacturer makes a cantilevered leaf spring from steel (E = 2 x 1011 N/m2) 

and sizes the spring so that the device has a specific frequency.  Later, to save weight, the 

spring is made of aluminum (E = 7.1 x 1010 N/m2).  Assuming that the mass of the spring 

is much smaller than that of the device the spring is attached to, determine if the 

frequency increases or decreases and by how much. 

 Solution:  Use equation (1.68) to write the expression for the frequency twice:  

  

!al =
3Eal

m!3    and !steel =
3Esteel

m!3  rad/s  

 Dividing yields: 

  

!al

!steel

=

3Eal

m!3

3Esteel

m!3

=
7.1 "1010

2 "1011 = 0.596 

 Thus the frequency is decreased by about 40% by using aluminum.  

 

 



Problems and Solutions Section 1.6 (1.75 through 1.81)  
 
 
1.75 Show that the logarithmic decrement is equal to 

  ! =
1

n
ln

x0

xn

 

 where xn  is the amplitude of vibration after n cycles have elapsed. 

 Solution: 

  

  

ln
x t( )

x t + nT( )

!

"
#
#

$

%
&
&

= ln
Ae'()nt sin )

d
t + *( )

Ae'()n t + nt( ) sin )
d
t +)

d
nT + *( )

!

"

#
#

$

%

&
&

 (1) 

 Since n!d T = n 2"( ),   sin !d t + n!d T +#( ) = sin !d t + #( )  

 Hence, Eq. (1) becomes 

  

  

ln
Ae!"#nt sin #

d
t + $( )

Ae!"#n t + nT( )e!"#n nt sin #
d
t +#

d
nt + $( )

%

&

'
'

(

)

*
*

= ln e"#n nT
( ) = n"#

n
T  

 Since 

  

ln
x t( )

x t + T( )

!

"
#
#

$

%
&
&

= '(
n
T = ) ,  

 Then 

  

ln
x t( )

x t + nT( )

!

"

#
#

$

%

&
&

= n'  

 Therefore, 

  ! =
1

n
ln

xo

xn

" original amplitude

" amplitude n cycles later
 

 Here x0 = x(0). 

 



1.76 Derive the equation (1.70) for the trifalar suspension system. 

 Solution: Using the notation given for Figure 1.29, and the following geometry: 

  

 

r

!

r !
"

l

r !

l h

 

 Write the kinetic and potential energy to obtain the frequency:  

 Kinetic energy: Tmax =
1

2
Io

˙ ! 
2

+
1

2
I ˙ ! 

2  

 From geometry, !rx =  and ˙ x = r ˙ !  

  Tmax =
1

2
Io + I( )

˙ x 2

r 2  

 Potential Energy: 

  Umax = mo + m( )g l ! l cos"( )  

 Two term Taylor Series Expansion of cos φ! 1"
#2

2
:  

  Umax = mo + m( )gl
!2

2

" 

# 

$ % 

& 
 

 For geometry, sin 
l

r!
" = , and for small φ, sin φ = φ so that φ

l

r!
=  

  

Umax = mo + m( )gl
r 2!2

2l2

" 

# 

$ % 

& 

Umax = mo + m( )g
r 2! 2

2l

" 

# 

$ % 

& 
 where r! = x

Umax =
mo + m( )g

2l
x 2

 

 Conservation of energy requires that: 



  

Tmax = Umax    !

1
2

Io + I( )

r 2
˙ x 2 =

mo + m( )g

2l
x2

 

 At maximum energy, x = A and ˙ x = !nA  

  

1

2

Io + I( )

r 2 !n
2 A2

=
mo + m( )g

2l
A2

             " Io + I( ) =
gr 2 mo + m( )

!n
2l

 

 Substitute !n = 2"fn =
2"

T
 

  

Io + I( ) =
gr 2 mo + m( )

2! / T( )
2 l

I =
gT 2r 2 mo + m( )

4! 2l
" Io

 

 were T is the period of oscillation of the suspension. 



1.77 A prototype composite material is formed and hence has unknown modulus.  An 

experiment is performed consisting of forming it into a cantilevered beam of 

length 1 m and I = 10-9 m4 with a 6-kg mass attached at its end.  The system is 

given an initial displacement and found to oscillate with a period of 0.5 s.  

Calculate the modulus E. 

 

 Solution:  Using equation (1.66) for a cantilevered beam, 

  T =
2!

"n

= 2!
ml3

3EI
 

 Solving for E and substituting the given values yields 

  
E =

4! 2ml3

3T 2I
=

4! 2 6( ) 1( )
3

3 .5( )
2 10"9
( )

                    # E = 3.16 $1011 N/m2

 



1.78 The free response of a 1000-kg automobile with stiffness of k = 400,000 N/m is 

observed to be of the form given in Figure 1.32.  Modeling the automobile as a 

single-degree-of-freedom oscillation in the vertical direction, determine the 

damping coefficient if the displacement at t1 is measured to be 2 cm and 0.22 cm 

at t2. 

 Solution:  Given:  x1 = 2 cm and x2 = 0.22 cm where t2 = T + t1 

 Logarithmic Decrement:! = ln
x1

x2

= ln
2

0.22
= 2.207  

 Damping Ratio:
( )

331.0
207.24

207.2

4 2222
=

+

=

+

=

!"!

"
#  

 Damping Coefficient:  ( ) ( )( ) kg/s 256,131000000,400331.022 === kmc !  

 

 

 

 

1.79 A pendulum decays from 10 cm to 1 cm over one period.  Determine its damping 

ratio. 

 Solution: Using Figure 1.31: x1 = 10 cm and x2 = 1 cm  

 Logarithmic Decrement: 303.2
1

10
lnln

2

1
===

x

x
!  

 Damping Ratio:! =
"

4# 2
+ " 2

=
2.303

4# 2
+ 2.303( )

2
= 0.344  



1.80 The relationship between the log decrement δ and the damping ratio ζ is often 

approximated as δ =2πζ.  For what values of ζ would you consider this a good 

approximation to equation (1.74)? 

 Solution: From equation (1.74), 
21

2

!

"!
#

$
=  

 For small ζ, !"# 2=  

 A plot of these two equations is shown: 

 

 

 The lower curve represents the approximation for small ζ, while the upper curve 

is equation (1.74).  The approximation appears to be valid to about ζ = 0.3. 



1.81 A damped system is modeled as illustrated in Figure 1.10.  The mass of the 

system is measured to be 5 kg and its spring constant is measured to be 5000 N/m.  

It is observed that during free vibration the amplitude decays to 0.25 of its initial 

value after five cycles.  Calculate the viscous damping coefficient, c. 

 Solution: 

 Note that for any two consecutive peak amplitudes, 

  
xo

x1

=
x1

x2

=
x2

x3

=
x3

x4

=
x4

x5

= e!  by definition 

  !
xo

x5

=
1

0.25
=

x0

x1

"
x1

x2

"
x2

x3

"
x3

x4

"
x4

x5

= e5#  

 So, 

  ( ) 277.04ln
5

1
==!  

 and 

  044.0
4 22

=

+

=

!"

!
#  

 Solving for c, 

  ( ) ( )

s/m-N 94.13

55000044.022

=

==

c

kmc !  

 



Problems and Solutions Section 1.7 (1.82 through 1.89)  
 
1.82 Choose a dashpot's viscous damping value such that when placed in parallel with 

the spring of Example 1.7.2 reduces the frequency of oscillation to 9 rad/s. 

 Solution: 

 The frequency of oscillation is !d = !n 1 "# 2  

 From example 1.7.2:!n = 10 rad/s,  m = 10 kg,   and k =103  N/m  

 So, 9 = 10 1 !" 2  

  ! 0.9 = 1 "# 2
! (0.9)2

=1 "# 2  

    
 
! = 1" 0.9( )

2
= 0.436   

Then  
c = 2m!n" = 2(10)(10)(0.436) = 87.2 kg/s 

 

1.83 For an underdamped system, x0 = 0 and v0 = 10 mm/s.  Determine m, c, and k such 

that the amplitude is less than 1 mm. 

 Solution:  Note there are multiple correct solutions. The expression for the 
amplitude is: 

  

A2
= x0

2
+

(vo + !"nxo )2

" d
2

for xo = 0 # A =
vo

"d

< 0.001 m #"d >
vo

0.001
=

0.01

0.001
= 10

 

 So 

  

!d =
k

m
1"# 2( ) >10

$
k
m

1" # 2
( ) >100,$ k = m

100
1 "# 2

 

 (1)  Choose ! = 0.01"
k

m
> 100.01 

 (2)  Choose m = 1 kg ! k > 100.01   
 (3)  Choose k = 144 N/m >100.01  

  

!"n = 144
rad
s

=12
rad
s

!"d = 11.99
rad

s

! c = 2m#"n = 0.24 
kg

s

 



1.84 Repeat problem 1.83 if the mass is restricted to lie between 10 kg < m < 15 kg. 

 

 Solution: Referring to the above problem, the relationship between m and k is 

k >1.01x10-4 m 

 after converting to meters from mm.  Choose m =10 kg and repeat the calculation 

at the end of Problem 1.82 to get ωn (again taking ζ = 0.01).  Then k = 1000 N/m 

and: 

 

  

!"n =
1.0 # 103

10
rad
s

=10 
rad
s

!"d = 9.998  
rad

s

! c = 2m$"n = 2.000 
kg

s

 

 



1.85 Use the formula for the torsional stiffness of a shaft from Table 1.1 to design a 1-

m shaft with torsional stiffness of 105 N⋅m/rad. 

 Solution: Referring to equation (1.64) the torsional stiffness is 

  
  

kt =
GJp

!
 

 Assuming a solid shaft, the value of the shaft polar moment is given by 

  Jp =
!d 4

32
 

 Substituting this last expression into the stiffness yields:  

  
  

kt =
G!d4

32!
 

 Solving for the diameter d yields 

  

d =
kt 32( )!

G!
" 

# 

$ 

% 

1
4

 

Thus we are left with the design variable of the material modulus (G).  Choose 

steel, then solve for d.  For steel G = 8 × 1010 N/m2.  From the last expression the 

numerical answer is 

  

  

d =

105 Nm
rad

32( ) 1m( )

8 !1010 N

m2

"
#$

%
&'
(( )

)

*

+
+
+
+

,

-

.

.

.

.

1
4

= 0.0597 m  

   

1.86 Repeat Example 1.7.2 using aluminum.  What difference do you note? 

 Solution: 

 For aluminum G = 25 × 109 N/m2 

 From example 1.7.2, the stiffness is k = 103 = 
3

4

64nR

Gd
 and d = .01 m 

 So, 103
=

25 !109
( ) .01( )

4

64nR3  

 Solving for nR3 yields:  nR3 = 3.906 × 10-3m3 

 Choose R = 10 cm = 0.1 m, so that 



  

  

n =
3.906 !10"3

0.1( )
3

= 4 turns  

 Thus, aluminum requires 1/3 fewer turns than steel.  

 

1.87 Try to design a bar (see Figure 1.21) that has the same stiffness as the spring of 

Example 1.7.2.  Note that the bar must remain at least 10 times as long as it is 

wide in order to be modeled by the formula of Figure 1.21. 

 Solution: 

 From Figure 1.21, 
l

EA
k =  

 For steel, E = 210 ! 109  N/m2  

 From Example 1.7.2, k = 103 N/m 

 So, 103
=

210 !109
( )A

l
 

        l = 2.1 !108
( )A 

 If A = 0.0001 m2 (1 cm2), then 

  l = 2.1 !108
( ) 10"4

( ) = 21,000 m  21km or 13 miles( )  

Not very practical at all. 



1.88 Repeat Problem 1.87 using plastic (E = 1.40 × 109 N/m2) and rubber (E = 7 × 106 

N/m2).  Are any of these feasible? 

 Solution: 

 From problem 1.53, 
l

EA
k   N/m 103

==  

 For plastic, E = 1.40 ! 109  N/m2  

 So, m 140=l  

 For rubber, E = 7 !106  N/m2  

 So, m 7.0=l  

 Rubber may be feasible, plastic would not.  

 

1.89      Consider the diving board of Figure P1.89. For divers, a certain level of static       

deflection is desirable, denoted by Δ.  Compute a design formula for the dimensions 

of the board (b, h and ! ) in terms of the static deflection, the average diver’s mass, m, 

and the modulus of the board. 

 

Figure P1.89 

Solution: From Figure 1.15 (b),  !k = mg  holds for the static deflection.  The 

period is: 

  
T =

2!

"
n

= 2!
m

k
= 2!

m

mg / #
= 2!

#

g
                            (1) 

 From Figure 1.24, we also have that 

   
T =

2!

"
n

= 2!
m!3

3EI
                                         (2) 

 Equating (1) and (2) and replacing I with the value from the figure yields: 



   

2!
m!3

3EI
= 2!

12m!3

3Ebh3
= 2!

"

g
#
!

3

bh3
=

"E

4mg
 

Alternately just use the static deflection expression and the expression for the 

stiffness of the beam from Figure 1.24 to get 

   

!k = mg " !
3EI

!
3

= mg "
!

3

bh3
=

!E

4mg
 

 



 Problems and Solutions Section 1.8 (1.90 through 1.93)  
 
1.90 Consider the system of Figure 1.90 and (a)  write the equations of motion in terms 

of the angle, θ, the bar makes with the vertical.   Assume linear deflections of the 
springs and linearize the equations of motion.  Then (b) discuss the stability of the 
linear system’s solutions in terms of the physical constants, m, k, and  ! .  Assume 
the mass of the rod acts at the center as indicated in the figure. 

 

 
Figure P1.90 

 Solution:  Note that from the geometry, the springs deflect a distance 

   kx = k(!sin!)  and the cg moves a distance 
  
!

2 cos! .  Thus the total potential 
energy is 

   
   
U = 2 !

1

2
k(!sin")2

#
mg!

2
cos"  

 and the total kinetic energy is 

   
T =

1

2
J

O
!!

2
=

1

2

m"2

3
!!

2  

 The Lagrange equation (1.64) becomes 

   

d

dt

!T

! !"
#
$%

&
'(

+
!U

!"
=

d

dt

m"2

3
!"

#

$%
&

'(
+ 2k"sin" cos" )

1

2
mg"sin" = 0  

 Using the linear, small angle approximations  sin! " !   and  cos! " 1 yields 

   

a)    
m!2

3
""! + 2k!2 "

mg!

2

#
$%

&
'(
! = 0  

 Since the leading coefficient is positive the sign of the coefficient of θ determines 
the stability.  

 b)             

   

if   2k! !
mg

2
> 0 " 4k >

mg

!
"  the system is stable

if   4k = mg "#(t) = at + b"  the system is unstable

if   2k! !
mg

2
< 0 " 4k <

mg

!
"  the system is unstable

 



 Note that physically this results states that the system’s response is stable as long 
as the spring stiffness is large enough to over come the force of gravity. 

 
 
1.91 Consider the inverted pendulum of Figure 1.37 as discussed in Example 1.8.1.  

Assume that a dashpot (of damping rate c) also acts on the pendulum parallel to 
the two springs.  How does this affect the stability properties of the pendulum? 

 Solution: The equation of motion is found from the following FBD: 

  

m

l

c

k k

0

!

Fdash

mg

2Fsp +

 

 Moment about O: !Mo = I ˙ ̇ "  

 ml2 ˙ ̇ ! = mgl sin! " 2
kl

2
sin!

l

2
cos!# 

$ 

% 

& 
" c

l

2
˙ ! 

# 

$ 

% 

& 

l

2
cos!# 

$ 

% 

& 
 

 When θ is small, sinθ ≈ θ and cosθ ≈ 1 

  

ml2 ˙ ̇ ! +
cl 2

4
˙ ! +

kl 2

2
" mgl

# 

$ 

% & 

' 
! = 0

ml ˙ ̇ ! +
cl

4
˙ ! +

kl

2
" mg

# 

$ 

& 

' 
! = 0

 

 For stability, 
kl

2
> mg  and c  > 0. 

 The result of adding a dashpot is to make the system asymptotically stable. 



1.92 Replace the massless rod of the inverted pendulum of Figure 1.37 with a solid 

object compound pendulum of Figure 1.20(b).  Calculate the equations of 

vibration and discuss values of the parameter relations for which the system is 

stable. 

 Solution: 

  

m2

m1

k k

0

!

m2g

2Fsp +

 

 Moment about O:  !!!IM o ="  

 m1g
l

2
sin! + m2gl sin! " 2

kl

2
sin!

l

2
cos!# 

$ 

% 

& 
=

1

3
m1l

2
+ m2l

2# 

$ 

% 

& 
˙ ̇ !  

 When θ is small, sinθ ≈ θ and cosθ ≈ 1. 

  

m1

3
+ m2

! 

" 

# 

$ 
l2 ˙ ̇ % +

kl2

2
& m1

2
gl & m2 gl

! 

" 

' # 

$ 
% = 0

m1

3
+ m2

! 

" 

# 

$ 
l ˙ ̇ % +

kl

2
&

m1

2
+ m2

! 

" 

# 

$ 
g

( 

) * 

+ 

, - 
% = 0

 

 For stability, 
kl

2
>

m1

2
+ m2

! 

" 

# 

$ 
g.  

 

1.93 A simple model of a control tab for an airplane is sketched in Figure P1.93.  The 

equation of motion for the tab about the hinge point is written in terms of the 

angle θ from the centerline to be 

   J
!!! + (c " f

d
) !! + k! = 0 . 

 Here J is the moment of inertia of the tab, k is the rotational stiffness of the hinge, 

c is the rotational damping in the hinge and 
  fd
!!   is the negative damping provided 



by the aerodynamic forces (indicated by arrows in the figure).  Discuss the 

stability of the solution in terms of the parameters c and fd . 

 

Figure P1.93 A simple model of an airplane control tab 

Solution: The stability of the system is determined by the coefficient of  !!  since 
the inertia and stiffness terms are both positive. There are three cases 

Case 1  c - fd > 0  and the system’s solution is of the form   !(t) = e"at sin(#
n
t + $)  

and the solution is asymptotically stable. 

Case 2 c - fd < 0  and the system’s solution is of the form   !(t) = eat sin("
n
t + #)  

and the solution is oscillates and grows without bound, and exhibits flutter 
instability as illustrated in Figure 1.36. 
Case 3 c = fd   and the system’s solution is of the form   !(t) = Asin("

n
t + #)  and 

the solution is stable as illustrated in Figure 1.34. 
 
 



Problems and Solutions Section 1.9 (1.94 through 1.101)  
 
1.94*  Reproduce Figure 1.38 for the various time steps indicated. 

Solution: The code is given here in Mathcad, which can be run repeatedly with different 

Δt to see the importance of step size.  Matlab and Mathematica can also be used to show 

this. 

 

  



 

1.95*  Use numerical integration to solve the system of Example 1.7.3 with m = 1361 kg, 

k = 2.688 x 105 N/m, c = 3.81 x 103 kg/s subject to the initial conditions x(0) = 0 and v(0) 

= 0.01 mm/s.  Compare your result using numerical integration to just plotting the 

analytical solution (using the appropriate formula from Section 1.3) by plotting both on 

the same graph. 

Solution: The solution is shown here in Mathcad using an Euler integration.  This can 

also been done in the other codes or the Toolbox: 

 



 

 

 

1.96*  Consider again the damped system of Problem 1.95 and design a damper such that 

the oscillation dies out after 2 seconds.  There are at least two ways to do this. Here it is 

intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or 1.9.4, 

using different values of the damping parameter c until the desired response is achieved. 

Solution: Working directly in Mathcad (or use one of the other codes).  Changing c until 
the response dies out within about 2 sec yields c =6500 kg/s or ζ = 0.17. 

 



1.97*  Consider again the damped system of Example 1.9.2 and design a damper such 

that the oscillation dies out after 25 seconds.  There are at least two ways to do this. Here 

it is intended to solve for the response numerically, following Examples 1.9.2, 1.9.3 or 

1.9.4, using different values of the damping parameter c until the desired response is 

achieved. Is your result overdamped, underdamped or critically damped? 

Solution: The following Mathcad program is used to change c until the desired response 

results. This yields a value of c = 1.1 kg/s or ζ = 0.225, an underdamped solution. 

 



 

1.98*  Repeat Problem 1.96 for the initial conditions x(0) = 0.1 m and v(0) = 0.01 mm/s. 

 

Solution:  Using the code in 1.96 and changing the initial conditions does not change the 

settling time, which is just a function of ζ and ωn.  Hence the value of c = 6.5x103 kg/s (ζ 

= 0.17) as determined in problem 1.96 will still reduce the response within 2 seconds. 

 



1.99*  A spring and damper are attached to a mass of 100 kg in the arrangement given in 

Figure 1.9.  The system is given the initial conditions x(0) = 0.1 m and v(0) = 1 mm/s.  

Design the spring and damper ( i.e. choose k and c) such that the system will come to rest 

in 2 s and not oscillate more than two complete cycles.  Try to keep c as small as 

possible.  Also compute ζ. 

Solution: In performing this numerical search on two parameters, several underdamped 

solutions are possible. Students will note that increasing k will decrease ζ. But increasing 

k also increases the number of cycles which is limited to two.  A solution with c = 350 

kg/s and k =2000 N/m is illustrated. 



1.100* Repeat Example 1.7.1 by using the numerical approach of the previous 5 

problems. 

Solution: The following Mathcad session can be used to solve this problem by varying 

the damping for the fixed parameters given in Example 1.7.1. 

  

The other codes or the toolbox may also be used to do this. 



 

1.101* Repeat Example 1.7.1 for the initial conditions x(0) = 0.01 m and v(0) = 1 mm/s. 
 

Solution: The above Mathcad session can be used to solve this problem by varying the 

damping for the fixed parameters given in Example 1.7.1.  For the given values of initial 

conditions, the solution to Problem 1.100 also works in this case.  Note that if x(0) gets 

too large, this problem will not have a solution.   

 

 



Problems and Solutions Section 1.10 (1.102 through 1.114)  
 
1.102 A 2-kg mass connected to a spring of stiffness 103 N/m has a dry sliding friction 

force (Fc) of 3 N.  As the mass oscillates, its amplitude decreases 20 cm.  How 

long does this take? 

 Solution: With m = 2kg, and k = 1000 N/m the natural frequency is just 

!n =
1000

2
= 22.36 rad/s  

 From equation (1.101): slope =  
  

!2µmg"
n

#k
=
!2F

c
"

n

#k
=
$x

$t
 

 Solving the last equality for Δt yields:  

!t =
"!x#k

2 fc$n

=
"(0.20)(# )(103)

2(3)(22.36)
= 4.68 s  

 

 

1.103 Consider the system of Figure 1.41 with m = 5 kg and k = 9 × 103 N/m with a 

friction force of magnitude 6 N.  If the initial amplitude is 4 cm, determine the 

amplitude one cycle later as well as the damped frequency. 

 Solution: Given m = 5 kg, k = 9 !103  N/m,  fc = 6 N,  x0 = 0.04 m , the amplitude 

after one cycle is x1 = x0 !
4 fc

k
= 0.04 !

(4)(6)

9 "103 = 0.0373 m  

 Note that the damped natural frequency is the same as the natural frequency in the 

case of Coulomb damping, hence !n =
k

m
=

9 "103

5
= 42.43 rad/s  

 

 



1.104*  Compute and plot the response of the system of Figure P1.104 for the case where 

x0 = 0.1 m, v0 = 0.1 m/s, µκ = 0.05, m = 250 kg, θ = 20° and k =3000 N/m.  How long 

does it take for the vibration to die out? 

 

Figure P1.104 

Solution: Choose the x y coordinate system to be along the incline and perpendicular to 
it.  Let µs denote the static friction coefficient, µk the coefficient of kinetic friction and Δ 
the static deflection of the spring.  A drawing indicating the angles and a free-body 
diagram is given in the figure: 

 

For the static case 

  
F

x! = 0 " k# = µ
s
N + mg sin$ ,  and  F

y! = 0 " N = mg cos$  

For the dynamic case 

   
F

x! = m!!x = "k(x + #) + µ
s
N + mg sin$ " µ

k
N
!x

| !x |
 

Combining these three equations yields 

   

m!!x + µ
k
mg cos!

!x

!x
+ kx = 0  

Note that as the angle θ goes to zero the equation of motion becomes that of a spring 
mass system with Coulomb friction on a flat surface as it should.   
 



mgFs

Fn

Ff

mgFs

Fn

Ff

x 

y 

Answer: The oscillation dies out after about 0.9 s. This is illustrated in the following 
Mathcad code and plot. 
 

 

Alternate Solution (Courtesy of Prof. Chin An Tan of Wayne State University): 

Static Analysis: 
 
In this problem, ( )x t  is defined as the displacement of the mass 
from the equilibrium position of the spring-mass system under 
friction.  Thus, the first issue to address is how to determine this 
equilibrium position, or what is this equilibrium position.  In 
reality, the mass is attached onto an initially unstretched spring on 
the incline.  The free body diagram of the system is as shown.  The 
governing equation of motion is: 

mX k X= !!!
zero initially

sinfF mg "! +  

where ( )X t  is defined as the displacement measured from the unstretched position of the 

spring.  Note that since the spring is initially unstretched, the spring force sF kX=  is zero 



initially.  If the coefficient of static friction sµ  is sufficiently large, i.e., tan( )sµ !> , then 

the mass remains stationary and the spring is unstretched with the mass-spring-friction in 
equilibrium.  Also, in that case, the friction force cos

N

f s

F

F mgµ !"
!"#"$

, not necessarily equal 

to the maximum static friction.  In other words, these situations may hold at equilibrium: 
(1) the maximum static friction may not be achieved; and (2) there may be no 
displacement in the spring at all.  In this example, tan(20 ) 0.364=

!  and one would expect 

that sµ  (not given) should be smaller than 0.364 since 0.05kµ =  (very small).  Thus, one 

would expect the mass to move downward initially (due to weight overcoming the 
maximum static friction).  The mass will then likely oscillate and eventually settle into an 
equilibrium position with the spring stretched. 
 
 



Dynamic Analysis: 
 
The equation of motion for this system is: 

cos
x

mx kx mg
x

µ != " "
!

!!

!
 

where ( )x t  is the displacement measured from the equilibrium position.  Define 

1( ) ( )x t x t=  and 2 ( ) ( )x t x t= ! .  Employing the state-space formulation, we transform the 

original second-order ODE into a set of two first-order ODEs.  The state-space equations 
(for MATLAB code) are: 

2
1

2 1
2

2

( )
( )

cos( )

x t
x td d

x kx
gx tdt dt

x m
µ !

" #
" # $ $

= =% & % &' '( ) $ $
( )

x
 

 
MATLAB Code: 
 
x0=[0.1, 0.1]; 
ts=[0, 5]; 
[t,x]=ode45('f1_93',ts,x0); 
plot(t,x(:,1), t,x(:,2)) 
title('problem 1.93'); grid on; 
xlabel('time (s)');ylabel('displacement (m), velocity (m/s)'); 
 
%--------------------------------------------- 
function xdot = f1_93(t,x) 
% computes derivatives for the state-space ODEs 
m=250; k=3000; mu=0.05; g=9.81; 
angle = 20*pi/180; 
xdot(1) = x(2); 
xdot(2) = -k/m*x(1) - mu*g*cos(angle)*sign(x(2)); 
% use the sign function to improve computation time 
xdot = [xdot(1); xdot(2)]; 
 
Plots for 0.05µ =  and 0.02µ =  cases are shown.  From the 0.05µ =  simulation results, 
the oscillation dies out after about 0.96 seconds (using ginput(1) command to 
estimate).  Note that the acceleration may be discontinuous at 0v =  due to the nature of 
the friction force. 
 
Effects of µ: 
 
Comparing the figures, we see that reducing µ leads to more oscillations (takes longer 
time to dissipate the energy).  Note that since there is a positive initial velocity, the mass 
is bounded to move down the incline initially.  However, if µ is sufficiently large, there 
may be no oscillation at all and the mass will just come to a stop (as in the case of 



0.05µ = ).  This is analogous to an overdamped mass-damper-spring system.  On the 

other hand, when µ is very small (say, close to zero), the mass will oscillate for a long 
time before it comes to a stop. 
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 = -0.0261

x(t)
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The mass has no oscillation due
to sufficiently large friction.
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 = 0.1 m, v

0
 = 0.1 m/s

µ = 0.02, m = 250 kg

k = 3,000 N/m, ! = 20o

a(t) is discontinuous due to friction
force changes direction as the mass
changes its direction of motion.

x(t)

v(t)

x
s s

 = -0.0114

 
 
Discussion on the ceasing of motion: 
 
Note that when motion ceases, the mass reaches another state of equilibrium.  In both 
simulation cases, this occurs while the mass is moving upward (negative velocity).  Note 
that the steady-state value of ( )x t  is very small, suggesting that this is indeed the true 
equilibrium position, which represents a balance of the spring force, weight component 
along the incline, and the static friction. 
 
 



 

1.105*  Compute and plot the response of a system with Coulomb damping of equation 

(1.90) for the case where x0 = 0.5 m, v0 = 0, µ = 0.1, m = 100 kg and k =1500 N/m.  How 

long does it take for the vibration to die out? 

Solution: Here the solution is computed in Mathcad using the following code.  Any of 

the codes may be used.  The system dies out in about 3.2 sec. 

 

 



1.106*  A mass moves in a fluid against sliding friction as illustrated in Figure P1.106.  

Model the damping force as a slow fluid (i.e., linear viscous damping) plus Coulomb 

friction because of the sliding, with the following parameters: m = 250 kg, µ =0.01, c = 

25 kg/s and k =3000 N/m .  a) Compute and plot the response to the initial conditions: x0 

= 0.1 m, v0 = 0.1 m/s. b) Compute and plot the response to the initial conditions: x0 = 0.1 

m, v0 = 1 m/s.  How long does it take for the vibration to die out in each case? 

 

Figure P1.106 

Solution: A free-body diagram yields the equation of motion. 

 mg

N

x(t)

fc1

fc2

 kx(t)

 

 

 

m˙ ̇ x (t) + µmgsgn( ˙ x ) + c ˙ x (t) + kx(t) = 0 

where the vertical sum of forces gives 

the magnitude µN = µmg for the 

Coulomb force as in figure 1.41.

The equation of motion can be solved by using any of the codes mentioned or by using 
the toolbox.  Here a Mathcad session is presented using a fixed order Runge Kutta 
integration.  Note that the oscillations die out after 4.8 seconds for v0=0.1 m/s for the 
larger initial velocity of v0=1 m/s the oscillations go on quite a bit longer ending only 
after about 13 seconds.   While the next problem shows that the viscous damping can be 
changed to reduce the settling time, this example shows how dependent the response is 
on the value of the initial conditions.  In a linear system the settling time, or time it takes 
to die out is only dependent on the system parameters, not the initial conditions.  This 
makes design much more difficult for nonlinear systems. 



 



 

1.107*  Consider the system of Problem 1.106 part (a), and compute a new damping 

coefficient, c, that will cause the vibration to die out after one oscillation. 

Solution: Working in any of the codes, use the simulation from the last problem and 
change the damping coefficient c until the desired response is obtained.  A Mathcad 
solution is given which requires an order of magnitude higher damping coefficient, 

c = 275 kg/s 
 

 
 



 

1.108  Compute the equilibrium positions of ˙ ̇ x +!n
2 x + "x2

= 0.  How many are there? 

Solution: The equation of motion in state space form is 
˙ x 1 = x2

˙ x 2 = !"n
2x1 ! #x1

2  

 The equilibrium points are computed from: 
x2 = 0

!" n
2 x1 ! #x1

2
= 0

 

 Solving yields the two equilibrium points: 

  

x
1

x
2

!

"
#
#

$

%
&
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=
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!

"
#
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%
&   and  

x
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!

"
#
#
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&
&

=
'
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1.109 Compute the equilibrium positions of ˙ ̇ x +!n

2 x " #
2 x3

+ $x5
= 0. How many are 

there? 

Solution: The equation of motion in state space form is 
˙ x 1 = x2

˙ x 2 = !"n
2x1 + #2x1

3 ! $x1
5  

 The equilibrium points are computed from: 
x2 = 0

!" n
2 x1 + #2 x1

2 ! $x1
5

= 0
 

Solving yields the five equilibrium points (one for each root of the previous 
equation). The first equilibrium (the linear case) is: 

x1

x2

! 

" 
# 

$ 

% 
& 

=
0

0
! 

" 
# 

$ 

% 
& 
  

 Next divide!" n
2 x1 + #

2 x1
2
! $x1

5
= 0 by x1 to obtain: 

!" n
2

+ #
2 x1

2
!$x1

4
= 0  

which is quadratic in x1
2 and has the following roots which define the remaining 

four equilibrium points: x2  = 0 and 

x1 = ±
!" 2

+ " 4 ! 4#$n
2

!2#

x1 = ±
!" 2 ! " 4 ! 4#$n

2

!2#

 

 
 



 

1.110*  Consider the pendulum example 1.10.3 with length of 1 m an initial conditions of 

θ0 =π/10 rad and ˙ ! 0 = 0.  Compare the difference between the response of the linear 

version of the pendulum equation (i.e. with sin(θ) = θ) and the response of the nonlinear 

version of the pendulum equation by plotting the response of both for four periods. 

 
Solution: First consider the linear solution.  Using the formula’s given in the text 
the solution of the linear system is just:!(t) = 0.314sin(3.132t + "

2) .  The 

following Mathcad code, plots the linear solution on the same plot as a numerical 
solution of the nonlinear system. 

  

 

 

 
 

 

i ..0 800

!t 0.01

x0

v0

!

10

0

!
i

.0.314 sin ..3.132 "t i
#

2

xi 1

vi 1

xi
.vi !t

vi
.!t sin xi 9.81



 
Note how the amplitude of the nonlinear system is growing.  The difference 
between the linear and the nonlinear plots are a function of the ration of the linear 
spring stiffness and the nonlinear coefficient, and of course the size of the initial 
condition.  It is work it to investigate the various possibilities, to learn just when 
the linear approximation completely fails. 
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1.111*  Repeat Problem 1.110 if the initial displacement is θ0 = π/2 rad. 

Solution: The solution in Mathcad is: 

 
Here both solutions oscillate around the “stable” equilibrium, but the nonlinear 
solution is not oscillating at the natural frequency and is increasing in amplitude. 

 
 
 
 



1.112 If the pendulum of Example 1.10.3 is given an initial condition near the 
equilibrium position of θ0 = π rad and ˙ ! 0 = 0, does it oscillate around this 
equilibrium? 

 

 Solution  The pendulum will not oscillate around this equilibrium as it is 

unstable.  Rather it will “wind” around the equilibrium as indicated in the solution 

to Example 1.10.4.   



 

1.113*  Calculate the response of the system of Problem 1.109 for the initial conditions 

of x0 = 0.01 m, v0 = 0, and a natural frequency of 3 rad/s and for β = 100, γ = 0. 

Solution: In Mathcad the solution is given using a simple Euler integration as follows: 
   

β:=100                
 

 

 
 
The other codes may be used to compute this solution as well. 
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This is the linear solution θ(t) 



 

1.114*  Repeat problem 1.113 and plot the response of the linear version of the system (β 

=0) on the same plot to compare the difference between the linear and nonlinear versions 

of this equation of motion. 

Solution: The solution is computed and plotted in the solution of Problem 1.113.  Note 

that the linear solution starts out very close to the nonlinear solution.  The two solutions 

however diverge.  They look similar, but the nonlinear solution is growing in amplitude 

and period. 
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Problems and Solutions Section 2.1 (2.1 through 2.15)  
 
2.1 To familiarize yourself with the nature of the forced response, plot the solution of a 

forced response of equation (2.2) with ω = 2 rad/s, given by equation (2.11) for a variety 
of values of the initial conditions and ωn as given in the following chart: 

 
Case x 0  v 0  f 0  ωn 

1 0.1 0.1 0.1 1 
2 -0.1 0.1 0.1 1 
3 0.1 0.1 1.0 1 
4 0.1 0.1 0.1 2.1 
5 1 0.1 0.1 1 

 
Solution: Given: !  = 2 rad/sec. 

 From equation (2.11): 

  x(t) = 
n

v

!

0 sin n! t + (x 0  - 
22

0

!! "n

f
) cos n! t + 

22
0

!! "n

f
 cos! t 

 
 Insert the values of x 0 , v 0 , f 0 , and !n for each of the five cases. 

yan
Texte surligné 
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2.2 Repeat the calculation made in Example 2.1.1 for the mass of a simple spring-mass 

system where the mass of the spring is considered and known to be 1 kg. 
 
Solution: Given: m sp  = 1 kg, Example 1.4.4 yields that the effective mass is 

 m e  = m + 
3
spm

 = 10 +
3

1
 = 10.333 kg. 

 Thus the natural frequency, X and the coefficients in equation (2.11) for the system now 
become 

  

!
n

=
1000

10 + 1
3

= 9.837 rad/s, ! = 2!
n

= 19.675 rad/s

X =
f

0

!
n
2
"!

2
=

2.338

9.8372
"19.6752

= "8.053#10"3  m,  
v

0

!
n

= 0.02033 m

 

 Thus the response as given by equation (2.11) is 
 

x(t) = 0.02033sin9.837t + 8.053!10"3(cos9.837t " cos19.675t) m  
 

 
2.3 A spring-mass system is driven from rest harmonically such that the displacement 

response exhibits a beat of period of 0.2!  s.  The period of oscillation is measured to be 
0.02!  s.  Calculate the natural frequency and the driving frequency of the system. 
 
Solution: Given: Beat period: T b  = 0.2! s, Oscillation period: T 0  = 0.02! s 

 Equation (2.13):  x(t) = 
22

02

!! "n

f
sin 

  

!
n
"!

2
t

#

$
%

&

'
( sin

  

!
n

+!

2
t

"

#
$

%

&
'  

 

 So,    T b = 0.2! = 
!!

"

#n

4
 

     !! "n  = 
!

!

2.0

4
 = 20 rad/s 

     T 0  = 0.02!  = 
!!

"

+n

4
 

     !! +n  = 
!

!

02.0

4
= 200 rad/s 

 Solving for n! and !  gives: 
Natural frequency: n!  = 110 rad/s 

 Driving frequency: !  = 90 rad/s 
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2.4 An airplane wing modeled as a spring-mass system with natural frequency 40 Hz is 
driven harmonically by the rotation of its engines at 39.9 Hz.  Calculate the period of the 
resulting beat. 
 
Solution: Given:  n! = 2! (40) = 80!  rad/s, !  = 2! (39.9) = 79.8!  rad/s 

 Beat period: T b = 
!!

"

#n

4
= 

!!

!

8.7980

4

"
 = 20 s. 

 
 

2.5 Derive Equation 2.13 from Equation 2.12 using standard trigonometric identities. 
 

Solution: Equation (2.12): x(t) = 
22

0

!! "n

f
 [cos ! t – cos n! t] 

  Let  A =  
22

0

!! "n

f
 

  x(t) = A [cos! t – cos n! t] 

   = A [1 + cos! t – (1 + cos n! t)] 

   = A [2cos 2 t
2

!
 – 2cos 2 tn

2

!
] 

   = 2A [(cos 2 t
2

!
 - cos 2

2
n!

 cos 2 t
2

!
) - (cos 2 tn

2

!
 - cos 2 tn

2

!
 cos 2 t

2

!
)] 

   = 2A [(1 - cos 2 tn

2

!
) cos 2 t

2

!
 – (1 - cos 2 t

2

!
) cos 2 tn

2

!
] 

   = 2A [sin 2 t
2

!
 cos 2 t

2

!
 - cos 2 t

2

!
 sin 2 t

2

!
] 

   = 2A [sin tn

2

!
 cos t

2

!
 - cos tn

2

!
 sin t

2

!
] [sin tn

2

!
 cos t

2

!
 - cos tn

2

!
 sin t

2

!
] 

   = 2A sin 
!n "!

2
t# 

$ 

% 

& 
 sin 

!n +!

2
t" 

# 

$ 

% 
 

   x(t) = 
2 f0

!n
2
" !

2  sin 
!n "!

2
t# 

$ 

% 

& 
 sin 

!n +!

2
t" 

# 

$ 

% 
  which is Equation (2.13). 
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2.6 Compute the total response of a spring-mass system with the following values: k = 1000 
N/m, m = 10 kg, subject to a harmonic force of magnitude F 0  = 100 N and frequency of 

8.162 rad/s, and initial conditions given by x 0  = 0.01 m and v 0  = 0.01 m/s.  Plot the 

response. 
 
Solution: Given:  k = 1000 N/m, m = 10 kg, F0=100 N, ω = 8.162 rad/s 
x0=0.01m, v0=0.01 m/s 
From Eq. (2.11):   

t
f

t
f

xt
v

tx
n

n
n

n
n

!

!!

!

!!

!
!

coscos)(sin)(
22

0
22

0
0

0

"

+

"

"+=  

srad
m

k
n /10

10

1000
===!               f

F

m
N m0

0 100

10
10= = = /  

In Mathcad the solution is 
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2.7 Consider the system in Figure P2.7, write the equation of motion and calculate the 

response assuming a) that the system is initially at rest, and b) that the system has an 
initial displacement of 0.05 m. 

 
Solution:  The equation of motion is 

m ˙ ̇ x + k x = 10sin10t  
Let us first determine the general solution for 

˙ ̇ x +!n
2 x = f0 sin! t  

Replacing the cosine function with a sine function in Eq. (2.4) and following the same 
argument, the general solution is: 

x(t) = A1 sin!nt + A2 cos!nt +
f0

!n
2
"!

2 sin!t  

Using the initial conditions, x(0) = x0  and ˙ x (0) = v0 , a general expression for the 
response of a spring-mass system to a harmonic (sine) excitation is: 

x(t) = (
v0

!n

"
!

!n

#
f0

!n
2
" !

2 )sin!nt + x0 cos!nt +
f0

!n
2
"!

2 sin!t  

Given:  k=2000 N/m, m=100 kg, ω=10 rad/s, 

  
!

n
=

k

m
=

2000

100
= 20 rad/s = 4.472 rad/s           f0 =

F0

m
=

10

100
= 0.1N/kg 

a) x0 = 0 m, v0 = 0 m/s 
Using the general expression obtained above: 

x(t) = (0 !
10

20
"

0.1

20
2
!102

)sin 20t + 0 +
0.1

20
2
! 102

sin10t  

  = 2.795!10"3 sin4.472t "1.25!10"3 sin10t  
b) x0 = 0.05 m, v0 = 0 m/s 

x(t) = (0 !
10

20
"

0.1

20
2
!102

)sin 20t + 0.05cos 20t +
0.1

20
2
!102

sin10t  

  

= 0.002795sin4.472t + 0.05cos4.472t ! 0.00125sin10t

          = 5.01"10!2 sin(4.472t + 1.515) !1.25"10!3 sin10t
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2.8  Consider the system in Figure P2.8, write the equation of motion and calculate the 
response assuming that the system is initially at rest for the values =1k 100 N/m, =2k  
500 N/m and m = 89 kg. 

 
Solution: The equation of motion is 

m ˙ ̇ x + k x = 10sin10 t          where    k =
1

1

k1

+
1

k2

 

The general expression obtained for the response of an underdamped spring-mass system 
to a harmonic (sine) input in Problem 2.7 was: 

x(t) = (
v0

!n

"
!

!n

#
f0

!n
2
" !

2 )sin!nt + x0 cos!nt +
f0

!n
2
"!

2 sin!t  

Substituting the following values 
k = 1/(1/100+1/500)= 83.333 N/m,   m = 89 kg              ω = 10  rad/s 

!n =
k

m
=

83.333

89
= 0.968 rad/s         kgN

m

F
f /112.0

89

100
0 ===  

and initial conditions: x0 = 0, v0 = 0 
The response of the system is evaluated as 

tttx 10sin00113.0968.0sin0117.0)( !=  
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2.9 Consider the system in Figure P2.9, write the equation of motion and calculate the 
response assuming that the system is initially at rest for the values !  = 30°, k = 1000 N/m 
and m = 50 kg. 

 
Figure P2.9 

 
 Solution: Free body diagram: 

Assuming x = 0 to be at equilibrium: 

Fx = m˙ ̇ x = !k(x + ") + mgsin#$ + 90sin25t    (1) 

where  Δ is the static deflection of the spring.  From static equilibrium in the x direction 
yields 

!k" + mgsin#      (2) 
Substitution of (2) onto (1), the equation of motion becomes 

m ˙ ̇ x + k x = 90sin2.5t  
The general expression for the response of a mass-spring system to a harmonic (sine) 
excitation (see Problem 2.7) is: 

x(t) = (
v0

!n

"
!

!n

#
f0

!n
2
" !

2 )sin!nt + x0 cos!nt +
f0

!n
2
"!

2 sin!t  

Given:  v0 = 0,  x0 = 0, ! = 2.5 rad/s 

!n =
k

m
=

1000

50
= 20 = 4.472 rad/s   ,   f0 =

F0

m
=

90

50
=

9

5
N/kg  

 

So the response is: 

x(t) = !0.0732sin 4.472t + 0.1309sin 2.5t

m 

x 

mg sin θ 

F=90 sin 2.5 t 

Fs 

(Forces that are normal 
to the x direction are 
neglected) 

θ 
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2.10 Compute the initial conditions such that the response of : 
m x!!  + kx =  F 0  cos! t 

oscillates at only one frequency (! ). 
 
Solution:  From Eq. (2.11): 

t
f

t
f

xt
v

tx
n

n
n

n
n

!

!!

!

!!

!
!

coscos)(sin)(
22

0
22

0
0

0

"

+

"

"+=  

For the response of tFxkxm !cos0=+!!  to have only one frequency content, namely, 

of the frequency of the forcing function, ω, the coefficients of the first two terms are set 
equal to zero.  This yields that the initial conditions have to be 

22
0

0
!! "

=

n

f
x    and   00 =v  

Then the solution becomes 

t
f

tx
n

!
!!

cos)(
22

0

"
=  

 
2.11 The natural frequency of a 65-kg person illustrated in Figure P.11 is measured along 

vertical, or longitudinal direction to be 4.5 Hz.  a) What is the effective stiffness of this 
person in the longitudinal direction? b) If the person, 1.8 m in length and 0.58 m2 in cross 
sectional area, is modeled as a thin bar, what is the modulus of elasticity for this system? 

 
Figure P2.11 Longitudinal vibration of a person 

Solution: a) First change the frequency in Hz to rad/s: 
  
!

n
= 4.5

cycles

s

2"  rad

cycles
= 9"  rad/s . 

Then from the definition of natural frequency: 

  k = m!
n
2

= 65 " (9# )2
= 5.196 $104  N/m  

b) From section 1.4, the value of the stiffness for the longitudinal vibration of a beam is 

   
k =

EA

!
! E =

k!

A
=

5.196 "104
( )(1.8)

0.58
= 1.613"105  N/m2

= 1.613"105  Pa  

 
2.12 If the person in Problem 2.11 is standing on a floor, vibrating at 4.49 Hz with an 

amplitude of 1 N (very small), what longitudinal displacement would the person “feel”? 
Assume that the initial conditions are zero.  
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Solution: Using equation (2.12) for a cosine excitation and zero initial conditions yields 
(converting the frequency from Hertz to rad/s and using the value of k calculated in 2.11): 

 

  

X =
F

0

m

1

!
n
2
"!

2
=

1

65

1

k

m
" (4.49 #2$ )2

                           =
1

65

1

5.196 %104

65
" (4.49 #2$ )2

= 0.00443347 = 0.0043 m

 

  
 
 
2.13  Vibration of body parts is a significant problem in designing machines and structures.  A 

jackhammer provides a harmonic input to the operator’s arm.  To model this situation, 
treat the forearm as a compound pendulum subject to a harmonic excitation (say of mass 
6 kg and length 44.2 cm) as illustrated in Figure P2.13. Consider point O as a fixed pivot. 
Compute the maximum deflection of the hand end of the arm if the jackhammer applies a 
force of 10 N at 2 Hz.  

 
Figure P2.13 Vibration model of a forearm driven by a jackhammer 

  
Solution: Taking moments about point O yields (referring to Example 1.4.6 for the 
inertial of a compound pendulum): 

   

m!2

3
""! + mg

!

2
sin! = F

O
!cos! cos"t  

Using the linear approximation for sine and cosine and dividing through by the inertia 
yields: 

   
!!! +

3g

2"
! =

3F
O

m"
cos"t  

Thus the natural frequency is 
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!

n
=

3g

2!
=

3(9.81)

2(0.442)
= 5.77 rad/s   (=0.92 Hz)  

and the system is well away from resonance.  Referring to equation (2.13), the amplitude 
for zero initial conditions is (converting the driving frequency from 2 Hertz to 2(2π) 
rad/s): 

   

! =
2 f

0

"
n
2 #" 2

=

2
3F

0
!

m!2

$

%&
'

()

3g

2!
# (2 *2+ )2

= 0.182 rad  

Note that sin(0.182) = 0.181 so the approximation made above is valid.  The maximum 
linear displacement of the hand end of the arm  is just 
 

  
X = r ! = 0.442 "0.182 = 0.08 m  

 
2.14 Consider again the camera problem of Example 2.1.3 depicted in Figure P2.14, and 

determine the torsional natural frequency, the maximum torsional deflection experienced 
by the camera due to the wind and the linear displacement corresponding to the computed 
torsional deflection.  Model the camera in torsional vibration as suggested in the figure 
where JP = 9.817x10-6 m4 and L = 0.2 m.  Use the values computed in Example 2.1.3 for 
the mass (m =3 kg), shaft length (  ! = 0.55 m), torque (M0 = 15 x L Nm) and frequency (ω 
= 10 Hz).  Here G is the shear modulus of aluminum and the rotational inertia of the 
camera is approximated by J = mL2.  In the example, torsion was ignored.  The purpose 
of this problem is to determine if ignoring the torsion is a reasonable assumption or not. 
Please comment on this assumption based on the results of the requested calculation. 

 
Figure P2.14 Torsional vibration of a camera 

 
Solution: First calculate the rotational stiffness and inertia from the data given: 

   
k =

GJ
p

!
=

2.67 !1010
! 9.817 !10"6

0.55
= 4.766 !105  N #m  

where the modulus is taken from Table 1.2 for aluminum.  The inertia is approximated by 

  J = mL2
= 3(0.2)2

= 0.12 kg !m2  
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The torsional natural frequency is thus 

  
!

n
=

k

J
= 1.993"103  rad/s  

This is well away from the driving frequency.  To see the effect, recall equation 
magnitude of the forced response given in Example 2.1.2: 

  

2 f
0

!
n
2
"!

2
=

2M
0

/ J

!
n
2
"!

2
= 1.26 #10"5  rad  

Clearly this is very small.  To change this to a linear displacement of the camera tip, use  

  X = r! = (0.2)(1.26 "10#5) = 2.52 "10#6  m  
well within the limit imposed on the camera’s vibration requirement of 0.01 m.  Thus, the 
assumption to ignore torsional vibration in designing the length of the mounting bracket 
made in example 2.1.3 is justified. 

 
 
2.15 An airfoil is mounted in a wind tunnel for the purpose of studying the aerodynamic 

properties of the airfoil’s shape.  A simple model of this is illustrated in Figure P2.15 as a 
rigid inertial body mounted on a rotational spring, fixed to the floor with a rigid support. 
Find a design relationship for the spring stiffness k in terms of the rotational inertia, J, the 
magnitude of the applied moment, M0, and the driving frequency, ω, that will keep the 
magnitude of the angular deflection less then 5°.  Assume that the initial conditions are 

zero and that the driving frequency is such that   ! n
2
"!

2
> 0 . 

 
Figure P2.15 Vibration model of a wing in a wind tunnel 

 
Solution: Assuming compatible units, the equation of motion is: 

   
J !!!(t) + k!(t) = M

0
cos"t # !!!(t) +

k

J
!(t) =

M
0

J
cos"t  

From equation (2.12) the maximum deflection for zero initial conditions is 
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!
max

=

2M
0

J
k

J
"# 2

< 5°
$rad

180°
=

$
36

rad

             %
2M

0

J
< (

k

J
"# 2 )

$
36

rad %
36J

$
2M

0

J
+
$# 2

36

&

'(
)

*+
< k

 



Problems and Solutions Section 2.2 (2.16 through 2.31) 
  

2.16 Calculate the constants A and !  for arbitrary initial conditions, x 0  and v 0 , in the     case 

of the forced response given by Equation (2.37).  Compare this solution to the transient 
response obtained in the case of no forcing function (i.e. F 0  = 0). 

 
Solution: From equation (2.37)  

 
x(t) = Ae!"#nt sin(# dt + $) + X cos(#t !%) &

˙ x (t) = !"# nAe !"# nt sin(#dt +$) + A#de
!"#nt cos(#dt + $) ! X# sin(#t !% )

 

Next apply the initial conditions to these general expressions for position and 
velocity to get:  

x(0) = A sin! + X cos"

˙ x (0) = #$%n Asin! + A%d cos! + X% sin"
 

Solving this system of two equations in two unknowns yields:  

  

! = tan"1 (x
0
" X cos#)$

d

v
0

+ (x
0
" X cos#)%$

n
" X$ sin#

&

'(
)

*+

A =
x

0
" X cos#
sin!

 

Recall that X has the form 
 

X =
F0 / m

(!n
2 "! 2 )2

+ (2#!n! )2
   and   $ = tan"1 2#!n!

!n
2 "! 2

% 

& 

' 
( 

) 

*  

Now if F0 = 0, then X = 0 and A and φ from above reduce to: 
 

! = tan "1 x0#d

v0 + x0$#n

% 

& 

' ( 

) 

* 

A =
x0

sin!
=

(v0 +$#n x0 )2
+ (x0#d )2

#d
2

 

These are identical to the values given in equation (1.38). 



2.17  Show that Equations (2.28) and (2.29) are equivalent by verifying Equations 
(2.29) and (2.30).  
 
 

Solution: From equation (2.28) and expanding the trig relation yields 

 

xp = X cos(!t "#) = X cos!t cos# + sin!t sin#[ ]

                       = (X cos#)
As

!"# $#
cos!t + (X sin#)

Bs

!"# $#
sin!t  

 Now with As and Bs defined as indicated, the magnitude is computed: 

X = As
2

+ Bs
2  

 and  

Bs

As

=
X sin!
X cos!

"! = tan#1 Bs

As

$

%&
'

()
 

2.18 Plot the solution of Equation (2.27) for the case that m = 1 kg, !  = 0.01, !n  = 2 

rad/s.  F 0  = 3 N, and !  = 10 rad/s, with initial conditions x 0  = 1 m and v 0  = 1 

m/s. 
 

Solution: The particular solution is given in equations  (2.36) and (2.37).  
Substitution of the values given yields: xp = 0.03125cos(10t + 8.333!10"3) .  

Then the total solution has the form: 
x(t) = Ae!0.02t sin(2t + ") + 0.03125 cos(10t + 0.008333)

= e!0.02t Asin2t + Bcos2t( ) + 0.03125 cos(10t + 0.008333)
 

Differentiating then yields 

 

!x(t) = !0.02e!0.02t Asin2t + Bcos2t( ) + sin(2t + ")

       + 2e!0.02t Acos2t ! Bsin2t( ) ! 0.3125sin(10t + 0.008333)
 

Apply the initial conditions to get: 

 

x(0) = 1 = B + 0.03125cos(0.00833) ! B = 0.969

!x(0) = 1 = "0.02B + 2A " 0.3125sin(0.00833) ! A = 0.489
 

So the solution and plot become (using Mathcad): 



 
 



2.19 A 100 kg mass is suspended by a spring of stiffness 30 × 10 3  N/m with a viscous 
damping constant of 1000 Ns/m.  The mass is initially at rest and in equilibrium.  
Calculate the steady-state displacement amplitude and phase if the mass is excited 
by a harmonic force of 80 N at 3 Hz. 
 
Solution: Given m = 100kg, k =30,000 N/m, c = 1000 Ns/m, F0 = 80 N and ω = 
6π rad/s: 

f0 =
F0

m
=

80

100
= 0.8 m/s2,     !n =

k

m
= 17.32 rad/s

" =
c

2 km
= 0.289

X =
0.8

17.322
+ 36# 2

( )
2

+ 2(0.289)(17.32)(6# )( )
2

= 0.0041 m

 

Next compute the angle from 

! = tan"1 188.702

"55.323
#
$%

&
'(

 

Since the denominator is negative the angle must be found in the 4th quadrant.  To 
find this use Window 2.3 and then in Matlab type atan2(188.702,-55.323) or use 
the principle value and add π to it.  Either way the phase is  θ =1.856 rad. 

 
2.20 Plot the total solution of the system of Problem 2.19 including the transient. 

 
Solution: The total response is given in the solution to Problem 2.16.  For the 
values given in the previous problem, and with zero initial conditions the response 
is determined by the formulas: 



X = 0.0041,     ! = 1.856  

 
Plotting the result in Mathcad yields 

 
2.21 Consider the pendulum mechanism of Figure P2.21 which is pivoted at point O.  
Calculate both the damped and undamped natural frequency of the system for small 
angles.  Assume that the mass of the rod, spring, and damper are negligible.  What 
driving frequency will cause resonance? 



 
 
Solution: Assume the driving frequency to be harmonic of the standard form. To get the 
equation of motion take the moments about point O to get: 

  

M0! = J ˙ ̇ " (t) = m! 2˙ ̇ " (t)

                     = #k!1 sin"(!1 cos" ) # c!2
˙ " (!2 cos")

                                   # mg(!sin" ) + F0 cos$t(! cos" )

 

Rearranging and approximating sinθ ~ θ and cosθ ~1 yields: 

  
m! 2˙ ̇ ! (t) + c!2

2 ˙ ! (t) + (k!1
2

+ mg!)!(t) = F0!cos"t  

Dividing through by the coefficient of the inertia term and using the standard definitions for ζ 
and ω yields: 

  

!n =
k!1

2
+ mg!

m! 2
 which is the resnonant frequency

" =
c!2

2

2 (k!1
2

+ mg!)mg!

!d = !n 1 #" 2
=

k!1
2

+ mg!

m!2
1 # c2

!2
4

4(k!1
2

+ mg!)mg!

$ 

% 

& 
' 

( 

) 

 



2.22 Consider the pivoted mechanism of Figure P2.21 with k = 4 x 103 N/m.  l1  = 0.05 

m. l 2  = 0.07   m. and l = 0.10 m. and m = 40 kg.  The mass of the beam is 40 kg;  it is 
pivoted at point 0 and assumed to be rigid.  Design the dashpot (i.e. calculate c) so that 
the damping ratio of the system is 0.2.  Also determine the amplitude of vibration of the 
steady-state response if a 10-N force is applied to the mass, as indicated in the figure, at a 
frequency of 10 rad/s. 
 
Solution: This is similar to the previous problem with the mass of the beam included this 
time around.  The equation of motion becomes: 

  
meq

˙ ̇ ! + ceq
˙ ! + keq! = F0!cos"t  

 Here: 

  

meq = m!2
+

1

3
(!3 + !1

3)
mb

!+ !1

= 0.5 kg !m2

ceq = c!2
2

= 0.25c

keq = k!1
2

+ mg! +
1

2
(! " !1 )mbg = 4.326 #103  Nm

 

Using the formula the damping ratio and these numbers: 

  

! =
!2

2c

2 meq keq

= 0.2 " c = 3.797 #103  kg/s 

Next compute the amplitude: 

X =
10 / 0.5

(keq / meq !102)2
+ (2 " 0.2 "10 "#n )2

= 2.336 $103   rad  



2.23   In the design of Problem 2.22, the damping ratio was chosen to be 0.2 because 
it limits the amplitude of the forced response.  If the driving frequency is shifted 
to 11 rad/s, calculate the change in damping coefficient needed to keep the 
amplitude less than calculated in Problem 2.22. 
 
Solution: In this case the frequency is far away from resonance so the change in 
driving frequency does not matter much.  This can also be seen numerically by 
the following Mathcad session.  

 
 

The new amplitude is only slightly larger in this case.  The problem would be more 
meaningful if the driving frequency is near resonance.  Then the shift in amplitude will be 
more substantial and added damping may improve the response. 

 
2.24 Compute the forced response of a spring-mass-damper system with the following 

values: c = 200 kg/s, k = 2000 N/m, m = 100 kg, subject to a harmonic force of 
magnitude F 0   = 15 N and frequency of 10 rad/s and initial conditions of x 0   = 

0.01 m and v 0  = 0.1 m/s.  Plot the response.  How long does it take for the 

transient part to die off? 
 
Solution: 
Calculate the parameters 



!n =
k

m
=

2000

100
= 4.472  rad/s       f0 =

F0

m
=

15

100
= 0.15  N/kg  

!d = !n 1"# 2
= 4.472 1" 0.2242

= 4.359  rad/s          

! =
c

2m" n

=
200

2 #100 # 4.472
= 0.224  

Initial conditions:  x0 = 0.01 m,  v0 = 0.1 m/s 
Using equation (2.38) and working in Mathcad yields 
x(t) = e! t (0.0104 cos 4.359t + 0.025sin 4.359t) + 1.318 "10!6 (0.335cos10t + 37.7sin10t)

  

 

 
 
a plot of m vs seconds. The time for the amplitude of the transient response to be 
reduced, for example, to 0.1 % of the initial (t = 0) amplitude can be determined by: 

e! t
= 0.001,  then t = ! ln0.001 = 6.908sec  



2.25 Show that Equation (2.38) collapses to give Equation (2.11) in the case of zero damping.  
 
Solution: 
Eq. (2.38): 

  

x(t) = e!"#nt

(x
0
!

f
0
(#

n
2 !# 2 )

(#
n

2 !# 2 )2
+ (2"#

n
# )2

)cos#
d
t

$
%
&

'&

                    +

"#
n

#
d

(x
0
!

f
0
(#

n
2 !# 2 )

(#
n

2 !# 2 )2
+ (2"#

n
# )2

)

!
2"#

n
# 2 f

0

#
d

(#
n

2 !# 2 )2
+ (2"#

n
# )2() *+

+
v

0

#
d

,

-

.

.

.

.

.

/

0

1
1
1
1
1

sin#
d
t

$

%

&
&
&
&

'

&
&
&
&

2

3

&
&
&
&

4

&
&
&
&

+
f

0

(#
n

2 !# 2 )2
+ (2"#

n
# )2

(#
n

2 !# 2 )cos#t + 2"#
n
# sin#t() *+

 

In case of ζ = 0, this equation becomes: 

  

x(t) = 1!

(x
0
"

f
0

(#
n

2 "# 2 ) + 0
)cos#

d
t

$
%
&

'&

+ 0 " 0 +
v

0

#
d

(

)*
+

,-
sin#

d
t

$

%

&
&

'

&
&

.

/

&
&

0

&
&

+
f

0

(#
n

2 "# 2 )
cos#t

=
v

0

#
n

sin #
n
t + (x

0
"

f
0

#
n

2 "# 2
)cos#

n
t +

f
0

#
n

2 "# 2
cos#t

 

(Note: ωd = ωn for ζ = 0) 
 
 

2.26 Derive Equation (2.38) for the forced response of an underdamped system. 
 

Solution: 
From Sec. 1.3, the homogeneous solution is: 
xh (t) = e!"# nt(A1 sin#dt + A2 cos#dt)  
From equations (2.29) and (2.35), the particular solution is: 

xp(t) =
(! n

2 "! 2) f0

(!n
2 " ! 2)2

+ (2#! n! )2 cos!t +
2#! n!f0

(! n
2 "! 2)2

+ (2#!n! )2 sin!t  

Then the general solution is: 
x(t) = xh (t) + xp (t) = e!"# nt(A1 sin#d t + A2 cos#dt)

+
(#n

2 ! #2 ) f0

(#n
2
! # 2)2

+ (2"# n#)2
cos#t +

2"# n#f0
(# n

2
!# 2 )2

+ (2"# n# )2
sin#t

 

Using the initial conditions, x(0) = x0 and ˙ x (0) = v0 , the constants, A1 and A2, are 
determined: 



A2 =x0!
("n

2 ! "2 ) f0

("n
2 ! "2 )2

+ (2#" n")2

A1 =
v0

"d

+
"

" d

$
2#" n"f0

(" n
2 !" 2 )2

+ (2#" n" )2 +#
"n

" d

(x0 !
(" n

2 !" 2 ) f0

("n
2 ! "2 )2

+ (2#" n" )2 )

 

Then, Eq. (2.30) is obtained by substituting the expressions for A1 and A2 into the general 
solution and simplifying the resulting equation. 
 
 
2.27 Compute a value of the damping coefficient c such that the steady state response 

amplitude of the system in Figure P2.27 is 0.01 m. 

 
Figure P2.27 

Solution: 
From Eq. (2.39), the amplitude of the steady state response is given by 

X =
f0

(!n
2 "! 2 )2

+ (2#!n! )2
 

Then substitute, 2ζωn = c/m, c =
F0

2

!
2
"X 2 # m2 (!n

2
# !

2 )2

!
2  into this equation 

and solve for c: 
 

Given: 
X = 0.01m                     s/rad3.6=!        F0 = 20N       m = 100kg  

 

  
!

n
2

=
k

m
=

2000

100
= 20 (rad/s)2

" c = 55.7 kg/s  

 
 
2.28 Compute the response of the system in Figure P2.28 if the system is initially at 

rest for the values k1  = 100 N/m, k 2  = 500 N/m, c = 20 kg/s and m = 89 kg. 

 

Solution: 

The equation of motion is: 

m˙ ̇ x + c ˙ x + kx = 25cos3t          where   k =
1

1/ k1 + 1/ k2

 

Using Eq. (2.37) in an alternative form, the general solution is: 



  x(t) = e!"#nt ( A
1
sin#

d
t + A

2
cos#

d
t) + X cos(#t !$)  

where 

X =
f0

(!n
2 "! 2 )2

+ (2#!n! )2
=

25 / 89

(0.9662 " 32 )2
+ (2 $0.116 $0.966 $ 3)2

= 0.0347 m

 

! = tan "1
#

2$% n%

%n
2
"% 2 = tan"1

#
2 # 0.116 # 0.966 # 3

0.9662
" 32 = 3.058rad        (see Window 2.3) 

Using the initial conditions, x(0) = 0 and ˙ x (0) = 0, the constants, A1 and A2, are 
determined: 
A2 = 0.0345                A1 = −0.005 
Given:  c = 20 kg/sec,  m = 89 kg 

k =
1

1/ k1 + 1/ k2

=
1

1/100 +1/ 500
= 83N/m  

!n =
k

m
=

83

89
= 0.966 rad/s                       ! =

c

2m" n

=
20

2 #89 #0.966
= 0.116  

!d = !n 1 "# 2
= 0.966 1 " 0.1162

= 0.9595rad/s  
Substituting the values into the general solution: 
x(t) = e!0.112t (!0.005sin0.9595t + 0.0345cos0.9595t) + 0.0347cos(3t ! 3.058)  

 
2.29 Write the equation of motion for the system given in Figure P2.29 for the case 

that F(t) = F cos! t and the surface is friction free.  Does the angle!  effect the 
magnitude of oscillation? 

 
Solution: 

Free body diagram: 

m 

x 

mg sin!  

F(t)=F cos "t 
(Forces that are normal 

to the x direction are 
neglected) 

! 

Fs 

 
 

Assuming x = 0 to be at the equilibrium: 
 

Fx = F + mgsin! " Fs = m˙ ̇ x #  



where )
sin

(
k

mg
xkFs

!
+=      and        F(t ) = F cos! t  

 
Then the equation of motion is: 
m ˙ ̇ x + k x = F cos! t  

Note that the equation of motion does not contain θ which means that the 
magnitude of the response is not affected by the angle of the incline. 

 
2.30 A foot pedal for a musical instrument is modeled by the sketch in Figure P2.30.  

With k = 2000 N/m, c = 25 kg/s, m = 25 kg and F(t) = 50 cos 2! tN, compute the 
steady state response assuming the system starts from rest.  Also use the small 
angle approximation.  

 
Solution: Free body diagram of pedal follows: 

 
Summing the moments with respect to the point, O: 

   
M

0
= F(3 ! a) " F

c
(2 ! a) " F

s
(a) = I

o
!!#$  

where     Io
= m(3a)2

= 9a2m  ,    Fs
= kasin!                            

   Fc
= c(2 ! a ! sin" #) = 2cacos" !"  

Substituting these equations and simplifying (sin! "!  , cosθ =1,for small θ): 

   9a2m !!! + 4a2 c !! + a2k! = 3a F(t)  
Given: k = 2000 N/m, c = 25kg/s  , m = 25 kg , F(t ) = 50cos2!t  ,    a = 0.05 m 

The equation of motion becomes: 
   0.5625!!! + 0.25 !! + 5! = 7.5cos2"t  

Observing the equation of motion, equivalent mass, damping and stiffness 
coefficients are: 

  ceq = 0.25,     meq = 0.5625,       keq = 5 ,   

  

f
0

=
F

0

m
eq

=
7.5

0.5625
= 13.33  ,  !=" 2  

!n =
keq

meq

=
5

0.5625
= 2.981                       ! =

ceq

2meq"n

= 0.0745 



From Eq. (2.36), the steady-state response is: 

  

!(t) =

f
0eq

("
n

2 #" 2 )2
+ (2$"

n
" )2

cos("t # tan#1
2$

eq
"

n
"

"
n

2 #" 2
)

       %!(t) = 0.434cos(2& t # 3.051)  rad

 

 
2.31 Consider the system of Problem 2.15, repeated here as Figure P2.31 with the 

effects of damping indicated. The physical constants are J =25 kg m2, k = 2000 
N/m, and the applied moment is 5 Nm at 1.432 Hz acting through the distance r = 
0.5 m.  Compute the magnitude of the steady state response if the measured 
damping ratio of the spring system is ζ = 0.01.  Compare this to the response for 
the case where the damping is not modeled (ζ = 0). 

 

 
Figure P2.31 Model of an airfoil in at wind tunnel including the effects of damping. 

 
 Solution From equation (2.39) the magnitude of the steady state response for an 

underdamped system is 

  

! =
M

0
/ J

k

J
"# 2$

%&
'
()

2

+ 2*#
n
#( )

2

 

Substitution of the given values yields (here X = rθ) 

  

! = 0.2 rad and X = 0.1 m for "= 0

! = 0.106 rad and X = 0.053 m for "= 0.01
 

where X is the vertical displacement of the wing tip.  Thus a small amount of 
damping can greatly reduce the amplitude of vibration. 
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Problems and Solutions Section 2.3 (2.32 through 2.36) 
 
2.32 Referring to Figure 2.10, draw the solution for the magnitude X for the case m = 100 kg, c 

= 4000 N s/m, and k = 10,000 N/m.  Assume that the system is driven at resonance by a 
10-N force. 

 
Solution: 
Given:  m = 100 kg, c = 4000 N s/m, k = 10000 N/m, oF = 10 N, 

! = !n =
k

m
= 10 rad/s 

!  
  
= tan!1 cw

k ! m" 2

#

$
%

&

'
( = tan!1 (40,000)

(10,000 !10,000)

#

$
%

&

'
( = 90° =

)

2
rad 

 

 
 
From the figure: 

X =
Fo

(k ! m" 2)2
+ (c")2

=
10

(10,000 !10,000)2
+ (40,000)2

  

X = 0.00025 m 
 

cωX 

F0 

(k-mω2)X 

φ 
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2.33 Use the graphical method to compute the phase shift for the system of Problem 2.32 if ω 

= ωn/2 and again for the case ω = 2ωn. 
 

Solution: 
From Problem 2.32 !n= 10 rad/s 

(a) ! =
!n

2
= 5 rad/s 

 X =
10

(10,000 ! 2500)2
+ (20,000)2

= .000468 m 

 kX = (10,000)(.000468) = 4.68 N 
 cωX = (4000)(5)(.000468) = 9.36 N 
 m!

2X = (100) 2)5( (.000468) = 1.17 N 
 
From the figure given in problem 2.32: 

 !  = tan !1 9.36

4.68 !1.17
" 

# 

$ 

% 
= 69.4° = 1.21rad 

 
(b) ! = 2!n = 20  rad/s 

 X =
10

(10000 ! 40000)2
+ (80000)2

= .000117 m 

 kX = (10000)(.000117) = 1.17 N 
 cωX = (4000)(20)(.000117) = 9.36 N 

 m!
2X =(100) 2)20( (.000117) = 4.68 N 

From the figure: 
 

  !  
 
= tan!1 9.36

1.17 ! 4.68

"

#
$

%

&
' = !69.4° = !1.21rad 
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2.34 A body of mass 100 kg is suspended by a spring of stiffness of 30 kN/m and dashpot of 

damping constant 1000 N s/m.  Vibration is excited by a harmonic force of amplitude 80 
N and a frequency of 3 Hz.  Calculate the amplitude of the displacement for the vibration 
and the phase angle between the displacement and the excitation force using the graphical 
method. 

 
 Solution: 

Given: m = 100kg, k = 30 kN/m, oF = 80 N, c = 1000 Ns/m,  

! = 3(2" )= 18.85 rad/s 
 kX = 30000 X 
 cωX = 18850 X 
 m!

2X =35530 X 
 
Following the figure given in problem 2.32: 

 

  

! = tan"1 c# X

k " m# 2
( ) X

$

%

&
&

'

(

)
)

 

!  = tan !1 (18850)X

(30000 ! 35530)X

" 

# 
$ 

% 

& 
' 

= 106.4° = 1.86 rad 

Also from the figure,  

  

X =
F

0

k ! m" 2
( )

2
+ c"( )

2
 

22 )18850()3553030000(

80

+!

=X = 0.00407 m 
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2.35 Calculate the real part of equation (2.55) to verify that it yields equation (2.36) and hence 

establish the equivalence of the exponential approach to solving the damped vibration 
problem. 

 
Solution: 

Equation (2.55)  xp(t) =
Fo

(k ! m" 2)2
+ (c")2

e j("t!# )  

where θ 
  
= tan!1 c"

k ! m" 2

#

$
%

&

'
(  

 Using Euler’s Rule: xp(t) =
Fo

(k ! m" 2)2
+ (c")2

[cos("t !# ) + j sin("t !# )] 

 The real part is:  xp(t) =
Fo

(k ! m" 2)2
+ (c")2

cos("t !# ) 

 Rearranging:  xp (t) =
Fo / m

(!2 "! 2 )2
+ (2#!n! )2

cos !t " tan"1 2#!n!
!n

2 "! 2

$ 

% 
& 

' 

( 
) 

* 

+ 

, 
- 

. 

/  

 which is Equation (2.36). 
 
 
 
 
 
2.36 Referring to equation (2.56) and Appendix B, calculate the solution x(t) by using a table 

of Laplace transform pairs and show that the solution obtained this way is equivalent to 
(2.36). 

 
Solution: Taking the Laplace transform of the equation of motion is given in Equation 

(2.56):  Xp = (ms2
+ cs + k)X (s) =

Fos

s2
+ !

2  

Solving this expression algebraically for X yields 

X(s) =
F0s

(ms2
+ cs + k)(s2

+! 2 )
=

f0s

(s2
+ 2"!ns +! 2 )(s2

+! 2 )
 

 Using Laplace Transform pairs from the table, this last expression is changed into the 
time domain to get: 

    x(t) =
f0

(!n
2 "! 2 )2

+ (2#!n! )2
 cos (ωt-! ) 

 
 
 



      2-  
 

27 

Problems and Solutions Section 2.4 (2.37 through 2.50) 
 
2.37 A machine weighing 2000 N rests on a support as illustrated in Figure P2.37.  The 

support deflects about 5 cm as a result of the weight of the machine.  The floor under the 
support is somewhat flexible and moves, because of the motion of a nearby machine, 
harmonically near resonance (r =1) with an amplitude of 0.2 cm.  Model the floor as base 
motion, and assume a damping ratio of ! = 0.01, and calculate the transmitted force and 
the amplitude of the transmitted displacement. 

 
Figure P2.37 

Solution: 
 

Given:  Y = 0.2 cm, ! = 0.01, r = 1, mg = 2000N.  The stiffness is computed from the 
static deflection and weight: 

 Deflection of 5 cm implies:  k = 
  

mg

!
=

mg

5cm
 = 

2000

0.05
 = 40,000 N/m 

Transmitted displacement from equation (2.70):    X = Y 
  

1+ (2!r)2

(1" r 2 )2
+ (2!r)2

#

$
%

&

'
(

1/ 2

= 10 cm 

Transmitted force from equation (2.77): F T = kYr 2

  

1+ (2!r)2

(1" r 2 )2
+ (2!r)2

#

$
%

&

'
(

1/ 2

= 4001N 

 
 
 
 
2.38 Derive Equation (2.70) from (2.68) to see if the author has done it correctly. 
 

Solution: 
 

Equation (2.68) states:   

x p  (t) = ! nY 

  

!
n
2

+ (2"!
b
)2

(!
n
2 #!

b
2 )2

+ (2"!
n
!

b
)2

$

%
&
&

'

(
)
)

1/ 2

 cos(!bt "#1 "#2 ) 

The magnitude is:    X  = ! nY 

  

!
n
2

+ (2"!
b
)2

(!
n
2 #!

b
2 )2

+ (2"!
n
!

b
)2

$

%
&
&

'

(
)
)

1/ 2
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    = ! nY 

  

(!
n
"4 )(!

n
2

+ (2#!
b
)2 )

(!
n
"4 )((!

n
2 "!

b
2 )2

+ (2#!
n
!

b
)2 )

$

%
&
&

'

(
)
)

1/ 2

 

    = ! nY  

  

(!
n
"2 )(1+ (2#r)2 )

(1" r 2 )2
+ (2#r)2

$

%
&
&

'

(
)
)

1/ 2

*  

    = ! nY  
  

1

!
n

1+ (2"r)2

(1# r 2 )2
+ (2"r)2

$

%
&

'

(
)

1/ 2

*  

           X  = Y 
  

1+ (2!r)2

(1" r 2 )2
+ (2!r)2

#

$
%

&

'
(

1/ 2

 

This is equation (2.71). 
 

2.39 From the equation describing Figure 2.13, show that the point ( 2 , 1) 

corresponds to the value TR > 1 (i.e., for all r < 2 , TR > 1). 
 

Solution: 
 

Equation (2.71) is TR = 
X

Y
 =

  

1+ (2!r)2

(1" r 2 )2
+ (2!r)2

#

$
%

&

'
(

1/ 2

  

 Show TR > 1 for r < 2  

    TR = 
X

Y
 = 

  

1+ (2!r)2

(1" r 2 )2
+ (2!r)2

#

$
%

&

'
(

1/ 2

> 1 

     
1+ (2!r)2

(1" r2 )2
+ (2!r)2 > 1 

      
     1 + (2!r)2

> (1" r2 )2
+ (2!r)2   

      
     1 > (1! r2 )2  
 

 Take the real solution:  
  

1! r 2
< +1 or  1! r 2

< !1"

!r 2
> !2 " r 2

< 2 " r < 2
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2.40 Consider the base excitation problem for the configuration shown in Figure P2.40.  In this 
case the base motion is a displacement transmitted through a dashpot or pure damping 
element.  Derive an expression for the force transmitted to the support in steady state.   

 
Figure P2.40 

Solution: The entire force passes through the spring. Thus the support sees the force FT = 
kX where X is the magnitude of the displacement. From equation (2.65) 

FT = kX =
2!"n"bkY

("n
2 #"b

2 )2
+ (2!"n"b )2

             =
2!rkY

(1# r2 )2
+ (2!r)2

 

 
 
2.41   A very common example of base motion is the single-degree-of-freedom model of an 

automobile driving over a rough road.  The road is modeled as providing a base motion 
displacement of y(t) = (0.01)sin (5.818t) m.  The suspension provides an equivalent 
stiffness of k = 4 x 105 N/m, a damping coefficient of c = 40 x 103 kg/s and a mass of 
1007 kg.  Determine the amplitude of the absolute displacement of the automobile mass. 

 
Solution:  
From the problem statement we have (working in Mathcad) 
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2.42 A vibrating mass of 300 kg, mounted on a massless support by a spring of stiffness 
40,000 N/m and a damper of unknown damping coefficient, is observed to vibrate with a 
10-mm amplitude while the support vibration has a maximum amplitude of only 2.5 mm 
(at resonance).  Calculate the damping constant and the amplitude of the force on the 
base. 

 
Solution: 

 
Given:  m = 300 kg, k = 40,000 N/m, !b = !n (r = 1) , X = 10 mm, Y = 2.5 mm. 

 Find damping constant (Equation 2.71) 
 

   
  

X

Y
=

1+ (2!r)2

(1" r 2 )2
+ (2!r)2

#

$
%

&

'
(

1/ 2

)
 

10

2.5
=

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(  

   16 = 
 

1+ 4! 2

4! 2
" ! 2

=
1

60
=

c2

4km
    or 

   c =
 

4(40,000)(300)

60
=  894.4 kg/s 

 
 Amplitude of force on base: (equation (2.76)) 
 

   

  

F
T

= kYr 2 1+ (2!r)2

1" r 2
( )

2
+ 2!r( )

2

#

$

%
%
%

&

'

(
(
(

1/ 2

)

F
T

= (40,000)(0.0025)(1)2

1+ 4
1

60

*
+,

-
./

4
1

60

*
+,

-
./

#

$

%
%
%
%

&

'

(
(
(
(

1/ 2

)

F
T

= 400 N
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 2.43 Referring to Example 2.4.1, at what speed does car 1 experience resonance?  At what 
speed does car 2 experience resonance?  Calculate the maximum deflection of both cars 
at resonance. 

 
Solution: 

 
Given:  m1  = 1007 kg, m 2  =1585 kg, k = 4x10 5  N/m; c = 2,000 kg/s, Y = 0.01m 

 Velocity for resonance: (from Example 2.4.1) 
   !b = 0.2909v (v in km/h) 

 Car 1: !1 =
k

m
=

4 "104

1007
= !b = 0.2909v1   

   v 1  = 21.7 km/h 
 

 Car 2: !2 =
k

m
=

4 "104

1585
= !b = 0.2909v2  

   v 2  = 17.3 km/h 
 
 Maximum deflection: (Equation 2.71 with r = 1) 

  X = Y 
 

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(  

 Car 1: !1 =
c

2 km1

=
2000

2 (4 "105 )(1007)
= 0.158  

  X 1  = (0.01) 
 

1+ 4(0.158)2

4(0.158)2

!

"
#

$

%
&

1/ 2

= 0.033 m 

  

 Car 2: !2 =
c

2 km2

=
2000

2 (4 "104 )(1585)
= 0.126  

  X 2  = (0.01) 
 

1+ 4(0.126)2

4(0.126)2

!

"
#

$

%
&

1/ 2

= 0.041 m 
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2.44 For cars of Example 2.4.1, calculate the best choice of the damping coefficient so that the 
transmissibility is as small as possible by comparing the magnitude of !  = 0.01, ! = 0.1 
and ! = 0.2 for the case r = 2.  What happens if the road “frequency” changes? 

 
Solution:   

 
From Equation 2.62, with r = 2, the displacement transmissibility is: 

  
  

X

Y
=

1+ (2!r)2

(1" r 2 )2
+ (2!r)2

#

$
%

&

'
(

1/ 2

=
1+ 16! 2

9 + 16! 2

#

$
%

&

'
(

1/ 2

  

  For ! = 0.01, 
X

Y
= 0.334 

  For ! = 0.1, 
X

Y
= 0.356 

  For ! = 0.2, 
X

Y
= 0.412 

  The best choice would be ! = 0.01. 
 

If the road frequency increases, the lower damping ratio would still be the best choice.  
However, if the frequency decreases, a higher damping ratio would be better because it 
would approach resonance. 

 
 
2.45 A system modeled by Figure 2.12, has a mass of 225 kg with a spring stiffness of 3.5 

× 10 4  N/m.  Calculate the damping coefficient given that the system has a deflection (X) 
of 0.7 cm when driven at its natural frequency while the base amplitude (Y) is measured 
to be 0.3 cm. 

 
Solution: 

 
Given: m = 225 kg, k = 3.5x10 4  N/m, X = 0.7 cm, Y = 0.3 cm,! = !b . 

 Base excitation: (Equation (2.71) with r = 1) 

  
  

X

Y
=

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(
 

0.7

0.3
=

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

(  

  ! = 0.237 =
c

2 km
 

  c = (0.237)(2)[(3.5x10 4 )(225)]1/2   
      c = 1331 kg/s 
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2.46 Consider Example 2.4.1 for car 1 illustrated in Figure P2.46, if three passengers totaling 
200 kg are riding in the car.  Calculate the effect of the mass of the passengers on the 
deflection at 20, 80, 100, and 150 km/h.  What is the effect of the added passenger mass 
on car 2? 

 
Figure P2.46 Model of a car suspension with the mass of the occupants, mp, included. 

 
Solution: 

 
Add a mass of 200 kg to each car.  From Example 2.4.1, the given values are:   
m 1  = 1207 kg, m 2 = 1785 kg, k = 4x104 N/m; c = 2,000 kg/s, !b = 0.29v. 

 Car 1: !1 =
k

m
=

4 "104

1207
= 5.76 rad/s 

  !1 =
c

2 km1

=
2000

2 (4 "105 )(1207)
= 0.144  

 Car 2: !2 =
k

m
=

4 "104

1785
= 4.73 rad/s 

  !2 =
c

2 km2

=
2000

2 (4 "105 )(1785)
= 0.118  

 Using Equation (2.71): 
  
X = Y

1+ (2!r)2

(1" r 2 )2
+ (2!r)2

#

$
%

&

'
(

1/ 2

produces the following: 

 
Speed (km/h) !b  

(rad/s) 
r1  r2  x1  

(cm) 
x2  

(cm) 
20 5.817 1.01 1.23 3.57 1.77 
80 23.271 3.871 4.71 0.107 0.070 

100 29.088 5.05 6.15 0.072 0.048 
150 2.40 7.58 9.23 0.042 0.028 

 
At lower speeds there is little effect from the passengers weight, but at higher speeds the 
added weight reduces the amplitude, particularly in the smaller car.
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2.47 Consider Example 2.4.1.  Choose values of c and k for the suspension system for 
car 2 (the sedan) such that the amplitude transmitted to the passenger compartment is as 
small as possible for the 1 cm bump at 50 km/h.  Also calculate the deflection at 100 
km/h for your values of c and k. 

 
Solution: 

 
For car 2, m = 1585 kg. 

 Also, !b = 0.2909(50) = 14.545 rad/s and Y = 0.01 m. 
 From equation (2.70), 

   
  
X = Y

1+ (2!r)2

(1" r 2 )2
+ (2!r)2

#

$
%

&

'
(

1/ 2

 

From Figure 2.9, we can choose a value of r away from resonance and a low damping 
ratio.  Choose r = 2.5 and ! =0.05. 

  

So, r = 2.5 = 
!b

!
=

14.545

k / 1585
 

  k = 53,650 N/m 

  ! = 0.05 = 
c

2 km
 

c = 922.2 kg/s 

 So, 

  

X = (0.01)
1+ [2(0.05)(2.5)]2

1! 2.5( )
2

( )
2

+ [2(0.05)(2.5)]2

"

#

$
$
$
$

%

&

'
'
'
'

1/ 2

= 0.00196 m  

 

 At 100 km/h, ωb = 29.09 rad/s and r =
!b

k / m
= 5.  
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2.48  Consider the base motion problem of Figure 2.12. a) Compute the damping ratio needed 
to keep the displacement magnitude transmissibility less then 0.55 for a frequency ratio 
of r = 1.8.  b) What is the value of the force transmissibility ratio for this system? 

 
 Solution: Working with equation (2.71), make a plot of TR versus ζ and use equation 

(2.77) to compute the value of the force transmissibility.  The following Mathcad session 
illustrates the procedure.  

 
 From the plot a value of ζ = 0.2 keeps the displacement transmissibility less then 0.55 as 

desired.  The value of the force transmissibility is then 1.697.  Precise values can be 
found by equating the above expression to 0.55. 

 
2.49  Consider the effect of variable mass on an aircraft landing suspension system by 

modeling the landing gear as a moving base problem similar to that shown in Figure 
P2.46 for a car suspension.  The mass of a regional jet is 13, 236 kg empty and its 
maximum takeoff mass is 21,523 kg.  Compare the maximum deflection for a wheel 
motion of magnitude 0.50 m and frequency of 35 rad/s, for these two different masses.  
Take the damping ratio to be ζ = 0.1 and the stiffness to be 4.22 x 106 N/m. 

    
Solution: Using a Mathcad worksheet the following calculations result: 
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Note that if the suspension stiffness were defined around the full case, when empty the 
plane would bounce with a larger amplitude then when full.  Note Mathcad does not have 
a symbol for a Newton so the units on stiffness above are kg/sec2 in order to allow 
Mathcad to compute the units. 

 
2.50  Consider the simple model of a building subject to ground motion suggested in Figure 

P2.50. The building is modeled as a single degree of freedom spring-mass system where 
the building mass is lumped atop of two beams used to model the walls of the building in 
bending.  Assume the ground motion is modeled as having amplitude of 0.1 m at a 
frequency of 7.5 rad/s.  Approximate the building mass by 105 kg and the stiffness of 
each wall by 3.519 x 106 N/m. Compute the magnitude of the deflection of the top of the 
building. 

 
Figure P2.50 A simple model of a building subject to ground motion, such as an 

earthquake. 
 

Solution: The equation of motion is  

   m!!x(t) + 2kx(t) = 0.1cos7.5t  
The natural frequency and frequency ratio are 

  
!

n
=

2k

m
= 8.389  rad/s    and   r =

!

!
n

=
7.5

8.389
= 0.894  
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The amplitude of the steady state response is given by equation (2.70) with ζ = 0 in this 
case: 

  
X = Y

1

1! r 2
= 0.498 m  

Thus the earthquake will cause serious motion in the building and likely break. 
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 Problems and Solutions Section 2.5 (2.51 through 2.58) 
 
 
2.51 A lathe can be modeled as an electric motor mounted on a steel table.  The table plus the 

motor have a mass of 50 kg.  The rotating parts of the lathe have a mass of 5 kg at a 
distance 0.1 m from the center.  The damping ratio of the system is measured to be ! = 
0.06 (viscous damping) and its natural frequency is 7.5 Hz.  Calculate the amplitude of 
the steady-state displacement of the motor, assuming r!  = 30 Hz. 

 
 Soltuion:   

Given: m = 50 kg, 5=om , e = 0.1m, 06.0=! , !n = 7.5Hz 

 Let !r =30 Hz 

 So, r =
!r

!n

= 4  

 From Equation (2.84), 

  
222

2

222

2

)]4)(06.0(2[)41(

4

50

)1.0)(5(

)2()1( !
+!

=

+!
=

rr

r

m

em
X o

"
 

  X = 0.011m 
  X = 1.1 cm 
 
 
2.52 The system of Figure 2.18 produces a forced oscillation of varying frequency.  As the 

frequency is changed, it is noted that at resonance, the amplitude of the displacement is 
10 mm.  As the frequency is increased several decades past resonance the amplitude of 
the displacement remains fixed at 1 mm.  Estimate the damping ratio for the system. 
 
Solution: Equation (2.84) is 

222

2

)2()1( rr

r

m

em
X o

!+"
=  

 At resonance,   X = 10 mm = 
!2

1

m

emo  

   
!2

110
=

em

m

o

  

 When r is very large, 1=
em

Xm

o

 and X = 1 mm, so  

   1=
em

m

o

 

 Therefore, 10(1) = 
!2

1
 

   05.0=!  
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2.53 An electric motor (Figure P2.53) has an eccentric mass of 10 kg (10% of the total mass) 

and is set on two identical springs (k = 3200 /m).  The motor runs at 1750 rpm, and the 
mass eccentricity is 100 mm from the center.  The springs are mounted 250 mm apart 
with the motor shaft in the center.  Neglect damping and determine the amplitude of the 
vertical vibration. 
 
Solution: 
Given m0 = 10 kg, m= 100 kg,  k = 2x3.2 N/mm, ,  e = 0.1 m  

  
!

r
= 1750

rev

min
(

min

60sec

2"  rad

rev
) = 183.26

rad

s
 rad/s 

Vertical vibration: 
 

 
  
!

n
=

2(3.2)(1000)

100
= 8 rad/s 

 
  
r =

!
r

!
n

=
183.3

8
= 22.9 

From equation (2.84) 

 
  
X = e

m
0

m

r 2

|1! r 2 |
== 0.01 m  

 
2.54 Consider a system with rotating unbalance as illustrated in Figure P2.53.  Suppose the 

deflection at 1750 rpm is measured to be 0.05 m and the damping ratio is measured to be 
! = 0.1.  The out-of-balance mass is estimated to be 10%.  Locate the unbalanced mass 
by computing e.  

 
Solution:  Given:  X = 0.05 m, ,1.0=!  ,1.0 mme =  and from the solution to problem 

2.53 the frequency ratio is calculated to be r = 22.9.  Solving the rotating unbalance 
Equation (2.84) for e yields: 

 

  

X =
m

0
e

m

r 2

(1! r 2 )2
+ (2"r) 2

# e =
mX

m
0

(1! r 2 )2
+ (2"r)2

r 2
= 0.499 m  

This sort of calculation can be introduced to discuss the application of machinery 
diagnostics if time permits.  Machinery diagnostics deals with determining the location 
and extend of damage from measurements of the response and input. 

 
2.55 A fan of 45 kg has an unbalance that creates a harmonic force.  A spring-damper system 

is designed to minimize the force transmitted to the base of the fan. A damper is used 
having a damping ratio of ! = 0.2.  Calculate the required spring stiffness so that only 
10% of the force is transmitted to the ground when the fan is running at 10,000 rpm.  

  
 Solution: The equation of motion of the fan is 

m˙ ̇ x + c ˙ x + kx = m0e!
2 sin(!t + ")  

 The steady state solution as given by equation (2.84) is 



 2- 41    

x(t) =
m0e

m

r2

(1! r2 )2
+ (2"r)2

sin#t  

where r is the standard frequency ratio.  The force transmitted to the ground is 

 

F(t) = kx + c!x =
m0e

m

kr2

(1! r2 )2
+ (2"r)2

sin#t +
m0e

m

c#r2

(1! r2 )2
+ (2"r)2

cos#t  

Taking the magnitude of this quantity, the magnitude of the force transmitted becomes 

F0 =
m0e

m

r2 k2
+ c2! 2

(1" r2 )2
+ (2#r)2

= m0e!
1+ (2#r)2

(1" r2 )2
+ (2#r)2

 

From equation (2.81) the magnitude of the force generated by the rotating mass Fr is 
Fr = m0e!

2  
The limitation stated in the problem is that F0 = 0.1Fr, or 

m0e!
2 1+ (2"r)2

(1# r2 )2
+ (2"r)2

= 0.1m0e!
2  

Setting ζ =  0.2 and solving for r yields: 
r 4

!17.84r 2
! 99 = 0 

which yields only one positive solution for r2, which is   

  

r 2
= 22.28 =

! 2

k
m

"
k

m
=

10000 # 2$
60

%
&'

(
)*

2
1

22.28

     " k = 45
10000 # 2$

60

%
&'

(
)*

2
1

22.28
= 2.21#106  N/m
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2.56 Plot the normalized displacement magnitude versus the frequency ratio for the out of 
balance problem (i.e., repeat Figure 2.20) for the case of ! = 0.05. 

 
 Solution:  Working in Mathcad using equation (2.84) yields: 
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 2.57  Consider a typical unbalanced machine problem as given in Figure P2.57 with a machine 
mass of 120 kg, a mount stiffness of 800 kN/m and a damping value of 500 kg/s.  The out 
of balance force is measured to be 374 N at a running speed of 3000 rev/min.  a) 
Determine the amplitude of motion due to the out of balance.  b) If the out of balance 
mass is estimated to be 1% of the total mass, estimate the value of the e.  

 

 
Figure P2.57 Typical unbalance machine problem. 

Solution: 
a) Using equation (2.84) with m0e = F0/ωr

2 yields: 

 
b) Use the fact that F0= m0eωr

2 to get 

in meters. 
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2.58 Plot the response of the mass in Problem 2.57 assuming zero initial conditions. 
 

Solution:   The steady state response is the particular solution given by equation (2.84) 
and is plotted here in Mathcad: 
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Problems and Solutions Section 2.6 (2.59 through 2.62) 
 
2.59 Calculate damping and stiffness coefficients for the accelerometer of Figure 2.23 with 

moving mass of 0.04 kg such that the accelerometer is able to measure vibration between 
0 and 50 Hz within 5%.  (Hint:  For an accelerometer it is desirable for YZ b

2/! = 

constant.) 
 

Solution: Use equation (2.90): 
 

Given:  m = 0.04 kg with error < 5% 
  0.2f = 50 Hz !  f = 250 Hz !  ω = 2 f! = 1570.8 rad/s 

Thus,    k = 2
!m = 98,696 N/m 

When r = .2,   0.95 < 
222 )2()1(

1

rr !+"
<1.05 (± 5% error) 

This becomes  0.8317+0.1444 2! <1<1.016+0.1764 2!  

Therefore,   
  
! = 0.7 =

c

2 km
 

   )04)(.98696()7(.2=c  

   c = 87.956 Ns/m 

 
 
2.60 The damping constant for a particular accelerometer of the type illustrated in Figure 2.23 

is 50 N s/m.  It is desired to design the accelerometer (i.e., choose m and k) for a 
maximum error of 3% over the frequency range 0 to 75 Hz. 

 
Solution: Given 0.2f = 75 Hz !  f = 375 Hz !  ω n= 2 f! = 2356.2 rad/s.  Using 
equation (2.93) when r = 0.2: 

0.97 < 
222 )2()1(

1

rr !+"
<1.03 (± 3% error) 

This becomes  0.8671 + 0.1505 2! <1<0.9777+0.1697 2!  

Therefore,   0.3622 < ! <0.9395 

Choose  
  
! = 0.7 =

c

2m"
=

50

2m(2356.2)
 

   m = 0.015 kg 

   k = m! n
2  = 8.326 × 104 N/m 
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2.61 The accelerometer of Figure 2.23 has a natural frequency of 120 kHz and a damping ratio 

of 0.2.  Calculate the error in measurement of a sinusoidal vibration at 60 kHz. 
 

Solution: 
 

Given: ω = 120 kHz, ,2.=!  b! = 60 kHz 

 So,  1288.1
))5)(.2(.2()5.1(

1

)2()1(

1
222222

>=

+!
=

+! rr "
 

The error is 
1

1288.1 !
 × 100% = 28.8% 

 
 
2.62 Design an accelerometer (i.e., choose m, c and k) configured as in Figure 2.23 with very 

small mass that will be accurate to 1% over the frequency range 0 to 50 Hz. 
 

Solution: 
 

Given: error < 1% , 0.2f = 50 Hz !  f = 250 Hz !  ω = 2 f! = 1570.8 rad/s 

When r =0.2,   0.99 < 
222 )2()1(

1

rr !+"
<1.01 (± 1% error) 

This becomes  0.9032 + 0.1568 2! <1<0.9401 + 0.1632 2!  

Therefore,   0.6057 < ! <0.7854 

Choose  m = 0.01 kg , then 2
!mk =  = 24,674 N/m  

Thus   
  
! = 0.7 =

c

2 km
 implies that: c = 21.99 Ns/m 
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Problems and Solutions Section 2.7 (2.63 through 2.79) 
 
2.63 Consider a spring-mass sliding along a surface providing Coulomb friction, with stiffness 

1.2 × 10 4 N/m and mass 10 kg, driven harmonically by a force of 50 N at 10 Hz.  
Calculate the approximate amplitude of steady-state motion assuming that both the mass 
and the surface that it slides on, are made of lubricated steel. 

 
Solution: Given: m = 10 kg, k = 1.2x104 N/m, Fo = 50 N, ω =10(2! ) = 20!  rad/s 

  ω = 
k

m
= 34.64 rad/s 

  for lubricated steel, µ = 0.07 
 

 From Equation (2.109) 

  

X =
F

o

k

1!
4µmg

" (F
o)

#

$
%
%

&

'
(
(

2

(1! r 2 )
 

    

  

X =
50

1.2 !104

1"
4(.07)(10)(9.81)

# (50)

$

%
&

'

(
)

2

(1"
20#

34.64

*
+,

-
./

2

)

 

    X =1.79 × 10!3 m 
 
 
2.64 A spring-mass system with Coulomb damping of 10 kg, stiffness of 2000 N/m, and 

coefficient of friction of 0.1 is driven harmonically at 10 Hz.  The amplitude at steady 
state is 5 cm.  Calculate the magnitude of the driving force. 

 
Solution:   
Given: m = 10 kg, k = 2000 N/m, µ = 0.1, ω =10(2! ) = 10(2! ) = 20!  rad/s, 

  ωn= 
k

m
= 14.14 rad/s, X = 5 cm 

 Equation (2.108) 

  

X =

F
0

k

(1! r 2 )2
+

4µmg

"kX

#

$
%

&

'
(

2
) F

0
= Xk (1! r 2 )2

+
4µmg

"kX

#

$
%

&

'
(

2

 

     
   

 

  

F
0

= (0.05)(2000) 1!
20"

14.14

#

$
%

&

'
(

2)

*
+
+

,

-
.
.

2

+
4(0.1)(10)(9.81)

" (2000)(.05)

)
*+

,
-.

2

= 1874 N  
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2.65 A system of mass 10 kg and stiffness 1.5 × 10 4  N/m is subject to Coulomb damping.  If 
the mass is driven harmonically by a 90-N force at 25 Hz, determine the equivalent 
viscous damping coefficient if the coefficient of friction is 0.1. 

 
Solution: 
Given: m = 10 kg, k = 1.5x104  N/m,   F0

= 90 N, ω  = 25(2! ) = 50!  rad/s, 

  ωn= 
k

m
= 38.73 rad/s, µ = 0.1 

 Steady-state Amplitude using Equation (2.109) is 

  

  

X =
F

0

k

1!
4µmg

" (F
o
)

#

$
%

&

'
(

2

(1! r 2 )
=

90

1.5)104

1!
4(0.1)(10)(9.81)

" (90)

#

$
%

&

'
(

2

1!
50"

38.73

*
+,

-
./

2
= 3.85)10!4  m  

 From equation (2.105), the equivalent Viscous Damping Coefficient becomes: 

  
  
c

eq
=

4µmg

!" X
=

4(0.1)(10)(9.81)

! (50! )(3.85#10$4 )
= 206.7 Ns/m  
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2.66 a.  Plot the free response of the system of Problem 2.65 to initial conditions of x(0) = 0 
and  !x (0) = |F 0 /m| = 9 m/s using the solution in Section 1.10. 
b. Use the equivalent viscous damping coefficient calculated in Problem 2.65 and plot 

the free response of the “equivalent” viscously damped system to the same initial 
conditions. 

 
Solution: See Problem 2.65 

(a) x(0) = 0 and  !x (0) = 
Fo

m
= 9 m/s 

! =
k

m
=

1.5x104

10
=38.73 rad/s 

 
  From section 1.10: 
 
   

 
m!!x + kx = µmg for  !x < 0  

   
 
m!!x + kx = !µmg for  !x > 0  

 
  Let Fd = µmg = (0.1)(10)(9.81) = 9.81 N 
 
  To start, 

 
!x(0) = !nB1 = 9  

  Therefore, A1 =
Fd

k
and B1 =

9

!n

 

  So, x(t) = 
Fd

k
cos!nt +

9

!
sin!nt "

Fd

k
 

  This will continue until  !x  = 0, which occurs at time t1 : 

   x(t) = A2 cos!nt + B2 sin!nt +
Fd

k
 

    !x  (t) = !"nA2 sin"nt +"nB2 cos"nt  

   x(t1) = A2 cos!nt1 + B2 sin!nt1 +
Fd

k
 

   
 
!x(t1) = 0 = !"nA2 sin"nt1 +"nB2 cos"nt1  

  Therefore,  A2 = x(t1) ! Fd / k( )cos"nt1 and B2 = x(t1) ! Fd / k( )sin"nt1  

  So, x(t) = x(t1) ! Fd / k( )cos"nt1#$ %&cos"nt + x(t1) ! Fd / k( )sin"nt1#$ %&sin"nt +
Fd

k
 

   
Again, when  !x = 0 at time t2 , the motion will reverse: 

 

   x(t) = A3 cos!nt + B3 sin!nt "
Fd

k
 

    !x  (t) = !"nA3 sin"nt +"nB3 cos"nt  

   x(t2 ) = A3 cos!nt2 + B3 sin!nt2 "
Fd

k
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!x(t2 ) = 0 = !"nA3 sin"nt2 +"nB3 cos"nt2  

  Therefore,  A3 = x(t2 ) + Fd / k( )cos!nt2 and B3 = x(t2 ) ! Fd / k( )sin"nt2  

  So, x(t) = x(t2 ) + Fd / k( )cos!nt2"# $%cos!nt + x(t2 ) + Fd / k( )sin!nt2"# $%sin!nt &
Fd

k
 

  This continues until  !x = 0 and kx < µmg = 9.81 N 
 

 
 

(b) From Problem 2.65, 
 
c

eq
= 206.7 kg/s 

The equivalently damped system would be: 
 

   
m!!x + c

eq
!x + kx = 0  

Also,  !n =
k

m
=

1.5x104

10
= 38.73 rad/s 

 

  

! =

c
eq

2 km
=

206.7

2 (1.5x104 )(10)
0.2668 

 !d = !n 1"# 2 = 37.33 rad/s 

 
The solution would be found from Equation 1.36: 
 
 x(t) = Ae!"#nt sin(#dt + $)  

 
 
!x(t) = !"#nAe!"#nt sin(#dt + $) +#d Ae!"#nt cos(#dt + $)  

 x(0) = Asin! = 0  
 

 
!x(0) = !"#nAsin$ +#d Acos$ = 9 
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Therefore,  A =
9

!d

= 0.2411m and !  = 0 rad 

So,  x(t) = 0.2411e!10.335t sin(37.33t)   
 

 

 
 
 
2.67 Referring to the system of Example 2.7.1, calculate how large the magnitude of the 

driving force must be to sustain motion if the steel is lubricated.  How large must this 
magnitude be if the lubrication is removed? 

 
Solution:   

 
From Example 2.7.1 m = 10 kg, k = 1.5 × 104  N/m, Fo = 90 N, 

    ! = 25(2" ) = 50" rad/s 
 Lubricated Steel µ = 0.07  
 Unlubricated Steel µ = 0.3 

 Lubricated:  Fo >
4µmg

!
=

4(0.07)(10)(9.81)

!
 

    Fo = 8.74 N 

 Unlubricated:  Fo >
4µmg

!
=

4(0.3)(10)(9.81)

!
 

    Fo = 37.5 N  
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2.68 Calculate the phase shift between the driving force and the response for the system of 

Problem 2.67 using the equivalent viscous damping approximation. 
 

Solution: 
 

From Problem 2.67: m = 10 kg, k = 1.5 × 104  N/m, Fo = 90 N, 
    ! = 25(2" ) = 157.1rad/s 

    !n =
k

m
= 38.73 rad/s 

 From Equation (2.111), and since r>1 

    

  

! = tan"1 "4µmg

#F
0

1"
4µmg

#F
o

$

%&
'

()

2

*

+

,
,
,
,
,
,

-

.

/
/
/
/
/
/

 

 Since in Problem 2.67, !Fo = 4µmg , this reduces to  

    
 
! = tan"1 "1

0

#

$
%

&

'
( =

")

2
rad = -90˚ 
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2.69 Derive the equation of vibration for the system of Figure P2.69 assuming that a viscous 

dashpot of damping constant c is connected in parallel to the spring.  Calculate the energy 
loss and determine the magnitude and phase relationships for the forced response of the 
equivalent viscous system. 

 
 

Solution: Sum of the forces in Figure P2.69 

 
m!!x = !kx ! c!x ! µmg sgn

 
( !x)  

 
m!!x + c!x + µmg sgn 

 
( !x) + kx = 0 

Assume the mass is moving to the left 
 
( !x(0) = 0, x(0) = x0 )  

   
 
m!!x ! c!x + µmg + kx = 0  

   
 
!!x + 2!"n !x # µg +"n

2x = 0  
  The solution of the form: 

   x(t) = aert
+

µg

!n
2

 

  Substituting:  
   ar2ert

+ 2!"narert # µg +"n
2aert

+ µg = 0  

   r2
+ 2!"nr +"n

2
= 0  

   r =
!2"#n ± 4" 2#n

2 ! 4#n
2

2
= !"#n ±#n " 2 !1  

  So,  x(t) = a1e
(!"#n +#n " 2 !1)t

+ a1e
(!"#n !#n " 2 !1)t

+
µg

#n
2

 

   
  
x(t) = e!"#nt (a

1
e!"#d t

+ a
2
e!"#d t ) +

µg

#
n

2
 

   x(t) = Xe!"#nt sin(#dt +$) +
µg

#n
2

 

  Initial conditions 

   x(0) = X sin(!) +
µg

"n
2

= xo  

   
 
!x(0) = X(!"#n )(sin$) + X#d cos$ = 0  

    !X"#n sin$ + X#d cos$ = 0  

    

  

tan! =
"

d

#"
n

$! = tan%1 "
d

#"
n

&

'
(

)

*
+  
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    X =

xo !
µg

"n
2

#
$%

&
'(

"d
2

+ ()"n )2

"d

 

 

  

x(t) =

x(0) !
µg

"
n

2

#

$
%

&

'
( "

d
2

+ ()"
n
)2

"
d

e!)"nt sin "
d
t + tan!1 "

d

)"
n

*

+
,

-

.
/

#

$
%

&

'
( +

µg

"
n

2
(1) 

           
  This will occur until

 
!x(t) = 0 :    

   
 
!x(t) = X(!"#n )e!"#nt sin(#dt +$) + A0e

!"#nt#d cos(#dt +$) = 0  
    !"#n sin(#dt +$) +#d cos(#dt +$) = 0  

   ! tan("dt +#) =
"d

$"n

 

   t =
!

"d

  

  So Equation (1) is valid from 0 ! t !
"

#d

  

  For motion to the right 
 
   Initial conditions (From Equation (1)): 

   x
!
"d

#

$%
&

'(
= Xe

)*"n
!
"d

#
$%

&
'( cos+ +

µg

"n
2

=

x(0) )
µg

"n
2

#
$%

&
'(
*"n

"d

e
)*"n

!
"d( )

+
µg

"n
2

 

   
 

!x
!
"d

#

$%
&

'(
= 0  

   x(t) = A1e !
!"#nt sin(#dt +$1) !

µg

#n
2

 

   x(0) = A1 sin!1 "
µg

#n
2

=

x(0) "
µg

#n
2

$
%&

'
()
*#

#d

e
"*#n

+
#d

$
%&

'
()

+
µg

#n
2

 

   
 
!x(0) = A1(!"#n )sin$1 + X#d cos$1 = 0  

 

  Solution: x(t) = A1e
!"#nt sin(#dt +$1) !

µg

#n
2

 

    

  

A
1

=
!

d
2

+ ("!
n
)2

!
d

x(0) #
µg

!
n

2

$

%
&

'

(
) "! n

!
d

e
#"!n

*
!d

$

%
&

'

(
)

+
µg

!
n

2

+

,

-
-
-
-
-

.

/

0
0
0
0
0
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! = tan"1 #
d

$#
n

%

&
'

(

)
*  

  Forced Case: 
    

 
m!!x ! c!x + µmg sgn

 
( !x) + kx = Fo cos(!t)  

   
Approximate Steady-state Response: 

    xss (t) = X sin(!t "#)  
   

Energy Dissipated per Cycle: 

  
 

!E = Fddx = c!x
dx

dt
+ µmgsgn !x

dx

dt
"

#$
%

&'
dt

2(

2(

)

**  

  
 

= (c!x2dt) + µmg sgn( !x) !xdt
2!

2!

"

#
2!

2!

"

#  

  !E = "c#X 2
+ 4µmgX  

 
This results in an equivalent viscously damped system: 
  

 
!!x + 2(! +!eq )"n !x +"n

2x = Fo cos"t  

    where !eq =
2µg

"#n#X
 

  The magnitude is: 

    

  

X =

F
0

k

(1! r)2
+ (2(" +"

eq
)r)2

 

 
  Solving for X: 

  

  

X =

8µgcr 2

!k"
#

$%
&

'(
+

8µgcr 2

!k"
#

$%
&

'(
) 2 (1) r 2 )2

+
c2r 2

km

*

+
,

-

.
/

4µgr

!"
n
"

#

$%
&

'(

2

)
F

0

k

#

$%
&

'(

2*

+

,
,

-

.

/
/

4 (1) r 2 )2
+

c2r 2

km

*

+
,

-

.
/

 

  The phase is: 

    

  

! = tan"1
2(# +#

eq
)r

1" r 2

$

%
&
&

'

(
)
)

= tan"1

2#r +
4µgr

*+
n
+ X

1" r 2

$

%

&
&
&
&

'

(

)
)
)
)

 

     



 2-  53 

2.70 A system of unknown damping mechanism is driven harmonically at 10 Hz with an 
adjustable magnitude.  The magnitude is changed, and the energy lost per cycle and 
amplitudes are measured for five different magnitudes.  The measured quantities are: 

 
! E(J) 0.25 0.45 0.8 1.16 3.0 
X (M) 0.01 0.02 0.04 0.08 0.15 

 Is the damping viscous or Coulomb? 
Solution: 

 
For viscous damping, !E = "c#X 2  

 For Coulomb damping, !E = 4µmgX  

 
For the data given, a plot of !E  vs X 2  yields a curve, while !E  vs X yields a straight 
line. Therefore, the damping is likely  Coulomb in nature 
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2.71 Calculate the equivalent loss factor for a system with Coulomb damping. 
 

Solution: 
 

Loss Factor:   ! =
"E

2#Umax

 

 For Coulomb damping: !E = 4µmgX  

     Umax =
1

2
kX 2  

     ! =
4µmgX

2"
1
2

kX 2#
$%

&
'(

=
4µmg

"kX
 

 Substituting for X (from Equation 2.109): 

     ! =
4µmg

"Fo

1# r2

1#
4µmg

"Fo

$
%&

'
()

2
     

 
 
 
2.72 A spring-mass system (m = 10 kg, k = 4 × 10 3  N/m) vibrates horizontally on a surface 

with coefficient of friction µ  = 0.15.  When excited harmonically at 5 Hz, the steady-
state displacement of the mass is 5 cm.  Calculate the amplitude of the harmonic force 
applied. 

 
Solution: Given: m = 10 kg, k = 4 × 103 N/m, µ = 0.15, X = 5 cm = 0.05 m, 

   ! = 5(2" ) = 10" rad/s, !n =
k

m
= 20 rad/s 

 Equation (2.109) 

  

X =

F
0

k

(1! r 2 )2
+

4µmg

"kX

#
$%

&
'(

2
)

Fo = kX (1! r2 )2
+

4µmg

"kX
#
$%

&
'(

2

= (0.05)(4 )103) 1!
10"
20

#
$%

&
'(

2#

$
%

&

'
(

2

+
4(0.15)(10)(9.81)

" (4x103)(0.05)

#
$%

&
'(

2

 

Fo = 294 N 
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2.73 Calculate the displacement for a system with air damping using the equivalent viscous 
damping method.  

 
Solution: 

 
The equivalent viscous damping for air is given by Equation (2.131): 

ceq =
8

3!
"#X  

 
 From Equation 2.31: 

   X =
Fo

!n
2 "! 2

( )
2

+ 2#!n!( )
2

=
Fo

!n
2 "! 2

( )
2

+
ceq

m
!n

$
%&

'
()

2
 

  X =
Fo

!n
2 "! 2

( )
2

+
8

3#m
$!X

%
&'

(
)*

2
=

Fom

k (1" r2 )2
+

8
3#m

$r2 X
%
&'

(
)*

2
 

 
 Solving for X and taking the real solution: 

   X =

!
1
2

(1! r2 )2
+

1
2

(1! r2 )2
+

16Fo"r2

3#km

$
%&

'
()

2

8"r2

3#m

$
%&

'
()

 



 2-  56 

 
2.74 Calculate the semimajor and semiminor axis of the ellipse of equation (2.119).  Then 

calculate the area of the ellipse.  Use c = 10 kg/s, ω = 2 rad/s and X = 0.01 m. 
 

Solution: The equation of an ellipse usually appears when the plot of the ellipse is 
oriented along with the x axis along the principle axis of the ellipse.  Equation (2.1109) is 
the equation of an ellipse rotated about the origin.  If k is known, the angle of rotation can 
be computed from formulas given in analytical geometry.   However, we know from the 
energy calculation that the stiffness does not effect the amount of energy dissipated. Thus 
only the orientation of the ellipse is effected by the stiffness, not its area or axis.  Thus we 
can use this fact to answer the question.  First re-write equation (2.119) with k = 0 to get: 

F2
+ c2! 2x2

= c2! 2 X 2

"
F

c!X
#
$%

&
'(

2

+
x

X
#
$%

&
'(

2

= 1
 

This is the equation of an ellipse with major axis a and minor axis b given by  
a = X = 0.01 m,   and   b = c!X = 0.2 kg m/s2  

The area, and hence energy lost per cycle through the damper then becomes 
!c"n X 2 = (3.14159)(10)(2)(.0001) = 0.006283 Joules. 

Alternately, realized that Equation 2.119 is that of ellipse rotated by an angle !  defined 
by tan2!  = -2k/( c2

!n
2

+ k2
"1).  Then match the ellipse to standard form, read off the 

major and minor axis (say a and b) and calculate the area from!ab .  See the following 
web site for an elipse http://mathworld.wolfram.com/Ellipse.html  

 
 
 
2.75 The area of a force deflection curve of Figure P2.28 is measured to be 2.5 N- m, and the 

maximum deflection is measured to be 8 mm.  From the “slope” of the ellipse the 
stiffness is estimated to be 5 × 10 4  N/m.  Calculate the hysteretic damping coefficient.  
What is the equivalent viscous damping if the system is driven at 10 Hz? 

 
 

Solution: 
 

Given: Area = 2.5 N • m , k = 5x104  N/m, X = 8 mm, ! = 10(2" ) = 20" rad/s 
  

Hysteric Damping Coefficient: 
   !E  = Area =!k"X 2   

   2.5 = ! (5 "104 )#(0.008)2  
   ! = 0.249  
 

 Equivalent Viscous Damping: 

   ceq =
k!

"
=

(5 #104 )(0.249)

20$
 

   ceq = 198 kg/s 
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2.76 The area of the hysteresis loop of a hysterically damped system is measured to be 5 

N • m and the maximum deflection is measured to be 1 cm. Calculate the equivalent 
viscous damping coefficient for a 20-Hz driving force.  Plot c eq versus ω for 2!  !  ω !  

100!  rad/s. 
 

Solution: 
 

Given: Area = 5 N • m , X = 1 cm, ! = 20(2" ) = 40" rad/s 
  

Hysteric Damping Coefficient: 
   !E  = Area =!k"X 2   

   5 = !k"(0.01)2  
   k! = 15,915 N/m 
 

 Equivalent Viscous Damping: 

   ceq =
k!

"
=

15915

40#
 

   ceq = 126.65 kg/s 

 
 To plot, rearrange so that 
   !ceq"X 2

= #E    

   ceq =
!E

"#X 2
=

5

"# (.01)2
=

50,000

"#
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2.77 Calculate the nonconservative energy of a system subject to both viscous and hysteretic 

damping. 
 

Solution: 
 

!E = !Ehys + !Evisc   

  !E = "c#X 2
+ k"$X 2  

  !E = (c" + k#)$X 2  
 
 
 
2.78 Derive a formula for equivalent viscous damping for the damping force of the form, F d  = 

c( !x ) n where n is an integer.   
 

Solution: 
 

Given:  
 
Fd = c( !x)n  

 Assume the steady-state response x = X sin!t.  
 The energy lost per cycle is given by Equation (2.99) as: 

   
 

!E = Fddx = c( !x)n
!xdt = c ( !x)n+1dt

0

2"

#

$
0

2"

#

$"$  

 Substituting for  !x : 

   !E = " n+1X n+1 cosn+1("t)#$ %&dt
0

2'

"

(  

   Let u = !t : 

   !E = cX n+1" n cosn+1 u( )du
0

2#

$  

 Equating this to Equation 2.91 yields: 

   !ceq"X 2
= cX n+1" n (cosn+1 u)du

0

2!

#  

   ceq =
cX n!1" n!1

#
(cosn+1 u)du

0

2#

$  
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2.79 Using the equivalent viscous damping formulation, determine an expression for the 
steady-state amplitude under harmonic excitation for a system with both Coulomb and 
viscous damping present.   

 
Solution: 

 
!E = !Evisc + !Ecoul   

   !E = "c#X 2
+ 4umgX  

 
 Equate to Equivalent Viscously Damped System 
   !ceq"X 2

= !c"X 2
+ 4µmg  

   ceq =
!c"X + 4µmg

!"X
= c +

4µmg

!"X
= 2#eq"nm  

   !eq = ! +
2µg

"##n X
 

 Amplitude:  

   X =

Fo

k
(1! r2 )2

+ (2"eqr)2
=

Fo

k

(1! r2 )2
+ 2"r +

4µmg

#kX
$
%&

'
()

2
 

 Solving for X: 

 X =

!
8µgcr2

"k#
$
%&

'
()

+
8µgcr2

"k*#
$
%&

'
()

2

! 4 (1! r2 )2
+

c2 r2

km

+

,
-

.

/
0

4µgr

"#n#
$
%&

'
()

2

!
Fo

k
$
%&

'
()

2+

,
-
-

.

/
0
0

2 (1! r2 )2
+

c2r2

km

+

,
-

.

/
0
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Problems and Solutions Section 2.8 (2.80 through 2.86) 
 
2.80*.  Numerically integrate and plot the response of an underdamped system 
determined by m = 100 kg, k = 20,000 N/m, and c = 200 kg/s, subject to the initial 
conditions of x0 = 0.01 m and v0 = 0.1 m/s, and the applied force F(t) = 150cos5t.  Then 
plot the exact response as computed by equation (2.33).  Compare the plot of the exact 
solution to the numerical simulation. 
 
Solution: The solution is presented in Matlab: 
 
 

First the m file containing the state equation to integrate is set up and saved as ftp2_72.m 
 
 
function xdot=f(t, x) 
xdot=[-(200/100)*x(1)-(20000/100)*x(2)+(150/100)*cos(5*t); x(1)]; 
% xdot=[x(1)'; x(2)']=[-2*zeta*wn*x(1)-wn^2*x(2)+fo*cos(w*t) ; x(1)] 
% which is a state space form of 
% x" + 2*zeta*wn*x' + (wn^2)*x = fo*cos(w*t)    (fo=Fo/m) 
 
clear all; 
 

Then the following m file is created and run: 
 
%---- numerical simulation --- 
x0=[0.1; 0.01];          %[xdot(0); x(0)] 
tspan=[0 10]; 
[t,x]=ode45('fp2_72',tspan,x0);          
plot(t, x(:,2), '.'); 
hold on; 
 
%--- exact solution ---- 
t=0: .002: 10; 
m=100; k=20000; c=200; Fo=150 ; w=5 
wn=sqrt(k/m); zeta=c/(2*wn*m); fo=Fo/m; wd=wn*sqrt(1-zeta^2)     
x0=0.01; v0= 0.1; 
xe= exp(-zeta*wn*t) .* ( (x0-fo*(wn^2-w^2)/((wn^2-w^2)^2 ...  
 +(2*zeta*wn*w)^2))*cos(wd*t) ... 
 + (zeta*wn/wd*( x0-fo*(wn^2-w^2)/((wn^2-w^2)^2+(2*zeta*wn*w)^2)) ... 
 - 2*zeta*wn*w^2*fo/(wd*((wd^2-w^2)^2  ... 
 + (2*zeta*wn*w)^2))+v0/wd)*sin(wd*t) ) ... 
 + fo/((wn^2-w^2)^2+(2*zeta*wn*w)^2)*((wn^2-w^2)*cos(w*t) ... 
 + 2*zeta*wn*w*sin(w*t)) 
 
plot(t, xe, 'w');  
hold off;  
 

This produces the following plot: 
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2.81*.  Numerically integrate and plot the response of an underdamped system 
determined by m = 150 kg, and k = 4000 N/m subject to the initial conditions of x0 = 0.01 
m and v0 = 0.1 m/s, and the applied force F(t) = 15cos10t , for various values of the 
damping coefficient.  Use this “program” to determine a value of damping that causes the 
transient term to die out with in 3 seconds.  Try to find the smallest such value of 
damping remembering that added damping is usually expensive. 
 
Solution: The solution is given by the following Mathcad session.  A value of c = 350 
kg/s corresponding to ζ = 0.226 gives the desired result. 
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2.82*.  Solve Problem 2.7 by numerically integrating rather than using analytical 
expressions. 
 
 
Solution: The following session in Mathcad illustrates the solution: 
a) zero initial conditions 

 
 
 
b) Using and initial condition of x(0) = 0.05 m.   Note the difference in the response. 
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2.83*.  Numerically simulate the response of the system of Problem 2.30. 
 
 

Solution: From problem 2.30, the equation of motion is 

 
9a2 m !!! + 4 a2ccos! !! + a2k sin! = "3a F(t)  

 where k = 2000 kg, c = 25kg/s  , m = 25 kg , F(t) = 50cos2!t  ,    a = 0.05 m 
Placing the equation of motion in first order form and numerically integrating 
using Mathcad yields 
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2.84*.  Numerically integrate the system of Example 2.8.1 for the following sets of initial 
conditions: 
a) x0 = 0.0 m and v0 = 0.1 m/s 
b) x0 = 0.01 m and v0 = 0.0 m/s 
c) x0 = 0.05 m and v0 = 0.0 m/s 
d) x0 = 0.0 m and v0 = 0.5 m/s 
Plot these responses on the same graph and note the effects of the initial conditions on the 
transient part of the response. 
 
Solution: The following are the solutions in Mathcad.  Of course the other codes and 
Toolbox will yield the same results. 
a) 

 
b) 
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c) 

  
d) 

 
Note the profound effect on the transient, but of course no effect on the steady state.
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2.85*.  A DVD drive is mounted on a chassis and is modeled as a single degree-degree-
of-freedom spring, mass and damper.  During normal operation, the drive (having a mass 
of 0.4 kg) is subject to a harmonic force of 1 N at 10 rad/s.  Because of material 
considerations and static deflection, the stiffness is fixed at 500 N/m and the natural 
damping in the system is 10 kg/s.  The DVD player starts and stops during its normal 
operation providing initial conditions to the module of x0 = 0.001 m and v0 = 0.5 m/s.  
The DVD drive must not have an amplitude of vibration larger then 0.008 m even during 
the transient stage.  First compute the response by numerical simulation to see if the 
constraint is satisfied.  If the constraint is not satisfied, find the smallest value of damping 
that will keep the deflection less then 0.008 m. 
 
Solution:  The solution is given by the following Mathcad session: 

 
 
This yields c =17 kg/s as a solution. 
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2.86  Use a plotting routine to examine the base motion problem of Figure 2.12 by 
plotting the particular solution (for an undamped system) for the three cases k = 
1500 N/m,  and k = 700 N/m.  Also note the values of the three frequency ratios 
and the corresponding amplitude of vibration of each case compared to the input.  
Use the following values: ωb  = 4.4 rad/s, m = 100 kg, and Y = 0.05 m. 

 
 Solution;  The following Mathcad worksheet shows the plotting: 

 
 Note that k2, the softest system (smallest k) has the smallest amplitude, smaller 

than the amplitude of the input as predicted by the magnitude plots in section 2.3.  

Thus when  r > 2 , the amplitude is the smallest.  
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Problems and Solutions Section 2.9 (2.87 through 2.93) 
 
2.87*.  Compute the response of the system in Figure 2.34 for the case that the damping 
is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k1x
3  

and the system is subject to a harmonic excitation of 300 N at a frequency of 
approximately one third the natural frequency (ω = ωn/3) and initial conditions of x0 = 
0.01 m and v0 = 0.1 m/s.  The system has a mass of 100 kg, a damping coefficient of 170 
kg/s and a linear stiffness coefficient of 2000 N/m.  The value of k1 is taken to be 10000 
N/m3.  Compute the solution and compare it to the linear solution (k1 = 0).  Which system 
has the largest magnitude? 
Solution: The following is a Mathcad simulation. The green is the steady state magnitude 
of the linear system, which bounds the linear solution, but is exceeded by the nonlinear 
solution. The nonlinear solution has the largest response. 
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2.88*.  Compute the response of the system in Figure 2.34 for the case that the damping 
is linear viscous and the spring is a nonlinear hard spring of the form 

k(x) = kx + k1x
3  

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the 
natural frequency (ω = ωn) and initial conditions of x0 = 0.01 m and v0 = 0.1 m/s.  The 
system has a mass of 100 kg, a damping coefficient of 170 kg/s and a linear stiffness 
coefficient of 2000 N/m.  The value of k1 is taken to be 10000 N/m3.  Compute the 
solution and compare it to the linear solution (k1 = 0).  Which system has the largest 
magnitude? 
Solution: The Mathcad solution appears below. Note that in this case the linear 
amplitude is the largest! 
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2.89*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k1x
3  

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the 
natural frequency (ω = ωn) and initial conditions of x0 = 0.01 m and v0 = 0.1 m/s.  The 
system has a mass of 100 kg, a damping coefficient of 15 kg/s and a linear stiffness 
coefficient of 2000 N/m.  The value of k1 is taken to be 100 N/m3.  Compute the solution 
and compare it to the hard spring solution (k(x) = kx + k1x

3 ).   
Solution: The Mathcad solution is presented, first for a hard spring, then for a soft spring 

 
 

Next consider the result for the soft spring and note that the nonlinear response is higher 

in the transient then the linear case (opposite of the hardening spring), but nearly the 

same in steady state as the hardening spring. 
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2.90*.  Compute the response of the system in Figure 2.34 for the case that the damping 

is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k1x
3  

and the system is subject to a harmonic excitation of 300 N at a frequency equal to the 
natural frequency (ω = ωn) and initial conditions of x0 = 0.01 m and v0 = 0.1 m/s.  The 
system has a mass of 100 kg, a damping coefficient of 15 kg/s and a linear stiffness 
coefficient of 2000 N/m.  The value of k1 is taken to be 1000 N/m3.  Compute the solution 
and compare it to the quadratic soft spring (k(x) = kx + k1x

2 ).  
 
Solution: The response to both the hardening and softening spring are given in the 
following Mathcad sessions.  In each case the linear response is also shown for 
comparison. With the soft spring, the response is more variable, whereas the hardening 
spring seems to reach steady state.   
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2.91*.  Compare the forced response of a system with velocity squared damping as 
defined in equation (2.129) using numerical simulation of the nonlinear equation to that 
of the response of the linear system obtained using equivalent viscous damping as 
defined by equation (2.131).  Use as initial conditions, x0 = 0.01 m and v0 = 0.1 m/s with a 
mass of 10 kg, stiffness of 25 N/m, applied force of 150 cos (ωnt) and drag coefficient of 
α = 250. 
Solution: 
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2.92*. Compare the forced response of a system with structural damping (see table 2.2) 
using numerical simulation of the nonlinear equation to that of the response of the linear 
system obtained using equivalent viscous damping as defined in Table 2.2.  Use as initial 
conditions, x0 = 0.01 m and v0 = 0.1 m/s with a mass of 10 kg, stiffness of 25 N/m, 
applied force of 150 cos (ωnt) and solid damping coefficient of b = 25. 
Solution: The solution is presented here in Mathcad 
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Chapter Three Solutions 
 

Problem and Solutions for Section 3.1 (3.1 through 3.14) 
 
3.1 Calculate the solution to 

  

   

!!x + 2 !x + 2x = ! t " #( )

x 0( ) = 1 !x 0( ) = 0
 

 and plot the response. 
 

 Solution: Given: 
   
!!x + 2 !x + 2x = ! t " #( ) x 0( ) = 1, !x 0( ) = 0  

  
  
!

n
=

k

m
= 1.414 rad/s,  " =

c

2 km
= 0.7071,    !

d
= !

n
1#" 2

= 1 rad/s  

 Total Solution: 
 
x t( ) = x

h
t( ) + x

p
t( )  

 Homogeneous:  From Equation (1.36) 

  

  

x
h

t( ) = Ae!"#nt sin #
d
t + $( )

A =
v

0
+"#

n
x

0( )
2

+ x
0
#

d( )
2

#
d
2

,      $ = tan!1 x
0
#

d

v
0

+"#
n
x

0

%

&
'

(

)
* = .785 rad

                  + x
h

t( ) = 1.414e! t sin t + .785( )

 

 Particular:  From Equation. (3.9) 

  

  

x
p

t( ) =
1

m!
d

e"#!n t"$( ) sin!
d

t " $( ) =
1

1( ) 1( )
e" t"%( ) sin t " %( )

But,    sin "t( ) = " sin t   So,     x
p

t( ) = "e" t"%( ) sin t    &

 

  

  

x t( ) = 1.414e! t sin t + 0.785( ) 0 < t < "

x t( ) = 1.414e! t sin t + 0.785( ) ! e!(t!" ) sin t t > "
 

 This is plotted below using the Heaviside function. 
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3.2 Calculate the solution to 

  

   

!!x + 2 !x + 3x = sin t + ! t " #( )

x 0( ) = 0 !x 0( ) = 1
 

 and plot the response. 
 

 Solution: Given:
   
!!x + 2 !x + 3x = sin t + ! t " #( ), x 0( ) = 0, !x 0( ) = 0   

  
  
!

n
=

k

m
= 1.732 rad/s, " =

c

2 km
= 0.5774,  !

d
= !

n
1#" 2

= 1.414 rad/s  

 Total Solution: 

  

x t( ) = x
h

+ x
p1

0 < t < !

x t( ) = x
h

+ x
p1

+ x
p2

t > !
 

 Homogeneous:  Eq. (1.36) 

  
  
x

h
t( ) = Ae!"#nt sin #

d
t + $( ) = Ae! t sin 1.414t + $( )  

 Particular:  #1 (Chapter 2) 

  

  

x
p1

(t) = X sin !t "#( ), where ! = 1 rad/s .  Note that  f
0

=
F

0

m
= 1

$ X =
f

0

!
n
2 "! 2

( )
2

+ 2%!
n
!( )

2
= 0.3536,  and # = tan"1 2%!

n
!

!
n
2 "! 2

&

'
(
(

)

*
+
+

= 0.785 rad

                                         $ x
p1

t( ) = 0.3536sin t " 0.7854( )

 

 Particular:  #2 Equation 3.9 

  

  

x
p2

t( ) =
1

m!
d

e"#!n t"$( ) sin!
d

t " %( ) =
1

1( ) 1.414( )
e" t"$( ) sin1.414 t " $( )

                       & x
p2

t( ) = 0.7071e" t"$( ) sin1.414 t " $( )

 

 The total solution for 0< t<π becomes: 

 

   

x t( ) = Ae! t sin 1.414t + "( ) + 0.3536sin t ! 0.7854( )

!x t( ) = !Ae! t sin(1.414t + ") + 1.414Ae! t cos 1.414t + "( ) + 0.3536cos t ! 0.7854( )

x 0( ) = 0 = Asin" ! 0.25# A =
0.25

sin"

!x 0( ) = 1 = !Asin" + 1.414Acos" + 0.25# 0.75 = 0.25!1.414 0.25( )
1

tan"

                  #" = 0.34 and A = 0.75

 

 Thus for the first time interval, the response is 

  
x t( ) = 0.75e! t sin 1.414t + 0.34( ) + 0.3536sin t ! 0.7854( ) 0 < t < "  

 Next consider the application of the impulse at t = π: 
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x t( ) = x
h

+ x
p1

+ x
p2

x t( ) = !0.433e! t sin 1.414t + 0.6155( ) + 0.3536sin t ! 0.7854( ) ! 0.7071e! t!"( ) sin 1.414t ! "( ) t > "

 
 The response is plotted in the following (from Mathcad): 
 

 
 

3.3 Calculate the impulse response function for a critically damped system. 
 
 Solution: 
 

 The change in the velocity from an impulse is
  
v

0
=

F̂

m
, while x0 = 0.  So for a critically 

damped system, we have from Eqs. 1.45 and 1.46 with x0 = 0: 
 

  

  

x(t) = v
0
te!"nt

# x(t) =
F̂

m
te!"nt
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3.4 Calculate the impulse response of an overdamped system. 
 
 Solution: 
 

 The change in velocity for an impulse
  
v

0
=

F̂

m
, while x0 = 0.  So, for an overdamped 

system, we have from Eqs. 1.41, 1.42 and 1.43: 
 

  

  

x t( ) = e!"#nt !v
0

2#
n
" 2 !1

e!# (n " 2 !1)t
+

v
0

2#
n
" 2 !1

e!# (n " 2 !1)t
$

%

&
&

'

(

)
)

x t( ) =
F̂

2m#
n
" 2 !1

e!"#nt e!# (n " 2 !1)t ! e!# (n " 2 !1)t$
%&

'
()

 

 
 
 
 
 
 
3.5 Derive equation (3.6) from equations (1.36) and (1.38). 
 
 Solution: 
 

 Equation 1.36: x(t) = 
  
Ae!"#nt sin #

d
t + $( )  

 

 Equation 1.38: 

  

A =
v

0
+!"

n
x

0( )
2

+ x
0
"

d( )
2

"
d
2

, # = tan$1 x
0
"

d

v
0

+!"
n
x

0

%

&
'

(

)
*  

 Since x0 = 0 and v0 = 
  

F̂

m
,  Equation 1.38 becomes 

  

  

A =
v

0

!
d

=
F̂

m!
d

" = tan#1 0( ) = 0

 

 So Equation 1.36 becomes 

  
  
x t( ) =

F̂

m!
d

e"#!nt sin !
d
t( ) which is Equation 3.6 
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3.6 Consider a simple model of an airplane wing given in Figure P3.6.  The wing is 
approximated as vibrating back and forth in its plane, massless compared to the missile 
carriage system (of mass m).  The modulus and the moment of inertia of the wing are 
approximated by E and I, respectively, and l is the length of the wing.  The wing is 
modeled as a simple cantilever for the purpose of estimating the vibration resulting from 
the release of the missile, which is approximated by the impulse funciton Fδ(t).  
Calculate the response and plot your results for the case of an aluminum wing 2 m long 
with m = 1000 kg, ζ = 0.01, and I = 0.5 m4.  Model F as 1000 N lasting over 10-2s. 
Modeling of wing vibration resulting from the release of a missile.  (a) system of interest; 
(b) simplification of the detail of interest; (c) crude model of the wing: a cantilevered 
beam section (recall Figure 1.24); (d) vibration model used to calculate the response 
neglecting the mass of the wing. 

 
 Solution: Given:   

  

  

m = 1000 kg ! = 0.01

l = 4 m I = 0.5 m4

F = 1000 N "t = 10-2  s

 

 From Table 1.2, the modulus of Aluminum is   E = 7.1!1010  N/m2 
 
 The stiffness is 

  

   

k =
3EI

!
3

=

3 7.1!1010
( ) 0.5( )

43
= 1.664 !109  N/m

"
n

=
k

m
= 1.29 !103  rad/s (205.4 Hz)

"
d

= "
n

1#$ 2
= 1.29 !103
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 Solution (Eq. 3.6): 
 

  
  
x t( ) =

F!t( )e"#$nt

m$
d

sin$
d
t = 7.753%10"6 e"12.9t sin 1290t( )  m  

The following m-file 
t=(0:0.0001:0.5); 
F=1000;dt=0.01;m=1000;zeta=0.01;E=7.1*10^10;I=0.5;L=4; 
wn=sqrt((3*I*E/L^3)/m); 
wd=wn*sqrt(1-zeta^2); 
x=(F*dt/(m*wd))*exp(-zeta*wn*t).*sin(wd*t); 
plot(t,x) 
 
 
The solution worked out in Mathcad is given in the following: 
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3.7 A cam in a large machine can be modeled as applying a 10,000 N-force over an interval 
of 0.005 s.  This can strike a valve that is modeled as having physical parameters:  m = 10 
kg, c = 18 N•s/m, and stiffness k = 9000 N/m.  The cam strikes the valve once every 1 s.  
Calculate the vibration response, x(t), of the valve once it has been impacted by the cam.  
The valve is considered to be closed if the distance between its rest position and its actual 
position is less than 0.0001 m.  Is the valve closed the very next time it is hit by the cam? 

 
 Solution: Given: 

  

  

F = 10,000 N !t = 0.005 s

m = 10 kg c = 18 N " s/m k = 9000 N/m

#
n

=
k

m
= 30 rad/s $ =

c

2 km
= 0.03 #

d
= #

n
1%$ 2

= 29.99 rad/s

 

 
 Solution Eq. (3.6): 

  

  

x t( ) =
F!t( )e"#$nt

m$
d

sin$
d
t

x t( ) =
10,000( ) 0.005( )e" 0.03( ) 30( )t

10( ) 29.99( )
sin 29.99t( )

x t( ) = 0.1667e"0.9t sin 29.99t( )m

 

 

 At t=1 s: 
  
x 1( ) = 0.1667e!0.9 sin(29.99) = !.06707 m  

 

 Since 
  
x 1( ) = 0.06707 > 0.0001,  the valve is not closed. 
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3.8 The vibration packages dropped from a height of h meters can be approximated by 
considering Figure P3.8 and modeling the point of contact as an impulse applied to the 
system at the time of contact.  Calculate the vibration of the mass m after the system falls 
and hits the ground.  Assume that the system is underdamped. 

 
 Solution: When the system hits the ground, it responds as if an impulse force acted on it. 
 

 From Equation (3.6): 
  
x t( ) =

F̂e!"#nt

m#
d

sin#
d
t       where 

F̂

m
= v

0
 

 
 Calculate v0: 
 

 For falling mass: 
  
x =

1

2
at2  

 

 So,   v0
= gt*, where t* is the time of impact from height h 

 

  

  

h =
1

2
gt*2

! t*
=

2h

g

v
0

= 2gh

 

 
 Let t = 0 when the end of the spring hits the ground 
 

 The response is 
  
x t( ) =

2gh

!
d

e"#!nt sin!
d
t  

 
 Where ωn, ωd, and ζ are calculated from m, c, k.  Of course the problem could be solved 

as a free response problem with x0 = 0, v0 =   2gh  or an impulse response with impact 

model as the unit velocity given. 
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3.9 Calculate the response of 

  
   
3!!x(t) + 12 !x t( ) + 12x t( ) = 3! t( )  

 for zero initial conditions.  The units are in Newtons.  Plot the response. 
 
 Solution: Dividing the equation of motion by 3 reveals; 

  

  

!
n

= 4 = 2 rad/s " =
12

2 3( ) 2( )
= 1# critically damped

F̂ = 3 v
0

=
F$t

m
,       x

0
= 0

x = a
1
+ a

2
t( )e%!nt a

1
= 0 a

2
=

F$t

m

                   # x t( ) =
F̂

m
te%2t

=
3

3
te%2t

= te%2t
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3.10 Compute the response of the system: 

   3!!x(t) + 12 !x(t) + 12x(t) = 3! (t)  
subject to the initial conditions x(0) = 0.01 m and v(0) = 0.  The units are in Newtons.  
Plot the response. 
 
Solution:  From the previous problem the system is critically damped with a solution of 
the form 

  x(t) = (a
1
+ a

2
t)e!2t . 

Applying the given initial conditions yields 

   

x(0) = 0.01 = a
1
    and  !x(0) = 0 = !2(0.01+ a

2
0) + a

2

                      " x(t) = (0.01+ 0.02t)e!2t
 

 Next add to this the solution due to the unit impulse, which was calculated in Problem 3.9 
to get: 

  

x(t) = te!2t
+ (0.01+ 0.02t)e!2t

                " x(t) = (0.01+ 1.02t)e!2t
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3.11 Calculate the response of the system 

  
   
3!!x(t) + 6 !x t( ) + 12x t( ) = 3! t( ) " ! (t "1)  

subject to the initial conditions x(0) =0.01 m and v(0) = 1 m/s.  The units are in Newtons.  
Plot the response. 
 
Solution:   First compute the natural frequency and damping ratio: 

  
!

n
=

12

3
= 2 rad/s,  " =

6

2 #2 #3
= 0.5,   !

d
= 2 1$ 0.52

= 1.73 rad/s  

so that the system is underdamped.  Next compute the responses to the two impulses: 

  

x
1
(t) =

F̂

m!
d

e"#!nt sin!
d
t =

3

3(1.73)
e"(t"1) sin1.73(t "1) = 0.577e" t sin1.73t,t > 0

x
2
(t) =

F̂

m!
d

e"#!n (t"1) sin!
d
(t "1) =

1

3(1.73)
e" t sin1.73t = 0.193e"(t"1) sin1.73(t "1),t > 1

 

 Now compute the response to the initial conditions from Equation (1.36) 
 

  

  

x
h

t( ) = Ae!"#nt sin #
d
t + $( )

A =
v

0
+"#

n
x

0( )
2

+ x
0
#

d( )
2

#
d
2

,      $ = tan!1 x
0
#

d

v
0

+"#
n
x

0

%

&
'

(

)
* = 0.071 rad

                  + x
h

t( ) = 0.5775e! t sin t + 0.017( )

 

 Using the Heaviside function the total response is 

 
  
x(t) = 0.577e! t sin1.73t + 0.583e! t sin t + 0.017( ) + 0.193e!(t!1) sin1.73(t !1)"(t !1)  

 This is plotted below in Mathcad: 

 
 Note the slight bump in the response at t = 1 when the second impact occurs.   
 
3.12 A chassis dynamometer is used to study the unsprung mass of an automobile as 

illustrated in Figure P3.12 and discussed in Example 1.4.1 and again in Problem 1.64.  
Compute the maximum magnitude of the center of the wheel due to an impulse of 5000 N 



3- 14 

applied over 0.01 seconds.  Assume the wheel mass is m = 15 kg, the spring stiffness is k 
= 500,000 N/m, the shock absorber provides a damping ratio of ζ = 0.3, and the rotational 
inertia is J = 2.323 kg m2. Compute and plot the response of the wheel system to an 
impulse of 5000 N over 0.01 s.  Compare the undamped maximum amplitude to that of 
the maximum amplitude of the damped system (use r = 0.457 m). 

 
Figure P3.12 Simple model of an automobile suspension system mounted on a chassis 
dynamometer. The rotation of the car’s wheel/tire assembly (of radius r) is given by θ(t) 
and is vertical deflection by x(t).  
 
Solution: With the values given the natural frequency, damped natural frequency, and 
impulse are calculated to be: 

  
!

n
=

k

m + J / r 2
= 117.67 rad/s  = 18.73 Hz,  !

d
= 112.25 rad/s,  X =

F"t

(m + J / r 2 )!
n

= 0.014  m

The response is then plotted as 
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Note that the maximum amplitude of the undamped system, X, is not achieved. 
 
 
3.13 Consider the effect of damping on the bird strike problem of Example 3.1.1.  Recall from 

the example that the bird strike causes the camera to vibrate out of limits.  Adding 
damping will cause the magnitude of the response to decrease but may not be able to 
keep the camera from vibrating past the 0.01 m limit.  If the damping in the aluminum is 
modeled as ζ = 0.05, approximately how long before the camera vibration reduces to the 
required limit? (Hint: plot the time response and note the value for time after which the 
oscillations remain below 0.01 m). 

 
 Solution: Using the values given in Example 3.1.1 and equations (3.7) and (3.8), the 

response has the form 

  
x(t) =

m
b
v

m!
n

e"#!nt sin!
d
t = 0.026e"13.07t sin260.976t  

 Here mb is the mass of the bird and m is the mass of the camera. This is plotted in 
Mathcad below 

 
 From the plot, the amplitude remains below 0.01 m after about 0.057 s. 
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3.14  Consider the jet engine and mount indicated in Figure P3.14 and model it as a mass on 

the end of a beam as done in Figure 1.24.  The mass of the engine is usually fixed. Find a 
expression for the value of the transverse mount stiffness, k, as a function of the relative 
speed of the bird, v, the bird mass, the mass of the engine and the maximum displacement 
that the engine is allowed to vibrate. 

 
                 Figure P3.14 Model of a jet engine in transverse vibration due to a bird strike.  
 
 Solution:  The equation of motion is 

   m!!x(t) + kx(t) = F̂! (t)  
 From equations (3.7) and (3.8) the magnitude of the response is 

  
X =

F̂

m!
n

 

 for an undamped system.  If the bird is moving with momentum mbv then: 
 

 

  

X =
m

b
v

m!
n

" X =
m

b
v

mk
" k =

1

m

m
b
v

X

#

$
%

&

'
(

2

 

 This can be used to provide some guidance in designing the engine mount. 
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Problems and Solutions for Section 3.2 (3.15 through 3.25) 
 
3.15 Calculate the response of an overdamped single-degree-of-freedom system to an 

arbitrary non-periodic excitation. 
 

 Solution: From Equation (3.12): 
  
x t( ) = F !( )h t " !( )d!

0

t

#  

 For an overdamped SDOF system (see Problem 3.4) 
 

  

h t ! "( ) =
1

2m#
n
$ 2 !1

e!$#n t!"( ) e#n $ 2 !1 t!"( ) ! e!#n $ 2 !1 t!"( )%
&

'
( d"

x t( ) = F "( )
0

t

)
1

2m#
n
$ 2 !1

e!$#n t!"( ) e#n $ 2 !1 t!"( ) ! e!#n $ 2 !1 t!"( )%
&

'
( d"

* x t( ) =
e!$#n

2m#
n
$ 2 !1

F "( )
0

t

) e$#n" e#n $ 2 !1 t!"( ) ! e!#n $ 2 !1 t!"( )%
&

'
( d"
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3.16 Calculate the response of an underdamped system to the excitation given in 
Figure P3.16. 

 Plot of a pulse input of the form f(t) = F0sint. 

 
Figure P3.16 

 
 Solution: 

  

  

x t( ) =
1

m!
d

e"#!nt F $( )e#!n$ sin!
d

t " $( )%
&

'
(d$

0

t

)
F t( ) = F

0
sin t( ) t < *   From Figure P3.16( )

For t + * ,            x t( ) =
F

0

m!
d

e"#!nt sin$e#!n$ sin!
d

t " $( )( )d$
0

t

)

 

 

  

x t( ) =
F

0

m!
d

e"#!nt $

      
1

2 1+ 2!
d

+!
n

2%& '(
e#!nt !

d
"1( )sin t "#!

n
cos t%& '( " !

d
"1( )sin!

d
t "#!

n
cos!

d
t{ }

%

&

)
)

+
1

2 1+ 2!
d

+!
n

2%& '(
e#!nt !

d
"1( )sin t "#!

n
cos t%& '( + !

d
"1( )sin!

d
t "#!

n
cos!

d
t{ }
'

(

*
*

 

 

 For ! > " , :
  

f (! )h(t " ! )d!
0

t

# = f (! )h(t " ! )d!
0

$

# + (0)h(t " ! )d!
$

t

#  
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x t( ) =
F

0

m!
d

e"#!nt sin$e#!n$ sin!
d

t " $( )( )d$
0

%

&

      =
F

0

m!
d

e"#!nt '

  

1

2 1+ 2!
d

+!
n

2"# $%

e&!nt !
d
'1( )sin !

d
t ' (( )"# $% '&! n

cos !
d

t ' (( )"# $%
"
#

$
%

                         ' !
d
'1( )sin!

d
t '&!

n
cos!

d
t

)
*
+

,+

-
.
+

/+

"

#

0
0

              +
1

2 1+ 2!
d

+!
n

2"# $%

e&!nt !
d

+ 1( )sin !
d

t ' 1( )"# $% +&! cos !
d

t ' (( )"# $%
"
#

$
%

                         + !
d
'1( )sin!

d
t '&!

n
cos!

d
t

)
*
+

,+

-
.
+

/+

$

%

2
2

 
Alternately, one could take a Laplace Transform approach and assume the under-damped 

system is a mass-spring-damper system of the form 
 

 
m!!x t( ) + c!x t( ) + kx t( ) = F t( )  

The forcing function given can be written as 
 
F t( ) = F0 H t( ) ! H t ! "( )( )sin t( )  

 
Normalizing the equation of motion yields 
 

 
!!x t( ) + 2!"n !x t( ) +"n

2x t( ) = f0 H t( ) # H t # $( )( )sin t( )  

 

where f0 =
F0

m
 and m, c and k are such that 0 < ! < 1. 

 
Assuming initial conditions, transforming the equation of motion into the Laplace domain 
yields 
 

X s( ) =
f0 1+ e!" s

( )

s2
+ 1( ) s2

+ 2#$ns +$n
2

( )
 

 
The above expression can be converted to partial fractions 
 

X s( ) = f0 1+ e!" s
( )

As + B

s2
+ 1

#
$%

&
'(

+ f0 1+ e!" s
( )

Cs + D

s2
+ 2)*ns +*n

2

#

$%
&

'(
 

 
where A, B, C, and D are found to be 
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A =
!2"#n

1!#n
2

( )
2

+ 2"#n( )
2

B =
#n

2 !1

1!#n
2

( )
2

+ 2"#n( )
2

C =
2"#n

1!#n
2

( )
2

+ 2"#n( )
2

D =
1!#n

2
( ) + 2"#n( )

2

1!#n
2

( )
2

+ 2"#n( )
2

 

 
Notice that X s( )  can be written more attractively as 

 

X s( ) = f0

As + B

s2
+ 1

+
Cs + D

s2
+ 2!"ns +"n

2

#

$%
&

'(
+ f0e

)* s As + B

s2
+ 1

+
Cs + D

s2
+ 2!"ns +"n

2

#

$%
&

'(

= f0 G s( ) + e)* sG s( )( )

 

 
Performing the inverse Laplace Transform yields 
 
x t( ) = f0 g t( ) + H t ! "( )g t ! "( )( )  

 
where g(t) is given below 
 

g t( ) = Acos t( ) + Bsin t( ) + Ce!"#nt cos #dt( ) +
D ! C"#n

#d

$

%&
'

()
e!"#nt sin #dt( )  

 

!d is the damped natural frequency,!d = !n 1"# 2 . 

 
Let m=1 kg, c=2 kg/sec, k=3 N/m, and F0=2 N. The system is solved numerically. Both 
exact and numerical solutions are plotted below 
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Figure 1 Analytical vs. Numerical Solutions 

 
Below is the code used to solve this problem 
 
% Establish a time vector 
t=[0:0.001:10]; 
 
% Define the mass, spring stiffness and damping coefficient 
m=1; 
c=2; 
k=3; 
 
% Define the amplitude of the forcing function 
F0=2; 
 
% Calculate the natural frequency, damping ratio and normalized force amplitude  
zeta=c/(2*sqrt(k*m)); 
wn=sqrt(k/m); 
f0=F0/m; 
 
% Calculate the damped natural frequency 
wd=wn*sqrt(1-zeta^2); 
 
% Below is the common denominator of A, B, C and D (partial fractions 
% coefficients) 
dummy=(1-wn^2)^2+(2*zeta*wn)^2; 
 
% Hence, A, B, C, and D are given by 
A=-2*zeta*wn/dummy; 
B=(wn^2-1)/dummy; 
C=2*zeta*wn/dummy; 
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D=((1-wn^2)+(2*zeta*wn)^2)/dummy; 
 
% EXACT SOLUTION 
% 
************************************************************************
* 
% 
************************************************************************
* 
for i=1:length(t) 
    % Start by defining the function g(t) 
    g(i)=A*cos(t(i))+B*sin(t(i))+C*exp(-zeta*wn*t(i))*cos(wd*t(i))+((D-
C*zeta*wn)/wd)*exp(-zeta*wn*t(i))*sin(wd*t(i)); 
    % Before t=pi, the response will be only g(t) 
    if t(i)<pi 
        xe(i)=f0*g(i); 
        % d is the index of delay that will correspond to t=pi 
        d=i; 
    else 
        % After t=pi, the response is g(t) plus a delayed g(t). The amount 
        % of delay is pi seconds, and it is d increments 
        xe(i)=f0*(g(i)+g(i-d)); 
    end; 
end; 
 
% NUMERICAL SOLUTION 
% 
************************************************************************
* 
% 
************************************************************************
* 
 
% Start by defining the forcing function 
for i=1:length(t) 
    if t(i)<pi 
        f(i)=f0*sin(t(i)); 
    else 
        f(i)=0; 
    end; 
end; 
 
% Define the transfer functions of the system 
% This is given below 
%         1 
% --------------------------- 
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% s^2+2*zeta*wn+wn^2 
 
% Define the numerator and denominator 
num=[1]; 
den=[1 2*zeta*wn wn^2]; 
% Establish the transfer function 
sys=tf(num,den); 
 
% Obtain the solution using lsim 
xn=lsim(sys,f,t); 
 
% Plot the results 
figure; 
set(gcf,'Color','White'); 
plot(t,xe,t,xn,'--'); 
xlabel('Time(sec)'); 
ylabel('Response'); 
legend('Forcing Function','Exact Solution','Numerical Solution'); 
text(6,0.05,'\uparrow','FontSize',18); 
axes('Position',[0.55 0.3/0.8 0.25 0.25]) 
plot(t(6001:6030),xe(6001:6030),t(6001:6030),xn(6001:6030),'--'); 
   

 
3.17 Speed bumps are used to force drivers to slow down.  Figure P3.17 is a model of a 

car going over a speed bump.  Using the data from Example 2.4.1 and an 
undamped model of the suspension system (k = 4 x 105 N/m, m = 1007 kg), find 
an expression for the maximum relative deflection of the car’s mass versus the 
velocity of the car. Model the bump as a half sine of length 40 cm and height 20 
cm. Note that this is a moving base problem. 
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Figure P3.17  Model of a car driving over a speed bump. 
 

 
Solution: This is a base motion problem, so the first step is to translate the 
equation of motion into a useable form.  Summing forces yields in the vertical 
direction yields 

   
m!!x(t) + k x(t) ! y(t)( ) = 0  

were the displacement y(t) is prescribed.  Next defined the relative displacement 
to be z(t) = x(t)-y(t), the relative motion between the car’s wheel and body. The 
equation of motion becomes: 

   m!!z(t) + m!!y(t) + kz(t) = 0 ! m!!z(t) + kz(t) = "m!!y(t)  
Substitution of the form of y(t) into this last expression yields: 

   
m!!z(t) + kz(t) = mY!

b
2 sin!

b
t "(t) # "(t # t

1
)( )  

where Φ is the Heavyside step function and  ωb is the frequency associated with 
the bump.  The relationship between the bump frequency and the car’s constant 
velocity is  

   
!

b
=

2"

2!
v =

"

!
v  

where v is the speed of the car in m/s. For constant velocity, the time 
   t1 = v! , 

when the car finishes going over the bump.  
Here, z(t) is From equation (3.13) with zero damping the solution is: 

  
z(t) =

1

m!
n

f (t " #
0

t

$ )sin!
n
#d#       t < t

1
 

Substitution of f(t) =y(t) yields: 

  

z(t) =
Y!

b
2

!
n

sin(!
b
t "!

b
# )

0

t

$ sin!
n
#d# =

=
Y!

b
2

!
n

1

2
 

sin !
b
t " (!

n
+!

b
)#( )

"(!
n

+!
b
)

"
sin !

b
t + (!

n
"!

b
)#( )

!
n
"!

b

%

&
'
'

(

)
*
*

0

t

   

                      =  
Y!

b
2

!
n

1

!
n
2 "!

b
2
!

n
sin!

b
t "!

b
sin!

n
t( )      t < t

1

 

where the integral has been evaluated symbolically. Clearly a resonance situation 
prevails.  Consider two cases, high speed   (!b

>>!
n
) and low speed (  (!b

<<!
n
) ) 

as when the two frequencies are near each other and obvious maximum occurs.  
For high speed, the amplitude can be approximated as 

  

Y!
b
2

!
n

!
b

!
n
2
"!

b
2

(!
n

/!
b
)sin!

b
t " sin!

n
t( ) #

Y!
b
2

!
n

!
b

!
n
2
"!

b
2

sin!
n
t  

For the values given, this has magnitude: 
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Z(v) !
Y

"
!

#
$%

&
'(

3

v3

)
n
)

n
2 *)

b
2

( )
 

This increases with the cube of the velocity.  Thus the faster the car is going the 
more sever the bump is (larger relative amplitude of vibration), hence serving to 
slow motorist down.  A plot of magnitude versus speed shows bump size is 
amplified by the suspension system. 

 
For slow speed, magnitude becomes  

   

Z(v) !
Y

"
!

#
$%

&
'(

2

v2)
n

)
n
)

n
2 *)

b
2

( )
 

A plot of the approximate magnitude versus speed is given below 
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Clearly at speeds above the designed velocity there is strong amplification of the 
bump’s magnitude, causing discomfort to the driver and passengers, encouraging 
a slow speed when passing over the bumb. 

 
3.18 Calculate and plot the response of an undamped system to a step function with a 
finite rise time of t1 for the case m = 1 kg, k = 1 N/m, t1 = 4 s and F0 = 20 N.  This 
function is described by 
 

  

  

F t( ) =

F
0
t

t
1

0 ! t ! t
1

F
0

t > t
1

"

#
$

%
$

 

 
 Solution: Working in Mathcad to perform the integrals the solution is: 
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3.19  A wave consisting of the wake from a passing boat impacts a seawall.  It is 
desired to calculate the resulting vibration.  Figure P3.19 illustrates the situation 
and suggests a model.  This force in Figure P3.19 can be expressed as 

 

  

  

F t( ) =
F

0
1!

t

t
0

"

#$
%

&'
0 ( t ( t

0

0 t > t
0

)

*
+

,
+

 

 
 Calculate the response of the seal wall-dike system to such a load. 

 
  

 Solution: From Equation (3.12):
  
x t( ) =

0

t

! F "( )h t # "( )d"  

 From Problem 3.18, 
  
h t ! "( ) =

1

m#
n

sin#
n

t ! "( ) for an undamped system 

 For   t < t
0

:  

  

  

x t( ) =
1

m!
n 0

t

" F
0

1#
$
t
0

%

&'
(

)*
sin!

n
t # $( )d$

+

,
-
-

.

/
0
0

x t( ) =
F

0

m!
n 0

t

" sin!
n

t # $( )d$ #
1

t
0 0

t

" $ sin!
n

t # $( )d$
+

,
-
-

.

/
0
0

 

 After integrating and rearranging, 

  

  

x t( ) =
F

0

kt
0

1

!
n

sin!
n
t " t

#

$
%

&

'
( +

F
0

k
1" cos!

n
t#$ &' t < t

0
  

 For  t > t
0

:
  

f (! )h(t " ! )d!
0

t

# = f (! )h(t " ! )d!
0

t0

# + (0)h(t " ! )d!
t0

t

#  

 

  

x t( ) =
1

m!
n 0

t
0

" F
0

1#
$
t
0

%

&'
(

)*
sin!

n
t # $( )d$

+

,

-
-

.

/

0
0

x t( ) =
F

0

m!
n 0

t0

" sin!
n

t # $( )d$ #
1

t
0 0

t0

" $ sin!
n

t # $( )d$
+

,
-
-

.

/
0
0
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 After integrating and rearranging, 

  
x t( ) =

F
0

kt
0
!

n

sin!
n
t " sin!

n
(t " t

0
)#$ %& "

F
0

k
cos!

n
t#$ %& t > t

0
 

3.20  Determine the response of an undamped system to a ramp input of the form F(t) = 
F0t, where F0 is a constant.  Plot the response for three periods for the case m = 1 kg, k = 
100 N/m and F0 = 50 N. 
 

 Solution: From Eq. (3.12): 
  
x t( ) =

0

t

! F "( )h t # "( )d"  

 From Problem 3.8, 
  
h t ! "( ) =

1

m#
n

sin#
n

t ! "( ) for an undamped system.  

Therefore, 

  

  

x t( ) =
1

m!
n 0

t

" F
0
#( )sin!

n
t $ #( )d#

%

&
'
'

(

)
*
*

=
F

0

m!
n 0

t

" # sin!
n

t $ #( )d#  

 
 After integrating and rearranging, 
 

  

  

x t( ) =
F

0

m!
n

"

!
n

#
1

!
n
2

sin!
n
"

$

%
&
&

'

(
)
)

=
F

0

k
t #

F
0

k!
n

sin!
n
t  

 
 Using the values m = 1 kg, k = 100 kg, and F0 = 50 N yields 
 

  
  
x t( ) = 0.5t ! .05sin 10t( )   m  



3- 30 

3. 21     A machine resting on an elastic support can be modeled as a single-degree-of-
freedom, spring-mass system arranged in the vertical direction.  The ground is subject to 
a motion y(t) of the form illustrated in Figure P3.221.  The machine has a mass of 5000 
kg and the support has stiffness 1.5x103 N/m.  Calculate the resulting vibration of the 
machine. 

 

Solution: Given m = 5000 kg, k = 1.5x103 N/m, 
  
!

n
= k

m
= 0.548 rad/s and that 

the ground motion is given by: 

  

y(t) =

2.5t 0 ! t ! 0.2

0.75"1.25t 0.2 ! t ! 0.6

0 t # 0.6

$

%
&

'
&

 

The equation of motion is 
   m!!x + k(x ! y) = 0  or 

   m!!x + kx = ky = F(t)  The impulse 
response function computed from equation (3.12) for an undamped system is 

  
h(t ! " ) =

1

m#
n

sin#
n
(t ! " )  

This gives the solution by integrating a yh across each time step: 

  
x(t) =

1

m!
n

ky(" )sin!
n
(t # " )d"

0

t

$ = !
n

y(" )sin!
n
(t # " )d"

0

t

$  

For the interval 0< t < 0.2: 

  

x(t) = !
n

2.5" sin!
n
(t # " )d"

0

t

$
       % x(t) = 2.5t # 4.56sin0.548t   mm  0 & t & 0.2

 

For the interval 0.2< t < 0.6: 

  

x(t) = !
n

2.5" sin!
n
(t # " )d"

0

0.2

$ +!
n

(0.75#1.25" )sin!
n
(t # " )d"

0.2

t

$
      = 0.75# 0.5cos0.548(t # 0.2) #1.25t + 2.28sin0.548(t # 0.2)

 

Combining this with the solution from the first interval yields: 

  

x(t) = 0.75 + 1.25t ! 0.5cos0.548(t ! 0.2)

              +6.48sin0.548(t ! 0.2) ! 4.56sin0.548(t ! 0.2)  mm 0.2 " t " 0.6
 

Finally for the interval t >0.6: 
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x(t) = !
n

2.5t sin!
n
(t " # )d#

0

0.2

$ +!
n

(0.75"1.25t)sin!
n
(t " # )d#

0.2

0.6

$ +!
n

(0)sin!
n
(t " # )d#

0

t

$
      = "0.5cos0.548(t " 0.2) " 2.28sin0.548(t " 0.6) + 2.28sin0.548(t " 0.2)
Combining this with the total solution from the previous time interval yields: 

  

x(t) = !0.5cos0.548(t ! 0.2) + 6.84sin0.548(t ! 0.2) ! 2.28sin0.548(t ! 0.6)

                                                                ! 4.56sin0.548t   mm t " 0.6
 



3- 32 

3.22 Consider the step response described in Figure 3.7.  Calculate tp by noting that it 
occurs at the first peak, or critical point, of the curve. 

 
 Solution: Assume t0 = 0.  The response is given by Eq. (3.17): 
 

  

  

x t( ) =
F

0

k
!

F
0

k 1!" 2
e!"#nt cos #

d
t !$( )  

 To find tp, compute the derivative and let 
   
!x t( ) = 0  

  

   

!x t( ) =
!F

0

k 1!" 2
!"#

n
e!"#nt cos #

d
t !$( ) + e!"#nt !#

d( )sin #
d
t !$( )%

&
'
( = 0

     )!"#
n
cos #

d
t !$( ) !# d

sin #
d
t !$( ) = 0

                                                       ) tan #
d
t !$( ) =

!"#
n

#
d

 

 

  

!
d
t "# " $ = tan"1 "%!

n

!
d

&

'(
)

*+
(π can be added or subtracted without changing the 

tangent of an angle) 

  

  

t =
1

!
d

" + # + tan$1 $%!
n

!
d

&

'(
)

*+
,

-
.
.

/

0
1
1

 

 But, 

 

! = tan"1 #

1"# 2

$

%
&
&

'

(
)
)

 

 So,  

  

  

t =
1

!
d

" + tan#1 $

1#$ 2

%

&
'
'

(

)
*
*
# tan#1 $

1#$ 2

%

&
'
'

(

)
*
*

+

,

-
-

.

/

0
0

t
p

=
"
!

d
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3.23 Calculate the value of the overshoot (o.s.), for the system of Figure P3.7. 
 
 Solution: 
 

 The overshoot occurs at 
 
t

p
=

!

"
d

 

 Substitute into Eq. (3.17): 

  

  

x t
p( ) =

F
0

k
!

F
0

k 1!" 2
e!"#n$ /#d cos #

d

$
#

d

%

&'
(

)*
!+

,

-
.
.

/

0
1
1

 

 The overshoot is 

  

  

o.s. = x t
p( ) ! x

ss
t( )

o.s. =
F

0

k
!

F
0

k 1!" 2
e!"#n$ /#d !cos%( ) !

F
0

k

 

 Since 

 

! = tan"1 #

1"# 2

$

%
&
&

'

(
)
)

,  then cos! = 1-# 2  

 

 

  

o.s. = !
F

0

k 1!" 2
e!"#n$ /#d( ) 1!" 2( )

o.s. =
F

0

k
e!"#n$ /#d

 

3.24 It is desired to design a system so that its step response has a settling time of 3 s 
and a time to peak of 1 s.  Calculate the appropriate natural frequency and 
damping ratio to use in the design. 

 
 Solution: 
 Given 

  
t

s
= 3s, t

p
= 1s  

 Settling time: 

  
  
t

s
=

3.5

!"
n

= 3 s #!"
n

=
3.5

3
= 1.1667 rad/s  

 Peak time: 

  

  

t
p

=
!
"

d

= 1 s     #"
d

= "
n

1$% 2
= !  rad/s

#"
n

1$
1.1667

"
n

&

'(
)

*+

2

= ! #"
n

2 1$
1.1667

"
n

&

'(
)

*+

2,

-

.

.

/

0

1
1

= ! 2

#"
n
2 1$

1.3611

"
n
2

,

-
.
.

/

0
1
1

= ! 2 #"
n
2 $1.311 = ! 2 #"

n
= 3.35 rad/s
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 Next use the settling time relationship to get the damping ratio: 

   
! =

1.1667

"
n

=
1.1667

3.35
#! = 0.3483  
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3.25 Plot the response of a spring-mass-damper system for this input of Figure 3.8 for 
the case that the pulse width is the natural period of the system (i.e., t1 = π⁄ωn). 

 
 Solution: 
 
 The values from Figure 3.7 will be used to plot the response. 
 

  

  

F
0

= 30 N

k = 1000 N/m

! = 0.1

" = 3.16 rad/s

 

 From example 3.2.2 and Figure 3.7, with 
  
t
1

=
!

"
 we have for t = 0 to t1, 

 

  

  

x t( ) =
F

0

k
!

F
0
e!"#nt

k 1!" 2
cos #

d
t !$( ) where$ = tan!1 "

1!" 2

%

&
'
'

(

)
*
*

 

 x(t) = .03 - .03015e-.316t  cos(3.144t - .1002)         0 < t ≤ t1 
 
 For t > t1, 
 

  

  

x t( ) =
F

0
e!"#nt

k 1!" 2
e

"#nt1

cos #
d

t !
$
#

n

%

&'
(

)*
! +

,

-
.
.

/

0
1
1
! cos #

d
t !+( )

2
3
4

54

6
7
4

84
 

 
 x(t) = 0.0315e-.316t {1.3691cos(3.144t – 3.026) – cos(3.144t - .1002)} t > t1 
 
 
 The plot in Mathcad follows: 
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Problems and Solutions Section 3.3 (problems 3.26-3.32) 
 
3.26 Derive equations (3.24). (3.25) and (3.26) and hence verify the equations for the Fourier 

coefficient given by equations (3.21), (3.22) and (3.23). 
 
 Solution: For n ! m, integration yields: 
 

  

  

0

T

! sin n"
T
t sin m"

T
tdt =

sin n # m( )"T
t

"
T

2 n # m( )
#

sin n + m( )"T
t

"
T

2 n + m( )

$

%
&
&

'

(
)
)

0

T

=

sin n # m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n # m( )"T

#

sin n + m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n + m( )"T

=

sin n # m( ) 2*( )$% '(
2 n # m( )"T

#
sin n + m( ) 2*( )$% '(

2 n + m( )"T

= 0

 

 
 Since m and n are integers, the sine terms are 0, so this is equal to 0. 
 
 Equation (3.24), for m = n: 
 

  

  

0

T

! sin2 n"
T
tdt =

1

2
t #

1

4n"
T

sin 2n"
T
t( )

$

%
&

'

(
)

0

T

=
T

2
#

T

8n*
sin 2*

2*
T

+
,-

.
/0

T
$

%
&

'

(
)

=
T

2
#

T

8n*
sin 4n*$% '( =

T

2

 

 
 Since n is an integer, the sine term is 0, so this is equal to T/2. 
 

 So, 
  0

T

! sin n"
T
t sin m"

T
tdt =

0 m # n

T / 2 m = n

$
%
&

 

 
 Equation (3.25), for  m ! n  
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0

T

! cos n"
T
t cos m"

T
tdt =

sin n # m( )"T
t

2 n # m( )"T

#
sin n + m( )"T

t

2 $ + m( )"T

%

&
'
'

(

)
*
*

0

T

=

sin n # m( )
2+
T

,
-.

/
01

T
%

&
'

(

)
*

2 n # m( )"T

#

sin n + m( )
2+
T

,
-.

/
01

T
%

&
'

(

)
*

2 n + m( )"T

        =

sin n # m( ) 2+( )%& ()
2 n # m( )"T

#
sin n + m( ) 2+( )%& ()

2 n + m( )"T

= 0

 

 
 Since m and n are integers, the sine terms are 0, so this is equal to 0. 
 
 Equation (3.25), for m = n becomes: 
 

  

  

cos2

0

T

! n"
T
tdt =

1

2
t +

1

4n"
T

sin 2n"
T
t( )

#

$
%

&

'
(

0

T

=
T

2
+

T

8n)
sin 2n

2)
T

*
+,

-
./

T
#

$
%

&

'
(

=
T

2
+

T

8n)
sin 4n)#$ &' =

T

2

 

 
 Since n is an integer, the sine term is 0, so this is equal to T/2. 
 

 So, 
  0

T

! cos n"
T
t cos m"

T
tdt =

0 m # n

T / 2 m = n

$
%
&

 

 
 Equation (3.26), for m ! n : 
 

  

0

T

! cos n"
T
t sin m"

T
tdt =

cos n # m( )"T
t

2"
T

n # m( )
#

cos n + m( )"T
t

2"
T

n + m( )

$

%
&
&

'

(
)
)

0

T

=

cos n # m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n # m( )"T

#

cos n + m( )
2*
T

+
,-

.
/0

T
$

%
&

'

(
)

2 n + m( )"T

#
1

2 m # n( )"T

+
1

2 m + n( )"T

=

cos n # m( ) 2*( )$% '(
2 n # m( )"T

#
cos n + m( ) 2*( )$% '(

2 n + m( )"T

#
1

2 m # n( )"T

+
1

2 m + n( )"T

= 0

 

 
 Since n is an integer, the cosine term is 1, so this is equal to 0. 
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 So, 
  0

T

! cos n"
T
t sin m"

T
tdt = 0  

 Equation (3.26) for n = m becomes: 

  0

T

! cos n"
T
t sin n"

T
tdt =

1

2n"
T

sin2 n"
T
t

#

$
%

&

'
(

0

T

=
T

4n)
sin2 2)n = 0  

Thus 
  0

T

! cos n"
T
t sin n"

T
tdt = 0  
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3.27 Calculate bn from Example 3.3.1 and show that bn = 0, n = 1,2,…,∞ for the triangular 
force of Figure 3.12.  Also verify the expression an by completing the integration 
indicated.  (Hint:  Change the variable of integration from t to x = 2πnt/T.) 

 

 Solution: From Equation (3.23),
  
b

n
=

2

T
0

T

! F t( )sin n"
T
tdt . Computing the integral yields: 

  

  

b
n

=
2

T
0

T / 2

!
4

T
t "1

#
$%

&
'(

sin n)
T
tdt +

T / 2

T

! 1"
4

T
t "

T

2

#
$%

&
'(

*

+
,

-

.
/sin n)

T
tdt

*

+
,
,

-

.
/
/

b
n

=
2

T

4

T
0

T / 2

! t sin n)
T
tdt "

0

T / 2

! sin n)
T
tdt + 3

T / 2

T

! sin n)
T
tdt "

4

T
T / 2

T

! t sin n)
T
tdt

*

+
,
,

-

.
/
/

 

 

 Substitute 
  
x = n!

T
t =

2"n

T
t  

 

  

  

b
n

=
1

!n

2

!n
0

!n

" x sin xdx #
0

!n

" sin xdx + 3
!n

2!n

" sin xdx #
2

!n
!n

2!n

" x sin xdx
$

%
&
&

'

(
)
)

=
1

!n

2

!n
sin x # xcos x( )

0

!n

+ cos x
0

!n
# 3cos x

!n

2!n
#

2

!n
sin x # xcos x( )

!n

2!n$

%
&

'

(
)

=
1

!n

2

!n
#!ncos!n( ) + cos!n #1# 3+ 3cos!n #

2

!n
#2!n + !ncos!n( )

$

%
&

'

(
)

                            =
1

!n
#2cos!n + 4cos!n # 4 + 4 # 2cos!n$% '( =

1

!n
0$% '( = 0

 

 

 From equation (3.22), 
  
a

n
=

2

T
0

T

! F t( )cos n"
T
tdt  

 

 

  

a
n

=
2

T
0

T / 2

!
4

T
t "1

#
$%

&
'(

cos n)
T
tdt +

T / 2

T
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4

T
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T

2

#
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&
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*

+
,

-

.
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T
tdt
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+
,
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-

.
/
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a
n

=
2

T

4

T
0

T / 2

! t cos n)
T
tdt "

0

T / 2

! cos n)
T
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T
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T
tdt "

4

T
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T
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T
tdt

*

+
,
,

-

.
/
/

 

 

 Substitute 
  
x = n!

T
t =

2"n

T
t  
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a
n

=
1

!n

2

!n
0

!n

" xcos xdx #
0

!n

" cos xdx + 3
!n

2!n

" cos xdx #
2

!n
!n

2!n

" xcos xdx
$

%
&
&

'

(
)
)

=
1

!n

2

!n
cos x + x sin x( ) # sin x

0

!n
+ 3sin x

!n

2!n
#

2

!n
cos x # sin x( )

!n

2!n$

%
&

'

(
)

=
1

!n

2

!n
cos!n #1( ) #

2

!n
1# cos!n( )

$

%
&

'

(
)

=
2

! 2n2
cos!n #1#1+ cos!n$% '(

                                          =
4

! 2n2
cos!n #1$% '( =

0 n even

-8

! 2n2
n odd

*

+
,

-
,
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3.28 Determine the Fourier series for the rectangular wave illustrated in Figure P3.28. 

 
 Solution: The square wave of period T is described by 

  
  
F t( ) =

1 0 ! t ! "

#1 " ! t ! 2"

$
%
&

 

 Determine the coefficients   a0
,a

n
,b

n
 from direct integration: 

  

  

a
0

=
2

T
0

T

! F t( )dt

=
2

2"
0

"

! 1( )dt +

"

2"

! #1( )dt
$

%
&
&

'

(
)
)

=
1

"
t

0

"
# t

"

2"
dt$

%&
'
()

=
1

"
" # 2" + "$% '( =

1

"
0( )          * a

0
= 0

 

  

  

a
n

=
2

T
0

T

! F t( )cos n"
T
tdt,  where "

T
=

2#

T
=

2#

2#
= 1

=
2

2#
0

#

! cos ntdt $
#

2#

! cos ntdt
%

&
'
'

(

)
*
*

=
1

#

1

n
sin nt

0

#
$

1

n
sin nt

#

2#%

&
'

(

)
*

=
1

#n
sin n#( ) $ sin n2#( ) + sin n#( )%
&

(
) = 0

 

 

  

b
n

=
2

T
0

T

! F t( )sin"
T
tdt =

2

2#
0

#

! sin ntdt $
#

2#

! sin ntdt
%

&
'
'

(

)
*
*

=
1

#

$1

n
cos nt

0

#
$

1

n
cos nt

#

2#%

&
'

(

)
*=

1

#n
$cos n# + 1$1$ cos n#%& () =

2

#n
1$ cos n#%& ()

 

 If n is even, cosnπ = 1.  If n is odd, cosnπ = -1 

 So, 

  

b
n

=

0 n even

4

!n
n odd

"

#
$

%
$

 

 Thus the Fourier Series collapses to a sine series of the form 
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F t( ) = b

n
n=1

!

" sin nt =
4

n#n=1,3,!

!

" sin nt  

 
 The Vibration Toolbox can also be used: 
 t=0:pi/100:2*pi-pi/100; 
 f=-2*floor(t/pi)+1; 
 vtb3_3(f',t',100) 
 [a,b]=vtb3_3(f',t',100) 
 
 Note that vtb3_3 always gives some error on the order of delta t (.01 in this case). Using a 

smaller delta t reduced the error. 
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3.29 Determine the Fourier series representation of the sawtooth curve illustrated in Figure 
P3.29. 

 
 Solution:  The sawtooth curve of period T is 

  
F t( ) =

1

2!
t 0 " t " 2!  

 Determine coefficients   a0
,a

n
,b

n
: 

 

  

  

a
0

=
2

T
0

T

! F t( )dt =
2

2"
0

2"

!
1

2"
t

#
$%

&
'(

dt =
1

2" 2

#
$%

&
'(

1

2
t2

0

2"

=
1

4" 2
4" 2 ) 0*+ ,- = 1

 

 

  

  

a
n

=
2

T
0

T

! F t( )cos n"
T
tdt,  where "

T
=

2#
T

=
2#
2#

= 1

=
2

2#
0

2#

!
1

2#
t

$
%&

'
()

cos ntdt
*

+
,
,

-

.
/
/

=
1

2# 2
0

2#

! t cos ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

1

n2
cos nt +

1

n
t sin nt

*

+
,

-

.
/

0

2#

=
1

2# 2

1

n2
101( ) +

1

n
0 0 0( )

*

+
,

-

.
/ = 0

 

 

  

  

b
n

=
2

T
0

T

! F t( )sin n"
T
tdt =

2

2#
0

2#

!
1

2#
t

$
%&

'
()

sin ntdt
*

+
,
,

-

.
/
/

=
1

2# 2
0

2#

! t sin ntdt
*

+
,
,

-

.
/
/

=
1

2# 2

1

n2
sin nt 0

1

n
t cos nt

*

+
,

-

.
/

0

2#

=
1

2# 2

1

n2
0 0 0( ) 0

1

n
2# 0 0( )

*

+
,

-

.
/

=
1

2# 2

02#
n

$
%&

'
()

=
01

#n

 

 
 Fourier Series 

  

  

F t( ) =
1

2
+

n=1

!

" #1

$n

%
&'

(
)*

sin nt

F t( ) =
1

2
#

1

$ n=1

!

" 1

n
sin nt
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3.30 Calculate and plot the response of the base excitation problem with base motion specified 
by the velocity 

 

  
   
!y t( ) = 3e! t / 2

"(t) m/s  

 
 where Φ(t) is the unit step function and m = 10 kg, ζ = 0.01, and k = 1000 N/m.  Assume 

that the initial conditions are both zero. 
 
 Solution: Given: 

  

   

!y t( ) = 3e! t / 2
µ t( )  m/s

m = 10 kg,  " = 0.01, k = 1000 N/m

x 0( ) = !x 0( ) = 0

 

 
 From Equation (2.61): 

  

   

m!!x + c !x ! !y( ) + k x ! y( ) = 0

m!!x + c!!x + kx = c!y + ky
 

 Integrate by parts to find y(t): 

  
   
y t( ) = ! !y t( )dt = 3e" t / 2

µ t( )dt  

 Let 

  

  

u = µ t( ) dv = 3e! t / 2dt

du = " t( )dt v = !6e! t / 2
 

 When 

  
  
t > 0,µ t( ) = 1,   so  y t( ) = 6 1! e!1/ 2

( )  

 

 So, 
   
m!!x + c !x + kx = c 3e! t / 2

( ) + 6k 1! et / 2
( )  

 

 Since   c = 2! km = 2 kg/s,  

     10!!x + 2 !x + 1000x = 6000 ! 5994e! t / 2  
 
 The solution is given by equation (3.13): 
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x t( ) =
1

m!
d

e"#!nt

0

t

$ F %( )e#!n% sin!
d

t " %( )&
'

(
)d%

!
n

=
k

m
= 10 rad/s

!
d

= !
n

1"# 2
= 10 rad/s

F t( ) = 6000 " 5994e" t / 2

x t( ) =
1

100
e"0.1t

0

t

$ 6000 " 5994e"% / 2
( )e0.1% sin 10 t " %( )( )&
'

(
)d%

x t( ) = 60e"0.1t

0

t

$ e0.1t sin 10 t " %( )&' ()d% "
0

t

$ e"0.4t sin 10 t " %( )&' ()d%
*
+
,

-,

.
/
,

0,

 

 
 After integrating and rearranging 
 

  
  
x t( ) = 6 ! 5.979e! t / 2

! 0.0295cos10t ! 0.2990sin10t  m  
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3.31 Calculate and plot the total response of the spring-mass-damper system of Figure 2.1 with 
m = 100 kg, ζ = 0.1 and k = 1000 N/m to the signal of Figure 3.12, with maximum force 
of 1 N.  Assume that the initial conditions are zero and let T = 2π s. 

  
 Solution:  Given:  

   

m = 100 kg, k = 1000 N/m,! = 0.1,T = 2" s,  F
max

= 1N ,

x 0( ) = !x 0( ) = 0,   #
n

=
k

m
= 3.16 rad/s,  #

d
= # 1$! 2

= 3.15 rad/s,    #
T

=
2"

T
= 1 rad/s

 

 From example 3.3.1 and Figure 3.10, 

  

  

F t( )
n=1

!

" a
n
cos nt, a

n
=

0 n even

-8

# 2n2
n odd

$

%
&

'
&

 

 So, 
   
m!!x + c !x + kx = a

n
n=1

!

" cos nt n odd( )  

 The total solution is 

  
  
x t( ) = x

h
t( ) +

n=1

!

" x
cn

t( ) n odd( )  

 From equation (3.33), 

  

  

x
cn

t( ) =
a

n
/ m

!
n
2 " n!

T( )
2#

$%
&
'(

2

+ 2)!
n
n!

T
#$ &'

2#

$
%

&

'
(

1/ 2
cos n!

T
t "*

n( )

*
n

= tan"1 2)!
n
n!

T

!
n
2 " n2!

T
2

+

,
-

.

/
0 = tan"1(

0.6325n

10 " n2
)

x
cn

t( ) =
"0.00811

n2 n4 "19.6n2
+ 100#$ &'

1/ 2
cos nt " tan"1 0.6325n

10 " n2

+
,-

.
/0

#

$
%

&

'
(
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 So,

   

x t( ) = Ae!"nt sin "
d
t #$( ) +

n=1

%

& #0.00811

n2 n4 #19.6n2
+ 100'( )*

1/ 2
cos nt # tan#1 0.6325n

10 # n2

+
,-

.
/0

'

(
1

)

*
2

'

(

1
1
1

)

*

2
2
2

  n odd( )

!x t( ) = #!"
n
Ae#!"nt sin "

d
t #$( )

      +"
d
Ae#!"nt cos "

d
t #$( ) +

n=1

%

& 0.00811

n n4 #19.6n2
+ 100'( )*

1/ 2
sin nt # tan#1 0.6325n

10 # n2

'

(

1
1
1

)

*

2
2
2

(n odd)

x 0( ) = 0 = #Asin$ +

n=1

%

& #0.00811

n2 n4 #19.6n2
+ 100'( )*

1/ 2
cos nt # tan#1 0.6325n

10 # n2

+
,-

.
/0

'

(
1

)

*
2

'

(

1
1
1

)

*

2
2
2

  n odd( )

  
 

   

0 = !Asin" ! 0.00110

!x 0( ) = 0 = #$
n
Asin" +$

d
Acos"

+

n=1

%

& !0.000569

n4 !19.6n2
+ 100'( )*

1/ 2
0.00493n2

+ 1'( )*

'

(

+
+
+

)

*

,
,
,

n odd( )

0 = #$
n
Asin" +$

d
Acos" ! 0.001186

 

 
 So A  = 0.00117  m and θ = - 1.232 rad. 
 
 The total solution is: 
 

  

  

x t( ) = 0.00117e!0.316t sin 3.15t + 1.23( )

+

n=1

"

# !0.00811

n2 n4 !19.6n2
+ 100$% &'

1/ 2
cos nt ! tan!1 0.6325n

10 ! n2

(
)*

+
,-

$

%
.

&

'
/

$

%

.

.

.

&

'

/
/
/

 m n odd( )
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3.32 Calculate the total response of the system of Example 3.3.2 for the case of a base motion 
driving frequency of ωb = 3.162 rad/s. 

 
 Solution:  Let ωb = 3.162 rad/s. From Example 3.3.2, 
 

  
  
F t( ) = cY!

b
cos!

b
t + kY sin!

b
t = 1.581cos 3.162t( ) + 50sin 3.162t( )  

 
 Also, 

  

  

!
n

=
k

m
= 31.62 rad/s and " =

c

2 km
= 0.158

!
d

= !
n

1#" 2
= 31.22 rad/s

 

 
 The solution is 
 

  

  

x t( ) = Ae!"#nt sin #
d
t +$( ) +#

n
Y

#
n
2

+ 2"#
b( )

2

#
n
2 !#

b
2

( )
2

+ 2"#
n
#

b( )
2

%

&

'
'
'

(

)

*
*
*

1/ 2

cos #
b
t !+

1
!+

2( )

x t( ) = Ae!5t sin 31.22t +$( ) + 0.0505cos 3.162t !+
1
!+

2( )

+
1

= tan!1 2"#
n
#

b

#
n
2 !#

b
2

,

-
.

/

0
1 = 0.0319 rad

+
2

= tan!1 #
n

2"#
b

,

-.
/

01
= 1.54 rad

 

 
 So, 

 

   

x t( ) = Ae!5t sin 31.22t +"( ) + 0.0505cos 3.162t !1.57( )

!x t( ) = !5Ae!5t sin 31.22t +"( ) + 31.22Ae!5t cos 31.22t +"( ) ! 0.16sin 3.162t !1.57( )

        # x 0( ) = 0.01 = Asin" + 0.0505 0( )

        # !x 0( ) = 3! 5Asin" + 31.22Acos" + 0.16 1( )

 

 
 So,   A = 0.0932 m and ! = 0.107 rad   
  
 The total solution is 
 

  
  
x t( ) = 0.0932e!5t sin 31.22t + 0.107( ) + 0.0505cos 3.162t !1.57( )  m  
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Problems and Solutions for Section 3.4 (3.35 through 3.38) 
 
3.35 Calculate the response of 
  

   m!!x + c !x + kx = F
0
!(t)  

 where Φ(t) is the unit step function for the case with x0 = v0 = 0.  Use the Laplace 
transform method and assume that the system is underdamped. 

 
 Solution: 
 
 Given: 

  

   

m!!x + c !x + kx = F
0
µ(t)

!!x + 2!"
n
!x +"

n
2x =

F
0

m
µ(t)               (! < 1)

 

 
 Take Laplace Transform: 
 

  

  

s2 X (s) + 2!"
n
sX (s) +"

n
2 X (s) =

F
0

m

1

s

#
$%

&
'(

X (s) =
F

0
/ m

s2
+ 2!"

n
s +"

n
2

( )s
=

F
0

m"
n
2

#

$
%

&

'
(

"
n
2

s s2
+ 2!"

n
s +"

n
2

( )

 

 
 Using inverse Laplace tables, 
 

  

  

x(t) =
F

0

k
!

F
0

k 1!" 2
e!"#nt sin #

n
1!" 2 t + cos!1(" )( )  
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3.36 Using the Laplace transform method, calculate the response of the system of 
Example 3.4.4 for the overdamped case (ζ > 1).  Plot the response for m = 1 kg, k 
= 100 N/m, and ζ = 1.5. 

 
 Solution: 
 
 From example 3.4.4, 
 

  

   

m!!x + c !x + kx = ! (t)

!!x + 2"#
n
!x +#

n
2x =

1

m
! (t)               (" > 1)

 

 
 Take Laplace Transform: 
 

  

  

s2 X (s) + 2!"
n
sX (s) +"

n
2 X (s) =

1

m

X (s) =
1 / m

s2
+ 2!"

n
s +"

n
2

=
1 / m

(s + a)(s + b)

 

 

 Using inverse Laplace tables,  a = !"#
n

+#
n
" 2 !1 ,  b = !"#

n
!#

n
" 2 !1   

 

  

  

x(t) =
e!"#nt

2m#
n
" 2 !1

e#n " 2 !1t ! e!#n " 2 !1t$
%&

'
()

 

 

 Inserting the given values yields:  
  
x(t) =

e!15t

22.36
e11.18t ! e!11.18t"
#

$
%  m  
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3.37 Calculate the response of the underdamped system given by 
  

   m!!x + c !x + kx = F
0
e!at  

 using the Laplace transform method.  Assume a > 0 and that the initial conditions 
are all zero. 

 
 Solution: 
 
 Given: 
 
  

   m!!x + c !x + kx = F
0
e!at            a > 0,   initial conditions = 0  

 
 Rewrite: 
 

  
   
!!x + 2!"

n
!x +"

n
2x =

F
0

m
e#at  

 
 Take Laplace Transform: 
 

  

  

s2 X (s) + 2!"
n
sX (s) +"

n
2 X (s) =

F
0

m

1

s + a

#
$%

&
'(

X (s) =
F

0
/ m

s2
+ 2!"

n
s +"

n
2

( )(s + a)

 

 
 For an underdamped system, the inverse Laplace Transform is 
 

  

  

x(t) =
F

0

m 2!"
n
a #"

n
2 # a2

( )

$

%
&
&

'

(
)
)

e#!"nt !"
n
# a

"
d

sin("
d
t) + cos("

d
t)

*

+
,

-

.
/ # e#at

0
1
2

32

4
5
2

62
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3.38 Solve the following system for the response x(t) using Laplace transforms: 
  

   100!!x(t) + 2000x(t) = 50! (t)  
 where the units are in Newtons and the initial conditions are both zero. 
 
 Solution: 
 
 First divide by the mass to get 
 
  

   !!x + 20x(t) = 0.5! (t)  
 
 Take the Laplace Transform to get 
 
    (s

2
+ 20)X (s) = 0.5  

 
 So 
 

  
  
X (s) =

0.5

s2
+ 20

 

 
 Taking the inverse Laplace Transform using entry 5 of Table 3.1 yields 
 

  

  

X (s) =
0.5

20
!

"

s2
+"

2
   where " = 20

# x(t) =
1

4 5
sin 20t
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Problems and Solutions Section 3.5 (3.39 through 3.42) 
 
3.39 Calculate the mean-square response of a system to an input force of constant PSD, S0, 

and frequency response function 

  

H !( ) =
10

3+ 2 j!( )
 

 
 Solution: 
 

 Given: 
  
S

ff
= S

0
 and H !( ) =

10

3+ 2 j!
 

 
 The mean square of the response can be found from Eqs (3.66) and (3.68): 
 

  

  

x 2
= E x2!

"
#
$ =

%&

&

' H (( )
2

S
ff
(( )d(

x 2
= S

0
%&

&

'
10

3+ 2 j(

2

d(

 

 Using Eq. (3.67) yields 
 

  
  
x 2

=
50!S

0

3
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3.40 Consider the base excitation problem of Section 2.4 as applied to an automobile model of 
Example 2.4.1 and illustrated in Figure 2.16.  In this problem let the road have a random 
stationary cross section producing a PSD of S0.  Calculate the PSD of the response and 
the mean-square value of the response. 

 
 Solution: Given: 

  
S

ff
= S

0
 

 From example 2.4.1:   m = 1007 kg, c = 2000 kg/s, k = 40,000 N/m  

  
   
! =

c

2 km
=

2000

2 40000i1007
= 0.157      (underdamped)  

 
 So, 

  

  

H !( ) =
1

k " m! 2
+ jc!

=
1

4 #104
"1007! 2

+ 2000 j!

H !( )
2

=
1

4 #104
"1007! 2

( )
2

+ 2000( )
2

j! 2

H !( )
2

=
1

1.01#106
!

4
" 4.06 #107

!
2

+ 1.6 #109

 

 
 The PSD is found from equation (3.62): 
 

  

  

S
xx

!( ) = H !( )
2

S
ff
!( )

S
xx

!( ) =
1

1.01"106
!

4
# 8.46 "107

!
2

+ 1.6 "109

 

 
 The mean square value is found from equation (3.68): 
 

  

  

x 2
= E x2!

"
#
$ =

%&

&

' H (( )
2

S
ff
(( )d(

x 2
= S

0
%&

&

'
1

4 )104 %1007( 2
+ 2000 j(

2

d(

 

 
 Using equation (3.70) yields 
 

  
  
x 2

=
!S

0

8 "1010
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3.41 To obtain a feel for the correlation functions, compute autocorrelation Rxx(τ) for the 
deterministic signal Asinωnt. 

 
 Solution: The autocorrelation is found from 

   

R
xx

(! ) = lim
T"#

1

T
Asin($

n
t)Asin

%T
2

T

2

& ($
n
(t + ! ))dt

          = lim
T"#

A2

T
sin($

n
t)sin

%T
2

T

2

& ($
n
t)cos($

n
! )dt

                                       + lim
T"#

A2

T
sin($

n
t)cos

0

T

& ($
n
t)sin($

n
! )dt

"0
! "###### $######

 

 Simplifying yields: 
 

  
R

xx
(! ) =

A2 cos("
n
! )

2
 

  
 
 
3.42 Verify that the average  x ! x  is zero by using the definition given in equation (3.47). 
 
 Solution: 
 

 The definition is 
  
f = lim

T!"

1

T
0

T

# f t( )dt.   Let 

 

  

  

f (t) = x t( ) ! x ,    

             so that     f = lim
T"#

1

T
0

T

$ x t( ) ! x( )dt

            f = lim
T"#

1

T
x(t)

0

T

$ dt ! lim
T"#

1

T
x

0

T

$ dt

              = x ! x lim
T"#

1

T
dt

0

T

$ = x ! x = 0
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Problems and Solutions Section 3.6 (3.43 through 3.44) 
 
3.43 A power line pole with a transformer is modeled by 
 
  

  m!!x + kx = ! !!y  
 
 where x and y are as indicated in Figure 3.23.  Calculate the response of the relative 

displacement (x – y) if the pole is subject to an earthquake base excitation of (assume the 
initial conditions are zero) 

 

  

   

!!y t( ) =
A 1!

t

t
0

"

#$
%

&'
0 ( t ( 2t

0

0 t > 2t
0

)

*
+

,
+

 

 
 

 Solution: Given: 
  m!!x + kx = ! !!y  

  

   

!!y =
A 1!

t

t
0

"

#$
%

&'
0 ( t ( 2t

0

0 t > 2t
0

)

*
+

,
+

x 0( ) = !x 0( ) = 0

 

 
 The response x(t) is given by Eq. (3.12) as 
 

  
  
x t( ) =

0

t

! F "( )h t # "( )d"  

 

 where 
  
h t ! "( ) =

1

m#
n

sin#
n

t ! "( )  for an undamped system 

 
 For   0 ! t ! 2t

0
,  
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x t( ) = A 1!
"
t
0

#

$%
&

'(
1

m)
n

#

$%
&

'(
sin)

n
t ! "( )d"

0

t

*

x t( ) =
A

m)
n
2

1!
t

t
0

+
1

t
0
)

n

sin)
n
t ! cos)

n
t

+

,
-

.

/
0

 

 For t>2t0, 
 

  

  

x t( ) = A 1!
"
t
0

#

$%
&

'(
1

m)
n

#

$%
&

'(
sin)

n
t ! "( )d"

0

2t0

*

x t( ) =
A

m)
n
2

1

t
0
)

n

sin)
n
t ! sin)

n
t ! 2t

0( )( ) ! cos)
n
t ! cos)

n
t ! 2t

0( )
+

,
-

.

/
0

 

 
 Find y(t) when  0 ! t ! 2t

0
, 

 

  

   

!!y t( ) = A 1!
t

t
0

"

#$
%

&'

!y t( ) = At !
A

2t
0

t2
+ C

1

y t( ) =
A

2
t2 !

A

6t
0

t3
+ C

1
t + C

2

 

 
 Using IC's yields C1 = C2 = 0.  Find y(t) when t > wt0: 
 

  

   

!!y t( ) = 0

!y t( ) = C
3

y t( ) = C
3
t + C

4

 

 
 Using IC's yields C3 = C4 =0. The relative displacement x(t) – y(t) is therefore: 
 
 For   0 ! t ! 2t

0
 

  

  

x t( ) ! y t( ) =
A

m"
n
2

1!
t

t
0

+
1

t
0
"

n

sin"
n
t ! cos"

n
t

#

$
%

&

'
( !

A

2
t2

+
A

6t
0

t3  

 For t > 2t0, 
 

  

  

x t( ) ! y t( ) =
A

m"
n
2

1

t
0
"

n

sin"
n
t ! sin"

n
t ! 2t

0( )( ) ! cos"
n
t ! cos"

n
t ! 2t

0( )
#

$
%

&

'
(  
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3.44 Calculate the response spectrum of an undamped system to the forcing function 

  

  

F t( ) =

F
0
sin

!t

t
1

0 " t " t
1

0 t > t
1

#

$
%

&
%

 

 assuming the initial conditions are zero. 
 
 Solution: Let  ! = " / t

1
.  The solution is the homogeneous solution xh(t) and the 

particular solution 
  
x

p
t( )   or x t( ) = x

h
t( ) + x

p
t( ).   Thus 

  
  
x t( ) = Acos!

n
t + Bsin!

n
t +

F
0

k " m! 2

#

$%
&

'(
sin!t  

 where A and B are constants and ωn is the natural frequency of the system: 

 Using the initial conditions 
   
x 0( ) = !x 0( ) = 0  the constants A and B are 

  

  

A = 0, B =
!F

0
"

"
n

k ! m" 2
( )

 

 so that 

  

x t( ) =
F

0
/ k

1! " /"
n( )

2
sin"t !

"

"
n

sin"
n
t

#
$
%

&%

'
(
%

)%
, 0 * t * t

1
 

 Which can be written as (where   ! = F
0

/ k  the static deflection) 

  

  

x t( )

!
=

1

1"
#
2t

1

$

%&
'

()

2
sin

*t

t
1

"
#
2t

1

sin
2*t

#

+
,
-

.-

/
0
-

1-
, 0 2 t 2 t

1
 

 and where  ! = 2" /#
n
.  After t1 the solution is a free response 

  
  
x t( ) = A 'cos!

n
t + B 'sin!

n
t, t > t

1
 

 where the constants A' and B' can be found by using the values of x(t = t1) and 

   
!x t = t

1( ), t > t
0
.   This gives 

  

   

x t = t
1( ) = a !

"

2t
1

sin
2#t

1

"

$

%
&

'

(
) = A 'cos*

n
t
1
+ B 'sin*

n
t
1

!x t = t
1( ) = a !

#

t
1

!
#

t
1

cos
2#t

1

"

+
,
-

.-

/
0
-

1-
= !*

n
A 'sin*

n
t
1
+*

n
B 'cos*

n
t

 

 where 

  

  

a =
!

1"
#
2t

1

$

%&
'

()

2
 

 These are solved to yield    
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A ' =

a!

"
n
t
1

sin"
n
t
1
,    B ' = #

a!

"
n
t
1

1+ cos"
n
t
1

$% &'  

 So that after t1 the solution is 

  

  

x t( )

!
=

" / t
1( )

2 1# " / 2t
1( )

2

{ }
sin2$

t
1

"
#

t

"
%

&'
(

)*
# sin2$

t

"

+

,
-
-

.

/
0
0
, t 1 t

1
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Problems and Solutions for Section 3.7 (3.45 through 3.52) 
 
3.45 Using complex algebra, derive equation (3.89) from (3.86) with s = jω. 
 
 Solution: From equation (3.86): 
 

  
  
H s( ) =

1

ms2
+ cs + k

 

 
 Substituting  s = j!  yields 
 

  

  

H j!( ) =
1

m j!( )
2

+ c j!( ) + k
=

1

k " m! 2
" cj!

 

 
 The magnitude is given by 
 

  

  

H j!
dr( ) =

1

m j!( )
2

+ cj!( ) + k

"

#
$
$

%

&
'
'

=
1

k ( m! 2 ( cj!

"

#
$

%

&
'

)

*

+
+
+

,

-

.

.

.

1/ 2

 

  

  

H j!( ) =
1

k " m! 2
( )

2
+ c!( )

2
which is Eq. (3.89) 

 
3.46 Using the plot in Figure 3.20, estimate the system’s parameters m, c, and k, as well as the 

natural frequency. 
 
 Solution: From Fig. 3.20 
 

  

  

1

k
= 2 ! k = 0.5

" = "
n

= 0.25 =
k

m
! m = 8

1

c"
# 4.6 ! c = 0.087
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3.47 Using the values determined in Problem 3.46 plot the inertance transfer function's 
magnitude and phase for this system.  

 
 Solution: From Problem 3.46 

  
  

1

k
= 2 ! k = 0.5," = "

n
= 0.25 =

k

m
! m = 8,

1

c"
# 4.6 ! c = 0.087  

 
 The inertance transfer function is given by Eq. (3.88): 
 

  
  
s2 H s( ) =

s2

ms2
+ cs + k

 

 
 Substitute  s = j!  to get the frequency response function.  The magnitude is given by: 
 

  

  

j!( )
2

H j!( ) =
!

2

k " m! 2
( )

2
+ c!( )

2
=

!
2

0.5" 8! 2
( )

2
+ 0.087!( )

2
 

 
 The phase is given by 
 

  
 
! = tan-1 Imaginary part of frequency response function

Real part of frequency response function

"
#$

%
&'

 

 

 Multiply the numerator and denominator of 
  

j!( )
2

H j!( )  by k " m! 2
( ) " cj!  to get 

 

  

  

j!( )
2

H j!( ) =
"!

2 k " m!( ) + cj! 3

k " m! 2
( )

2
+ c!( )

2
 

 

 So, 

  

! = tan"1 c# 3

"# 2 k " m# 2
( )

$

%
&
&

'

(
)
)

= tan"1 0.087#
8# 2 " 0.5

$
%&

'
()

 

 
 The magnitude and phase plots are shown on a semilog scale.  The plots are given in the 

following Mathcad session 
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3.48 Using the values determined in Problem 3.46 plot the mobility transfer function's 
magnitude and phase for the system of Figure 3.20. 

 
 Solution: From Problem 3.46 

  
  

1

k
= 2 ! k = 0.5," = "

n
= 0.25 =

k

m
! m = 8,

1

c"
# 4.6 ! c = 0.087    

 
 The mobility transfer function is given by equation (3.87): 
 

  
  
sH s( ) =

s

ms2
+ cs + k

 

 
 Substitute  s = j!  to get the frequency response function.  The magnitude is given by 
 

  

  

j!( ) H j!( ) =
!

k " j! 2
( )

2
+ c!( )

2
=

!

0.5" 8! 2
( )

2
+ 0.087!( )

2
 

 
 The phase is given by 
 

  
 
! = tan-1 Imaginary part of frequency response function

Real part of frequency response function

"
#$

%
&'

 

 

 Multiply the numerator and denominator of 
 
j!H j!( )  by j and by 

  
! k ! m" 2

( ) j ! c"  to 

get 
 

  

  

j!( ) H j!( ) =

j! k " m! 2
( ) + c! 2

k " m! 2
( )

2
+ c!( )

2
 

 

 So, 

  

! = tan"1
# k " m# 2

( )

c# 2

$

%
&
&

'

(
)
)

= tan"1 0.5" 8# 2

0.087#

$

%
&

'

(
)  

 
 The magnitude and phase plots are shown on a semilog scale. 
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3.49 Calculate the compliance transfer function for a system described by 
 

  
  
a!!!x + b!!!x + c!!x + d !x + ex = f t( )  

 
 where f(t) is the input force and x(t) is a displacement. 
 
 Solution: 

   The compliance transfer function is 

  

X s( )

F s( )
.  

 
 Taking the Laplace Transform yields 
 

  
  

as4
+ bs3

+ cs2
+ ds + e( ) X s( ) = F s( )  

 

 So, 

  

X s( )

F s( )
=

1

as4
+ bs3

+ cs2
+ ds + e
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3.50 Calculate the frequency response function for the compliance of Problem 3.49. 
 
 Solution: From problem 3.49, 

  
  
H s( ) =

1

as4
+ bs3

+ cs2
+ ds + e

 

 Substitute  s = j!  to get the frequency response function: 

  

  

H j!( ) =
1

a j!( )
4

+ b j!( )
3
+ c j!( )

2
+ d j!( ) + e

H j!( ) =

a! 4
" c! 2

+ e " j "b! 3
+ d!( )

a! 4
" c! 2

+ e( )
2

+ "b! 3
+ d!( )

2

 

 
3.51 Plot the magnitude of the frequency response function for the system of Problem 3.49 for 
    a = 1,b = 4,c = 11,d = 16,  and e = 8. 
 
 Solution: From Problem 3.50 

  

H j!( ) =

a! 4
" c! 2

+ e " j "b! 3
+ d!( )

a! 4
" c! 2

+ e( )
2

+ "b! 3
+ d!( )

2
 

 The magnitude is 

  

H ( j! ) =
1

(! 4
"11! 2

+ 8)2
+ ("4! 3

+ 16! )2
 

 This is plotted in the following Mathcad session: 
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3.52 An experimental (compliance) magnitude plot is illustrated in Fig. P3.52.  Determine 

  ! ," ,c,m,  and k.  Assume that the units correspond to m/N along the vertical axis. 

 
 Solution: Referring to the plot, it starts at  

  
H (! j) =

1

k
 

 Thus: 
  
0.05 =

1

k
! k = 20 N/m  

 At the peak, ωn = ω = 3 rad/s.  Thus the mass can be determined by 

  
m =

k

!
n
2
" m = 2.22 kg  

 The damping is found from 

  

1

c!
= 0.11" c = 3.03 kg/s "#=

c

2 km
=

3.03

2 20 $2.22
= 0.227  
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Problems and Solutions Section 3.8 (3.53 through 3.56) 
 
3.53 Show that a critically damped system is BIBO stable. 
 
 Solution: 
 
 For a critically damped system 
 

  
  
h t ! "( ) =

1

m
t ! "( )e!#n t!"( )  

 
 Let f(t) be bounded by the finite constant M.  Using the inequality for integrals and 
 Equation (3.96) yields: 
 

  
  
x t( ) ! f (" )

0

t

# h t $ "( ) d" = M
0

t

#
1

m
t $ "( )e$%n t$"( ) d"  

 
 The function h(t – τ) decays exponentially and hence is bounded by some constant times 

1/t, say M1/t.  This is just a statement the exponential decays faster then “one over t” 
does. Thus the above expression becomes; 

  
x(t) < M

M
1

t
0

t

! d" = MM
1
 

 
 This is bounded, so a critically damped system is BIBO stable. 
 
 



3- 69 

3.54 Show that an overdamped system is BIBO stable. 
 
 Solution: For an overdamped system, 
 

  

  

h t ! "( ) =
1

2m#
n

$ 2 !1
e!$#n t!"( ) e

#n $ 2 !1%
&'

(
)* t!"( )

! e
! #n $ 2 !1%
&'

(
)* t!"( )%

&'
(

)*
 

 
 Let f(t) be bounded by M, 
 
 From equation (3.96), 
 

  

  

x t( ) ! M
0

t

" h t # $( ) d$

x t( ) ! M
0

t

"
1

2m%
n
& 2 #1

e#&%n t#$( ) e
%n & 2 #1'
()

*
+, t#$( )

# e
# %n & 2 #1'
()

*
+, t#$( )'

()
*

+,
d$

 

 

  

  

x t( ) !
M

2m"
n
# 2 $1

$1

"
n
# 2 $1 $#"

%

&
'
'

(

)
*
*

1$ e
"n # 2 $1$#"n
%
&'

(
)* t%

&'
(

)*
+

,

-
-

                                      $
$1

"
n
# 2 $1 +#"

n

%

&
'
'

(

)
*
*

1$ e
"n #2$1$#"n
%
&'

(
)*

t%

&
'

(

)
*
.

/

0
0

 

 
  

 Since   ! n
" 2 #1 #"!

n
< 0,  then   1! e

"n #2!1!#"n
$
%&

'
()

t

 is bounded. 

 

 Also, since -  ! n
" 2 #1 #"!

n
< 0,  then   1! e

"n #2!1!#"n
$
%&

'
()

t

 is bounded. 

 
 Therefore, an overdamped system is BIBO stable. 
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3.55 Is the solution of    2!!x + 18x = 4cos2t + cos t  Lagrange stable? 
 
 Solution: Given 

  

   

2!!x + 18x = 4cos2t + cos t

!
n
=

k

m
= 3

 

 
 The total solution will be 
 

  
  
x t( ) = x

h
t( ) + x

P1
t( ) + x

P2
t( )  

 

 From Eq. (1.3): 
  
x

h
t( ) = Asin !

n
t + "( )  

 

 From Eq. (2.7): 

  

x
P1

t( ) =

f
01

! n

2
"22

cos2t  

 

 and 
  
x

P2
t( ) =

f
02

!
n
2
"12

cos t  

 
 Adding the solutions yields 
 

  

  

x t( ) = Asin 3t + !( ) +

f
01

32 " 22
cos2t +

f
01

32 "12
cos t < M  

 
 Since 3 ! 2,3 ! 1, and the homogeneous solution is marginally stable, this system is 

Lagrange stable. 
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3.56 Calculate the response of equation (3.99) for   x0
= 0,v

0
= 1 for the case that a = 4 and b = 

0.  Is the response bounded? 
 
 Solution: Given:  x0

= 0,v
0

= 1,a = 4,b = 0 .  From Eq. (3.99), 

 
     !!x + !x + 4x = ax + b !x = 4x  
 
 So,    !!x + !x = 0  
 
 Let 

  

   

x t( ) = Ae!t

!x t( ) = !Ae!t

!!x t( ) = !
2 Ae!t

 

 
 Substituting, 

  
  

!
2 Ae!t

+ !Ae!t
= 0

!
2

+ ! = 0
 

 
 So, 

 
!

1,2
= 0,"1  

 
 The solution is 
 

  

   

x t( ) = A
1
e!1t

+ A
2
e!2t

= A
1
+ A

2
e" t

!x t( ) = "A
2
e"1

x 0( ) = 0 = A
1
+ A

2

!x 0( ) = 1 = "A
2

 

 
 So,   A1

= 1 and A
2

= !1 

 
 Therefore, 
 

  
  
x t( ) = 1! e!1  

 

 Since
  
x t( ) = 1! e! t 1, the response is bounded. 
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Problems and Solutions from Section 3.9 (3.57-3.64) 
 
3.57*.  Numerically integrate and plot the response of an underdamped system 
determined by m = 100 kg, k = 1000 N/m, and c = 20 kg/s, subject to the initial 
conditions of x0 = 0 and v0 = 0, and the applied force F(t) = 30Φ(t -1).  Then plot the 
exact response as computed by equation (3.17).  Compare the plot of the exact solution to 
the numerical simulation. 
 
Solution: First the solution is presented in Mathcad: 

 
 
The Matlab code to provide similar plots is given next: 
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%Numerical Solutions  
%Problem #57 
clc 
clear 
close all 
%Numerical Solution 
x0=[0;0]; 
tspan=[0 15]; 
 
[t,x]=ode45('prob57a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #57'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
m=100; 
c=20; 
k=1000; 
F=30; 
w=sqrt(k/m); 
d=c/(2*w*m); 
wd=w*sqrt(1-d^2); 
to=1; 
phi=atan(d/sqrt(1-d^2)); 
 
%for t<to 
t=linspace(0,1,3); 
x=0.*t; 
plot(t,x,'*'); 
 
%for t>=to 
t=linspace(1,15); 
x=F/k-F/(k*sqrt(1-d^2)).*exp(-d.*w.*(t-to)).*cos(wd.*(t-to)-phi); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
 
%M-file for Prob #50 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
m=100; 
c=20; 
k=1000; 
F=30; 
 
if t<1 
   dx==0; 
   else 
 dx(1)=x(2); 
   dx(2)=-c/m*x(2) - k/m*x(1) + F/m; 
end 
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3.58*.  Numerically integrate and plot the response of an underdamped system 
determined by m = 150 kg, and k = 4000 N/m subject to the initial conditions of x0 = 0.01 
m and v0 = 0.1 m/s, and the applied force F(t) = F(t) = 15Φ(t -1), for various values of the 
damping coefficient.  Use this “program” to determine a value of damping that causes the 
transient term to die out with in 3 seconds.  Try to find the smallest such value of 
damping remembering that added damping is usually expensive. 
 
Solution: First the solution is given in Mathcad followed by the equivalent Matlab code. 

 

 
 
A value of c = 710 kg/s will do the job.  
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%Vibrations 
%Numerical Solutions  
%Problem #51 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0.01;0]; 
tspan=[0 15]; 
 
[t,x]=ode45('prob51a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #51'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
m=150; 
c=0; 
k=4000; 
F=15; 
w=sqrt(k/m); 
d=c/(2*w*m); 
wd=w*sqrt(1-d^2); 
to=1; 
phi=atan(d/sqrt(1-d^2)); 
 
 
 
%for t<to 
t=linspace(0,1,10); 
x0=0.01; 
v0=0; 
A=sqrt(v0^2+(x0*w)^2)/w; 
theta=pi/2; 
x=A.*sin(w.*t + theta); 
plot(t,x,'*') 
 
%for t>=to 
t=linspace(1,15); 
x2=F/k-F/(k*sqrt(1-d^2)).*exp(-d.*w.*(t-to)).*cos(wd.*(t-to)-phi); 
x1=A.*sin(w.*t + theta); 
 
x=x1+x2; 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
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%M-file for Prob #51 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
m=150; 
c=0; 
k=4000; 
F=15; 
 
 
if t<1 
   dx(1)=x(2); 
   dx(2)=-c/m*x(2)- k/m*x(1); 
   else 
 dx(1)=x(2); 
   dx(2)=-c/m*x(2) - k/m*x(1)+ F/m; 
end 
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3.59*.  Solve Example 3.3.2, Figure 3.9 by numerically integrating rather then using 
analytical expressions, and plot the response. 
 
Solution:  Both Mathcad and Matlab solutions follow: 

 
%Numerical Solutions  
%Problem #53 
clc 
clear 
close all 
%Numerical Solution 
 



3- 78 

x0=[0;0]; 
tspan=[0 10]; 
 
[t,x]=ode45('prob53a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #53'); 
xlabel('Time, sec.'); 
ylabel('Displacement, mm'); 
hold on 
 
%Analytical Solution 
t1=0.2; 
t2=0.6; 
 
%for t<to 
t=linspace(0,t1); 
x=2.5*t-4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t1<t<t2 
t=linspace(t1,t2); 
x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-t1))- 4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t2<t 
t=linspace(t2,10); 
x=6.84.*sin(0.548.*(t-t1))-2.28.*sin(0.548.*(t-t2))-
4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #52 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
m=1; 
c=10; 
k=1000; 
Y=0.05; 
wb=3; 
 
a=c*Y*wb; 
b=k*Y; 
alpha=atan(b/a); 
AB=sqrt(a^2+b^2)/m; 
 
dx(1)=x(2); 
dx(2)=-c/m*x(2)- k/m*x(1)+ a/m*cos(wb*t) + b/m*sin(wb*t); 
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3.60*.  Numerically simulate the response of the system of Problem 3.21 and plot the 
response. 
 
Solution: The solution in Matlab is 
%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #53 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 10]; 
 
[t,x]=ode45('prob53a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #53'); 
xlabel('Time, sec.'); 
ylabel('Displacement, mm'); 
hold on 
 
%Analytical Solution 
 
t1=0.2; 
t2=0.6; 
 
%for t<to 
t=linspace(0,t1); 
x=2.5*t-4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t1<t<t2 
t=linspace(t1,t2); 
x=0.75 - 1.25.*t + 6.84.*sin(0.548*(t-t1))- 4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
 
%for t2<t 
t=linspace(t2,10); 
x=6.84.*sin(0.548.*(t-t1))-2.28.*sin(0.548.*(t-t2))-
4.56.*sin(0.548.*t); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
 
%Clay 
%Vibrations 
%Solutions 
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%M-file for Prob #53 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=5000; 
k=1.5e3; 
ymax=0.5; 
F=k*ymax; 
t1=0.2; 
t2=0.6; 
 
if t<t1 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/m*(t/t1); 
elseif t<t2 & t>t1 
 dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/(2*t1*m)*(t2-t); 
else 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1);   
end 

 
 



3- 81 

 
 
3.61*.  Numerically simulate the response of the system of Problem 3.18 and plot the 
response. 
Solution:  The solution in Matlab is 
%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #54 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 10]; 
 
[t,x]=ode45('prob54a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #54'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
to=4; 
 
%for t<to 
t=linspace(0,to); 
x=5*(t-sin(t)); 
plot(t,x,'*'); 
 
%for t>=to 
t=linspace(to,10); 
x=5*(sin(t-to)-sin(t))+20; 
 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #54 
 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=1; 
k=1; 
F=20; 
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to=4; 
 
if t<to 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/m*(t/to); 
else  
 dx(1)=x(2); 
   dx(2)= - k/m*x(1)+ F/m; 
end 
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3.62*.  Numerically simulate the response of the system of Problem 3.19 for a 2 meter 
concrete wall with cross section 0.03 m2 and mass modeled as lumped at the end of 1000 
kg.  Use F0 = 100 N, and plot the response for the case t0 =0.25 s. 
Solution The solution in Matlab is: 
 
%Numerical Solutions  
%Problem #3.62 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 0.5]; 
 
[t,x]=ode45('prob55a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #55'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
m=1000; 
E=3.8e9; 
A=0.03; 
l=2; 
k=E*A/l; 
F=100; 
w=sqrt(k/m); 
to=0.25; 
 
 
%for t<to 
t=linspace(0,to); 
x=F/k*(1-cos(w*t))+ F/(to*k)*(1/w*sin(w*t)-t); 
plot(t,x,'*'); 
 
%for t>=to 
t=linspace(to,0.5); 
x=-F/k*cos(w*t)- F/(w*k*to)*(sin(w*(t-to))-sin(w*t)); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #3.62 
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function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=1000; 
E=3.8e9; 
A=0.03; 
l=2; 
k=E*A/l; 
F=100; 
w=sqrt(k/m); 
to=0.25; 
 
 
if t<to 
   dx(1)=x(2); 
   dx(2)= - k/m*x(1) + F/m*(1-t/to); 
   else 
 dx(1)=x(2); 
   dx(2)= - k/m*x(1); 
end 
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3.63*.  Numerically simulate the response of the system of Problem 3.20 and plot the 
response. 
Solution The solution in Matlab is: 
%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #56 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0;0]; 
tspan=[0 2]; 
 
[t,x]=ode45('prob56a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #56'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
t=linspace(0,2); 
x=0.5*t-0.05*sin(10*t); 
plot(t,x,'*'); 
legend('Numerical', 'Analytical') 
 
 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #56 
 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=1; 
k=100; 
F=50; 
 
 
 dx(1)=x(2); 
 dx(2)= - k/m*x(1) + F/m*(t); 
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3.64*.  Compute and plot the response of the system of following system using numerical 
integration: 

   10!!x(t) + 20 !x(t) + 1500x(t) = 20sin25t + 10sin15t + 20sin2t  
with initial conditions of x0 = 0.01 m and v0 = 1.0 m/s. 
Solution The solution in Matlab is: 
%Clay 
%Vibrations 
%Numerical Solutions  
%Problem #57 
 
clc 
clear 
close all 
 
%Numerical Solution 
 
x0=[0.01;1]; 
tspan=[0 5]; 
 
[t,x]=ode45('prob57a',tspan,x0); 
 
figure(1) 
plot(t,x(:,1)); 
title('Problem #57'); 
xlabel('Time, sec.'); 
ylabel('Displacement, m'); 
hold on 
 
%Analytical Solution 
 
m=10; 
c=20; 
k=1500; 
w=sqrt(k/m); 
d=c/(2*w*m); 
wd=w*sqrt(1-d^2); 
 
 
Y1=0.00419; 
ph1=3.04; 
wb1=25; 
 
Y2=0.01238; 
ph2=2.77; 
wb2=15; 
 
Y3=0.01369; 
ph3=0.0268; 
wb3=2; 
 
A=0.1047; 
phi=0.1465; 
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x=A.*exp(-d*w.*t).*sin(wd*t+phi)+ Y1.*sin(wb1*t-ph1) + Y2*sin(wb2*t-
ph2) + Y3*sin(wb3*t-ph3); 
 
plot(t,x,'*') 
legend('Numerical', 'Analytical') 
%Clay 
%Vibrations 
%Solutions 
 
%M-file for Prob #57 
 
 
function dx=prob(t,x); 
[rows, cols]=size(x);dx=zeros(rows, cols); 
 
m=10; 
c=20; 
k=1500; 
 
 
dx(1)=x(2); 
dx(2)= -c/m*x(2) - k/m*x(1) + 20/m*sin(25*t) + 10/m*sin(15*t) + 
20/m*sin(2*t) ; 
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Problems and Solutions Section 3.10 (3.65 through 3.71) 
 
3.65*.  Compute the response of the system in Figure 3.26 for the case that the damping 
is linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k1x
3  

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 1.6) 
F(t ) = 1500 !(t " t1 ) " !(t " t2 )[ ] N  

and initial conditions of x0 = 0.01 m and v0 = 1.0 m/s.  The system has a mass of 100 kg, a 
damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 
of k1 is taken to be 300 N/m3.  Compute the solution and compare it to the linear solution 
(k1 = 0).  Which system has the largest magnitude?  Compare your solution to that of 
Example 3.10.1. 
Solution: The solution in Mathcad is 
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Note that for this load the load, which is more like an impulse, the linear and nonlinear 
responses are similar, whereas in Example 3.10.1 the applied load is a “wider” impulse 
and the linear and nonlinear responses differ quite a bit. 
 
3.66*. Compute the response of the system in Figure 3.26 for the case that the damping is 
linear viscous and the spring is a nonlinear soft spring of the form 

k(x) = kx ! k1x
3  

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 1.6) 
F(t ) = 1500 !(t " t1 ) " !(t " t2 )[ ] N  

and initial conditions of x0 = 0.01 m and v0 = 1.0 m/s.  The system has a mass of 100 kg, a 
damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 
of k1 is taken to be 300 N/m3.  Compute the solution and compare it to the linear solution 
(k1 = 0).  How different are the linear and nonlinear responses?  Repeat this for t2 = 2.  
What can you say regarding the effect of the time length of the pulse? 
 
Solution:  The solution in Mathcad for the case t2 = 1.6 is 
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Note in this case the linear response is almost the same as the nonlinear response. 
Next changing the time of the pulse input to t2 = 2 yields the following: 
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Note that as the step input last for a longer time, the response of the linear and the 
nonlinear becomes much different. 
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3.67*.  Compute the response of the system in Figure 3.26 for the case that the damping 
is linear viscous and the spring stiffness is of the form 

k(x) = kx ! k1x
2  

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 2.5) 
F(t ) = 1500 !(t " t1 ) " !(t " t2 )[ ] N  

initial conditions of x0 = 0.01 m and v0 = 1 m/s.  The system has a mass of 100 kg, a 
damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 
of k1 is taken to be 450 N/m3. Which system has the largest magnitude? 
Solution:  The solution is computed in Mathcad as follows: 

 
Note that the linear response under predicts 
the actual response 
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3.68*. Compute the response of the system in Figure 3.26 for the case that the damping is 
linear viscous and the spring stiffness is of the form 

k(x) = kx + k1x
2  

and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 2.5) 
F(t ) = 1500 !(t " t1 ) " !(t " t2 )[ ] N  

initial conditions of x0 = 0.01 m and v0 = 1 m/s.  The system has a mass of 100 kg, a 
damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 
of k1 is taken to be 450 N/m3. Which system has the largest magnitude? 
Solution:  The solution is calculated in Mathcad as follows: 
 

 
 
3.69*. Compute the response of the system in Figure 3.26 for the case that the damping is 

linear viscous and the spring stiffness is of the form 

k(x) = kx ! k1x
2  

In this case (compared to the 
hardening spring of the previous 
problem, the linear response over 
predicts the time history. 
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and the system is subject to a excitation of the form (t1 = 1.5 and t2 = 2.5) 
F(t ) = 150 !(t " t1 ) " !(t " t2 )[ ] N  

initial conditions of x0 = 0.01 m and v0 = 1 m/s.  The system has a mass of 100 kg, a 
damping coefficient of 30 kg/s and a linear stiffness coefficient of 2000 N/m.  The value 
of k1 is taken to be 5500 N/m3. Which system has the largest magnitude transient?  Which 
has the largest magnitude in steady state? 
 
Solution:  The solution in Mathcad is given below.  Note that the linear system response 
is less than that of the nonlinear system, and hence underestimates the actual response. 

 
 
 
3.70*.  Compare the forced response of a system with velocity squared damping as 
defined in equation (2.129) using numerical simulation of the nonlinear equation to that 
of the response of the linear system obtained using equivalent viscous damping as 
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defined by equation (2.131).  Use as initial conditions, x0 = 0.01 m and v0 = 0.1 m/s with a 
mass of 10 kg, stiffness of 25 N/m, applied force of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 15 !(t " t1) " !(t " t2 )[ ] N  

and drag coefficient of α = 25. 
 
Solution: The solution calculated in Mathcad is given in the follow: 
 

 

 
 
Note that the linear solution is very different from the nonlinear solution and dies out 
more rapidly. 
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3.71*.  Compare the forced response of a system with structural damping (see table 2.2) 
using numerical simulation of the nonlinear equation to that of the response of the linear 
system obtained using equivalent viscous damping as defined in Table 2.2.  Use the 
initial conditions, x0 = 0.01 m and v0 = 0.1 m/s with a mass of 10 kg, stiffness of 25 N/m, 
applied force of the form (t1 = 1.5 and t2 = 2.5) 

F(t ) = 15 !(t " t1) " !(t " t2 )[ ] N  
and solid damping coefficient of b = 8.  Does the equivalent viscous damping 
linearization, over estimate the response or under estimate it? 
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Solution:  The solution is calculated in Mathcad as follows. Note that the linear solution 
is an over estimate of the nonlinear response in this case. 

 



Problems and Solutions for Section 4.1 (4.1 through 4.16) 
 
4.1 Consider the system of Figure P4.1.  For   c1

= c
2

= c
3

= 0,  derive the equation of motion 

and calculate the mass and stiffness matrices.  Note that setting k3 = 0 in your solution 
should result in the stiffness matrix given by Eq. (4.9). 

 

Solution: 

For mass 1: 
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For mass 2: 
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So,     M!!x + Kx = 0  
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4.2 Calculate the characteristic equation from problem 4.1 for the case 

    m1
= 9 kg m

2
= 1 kg k

1
= 24 N/m k

2
= 3 N/m k

3
= 3 N/m  

 
and solve for the system's natural frequencies. 

 

Solution: Characteristic equation is found from Eq. (4.9): 

 

  

  

det !"
2 M + K( ) = 0
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1
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Solving for ω: 

 

  
  

!
1
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!
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4.3 Calculate the vectors u1 and u2 for problem 4.2. 
 
 Solution:  Calculate u1: 
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 Calculate u2: 
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 This yields  
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4.4 For initial conditions x(0) = [1  0]T and   !x (0) = [0 0]T calculate the free response of the 

system of Problem 4.2.  Plot the response x1 and x2. 
 

 Solution: Given x(0) = [1  0]T, 
    
!x 0( ) = 0 0!" #$

T
, The solution is 
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 Using initial conditions, 
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 From [3] and [4],   !1
= !

2
= " / 2  

 From [1] and [2],    A1
= 0.916,   and  A

2
= !0.833  

 So, 

  

  

x
1
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x
2
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x
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x
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4.5 Calculate the response of the system of Example 4.1.7 to the initial condition x(0) = 0,  !x  

(0) = [1  0]T, plot the response and compare the result to Figure 4.3. 
 

 Solution: Given:  x(0) = 0, 
    
!x 0( ) = 1 0!" #$

T
 

 
 From Eq. (4.27) and example 4.1.7, 
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 Using initial conditions: 
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 From [1] and [2]: 

   !1
= !

2
= 0  

 From [3] and [4]: 

  
  
A

1
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3 2

4
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2
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4
 

 The solution is 



  

  

x
1

t( ) = 0.25 2 sin 2t + sin2t( )

x
2

t( ) = 0.75 2 sin 2t ! sin2t( )
 

 As in Fig. 4.3, the second mass has a larger displacement than the first mass. 



4.6  Repeat Problem 4.1 for the case that  k1
= k

3
= 0 . 

 
 Solution: 
 
 The equations of motion are 
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4.7 Calculate and solve the characteristic equation for Problem 4.6 with m1 = 9, m2 = 1, k2 = 

10. 
 
 Solution: 
 
 The characteristic equation is found from Eq. (4.19): 
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4.8 Compute the natural frequencies of the following system:  
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4.9 Calculate the solution to the problem of Example 4.1.7, to the initial conditions 
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 Plot the response and compare it to that of Fig. 4.3. 

 Solution: Given: 
    
x 0( ) = 1 / 3 1!" #$

T
, !x 0( ) = 0  

 From Eq. (4.27) and example 4.1.7, 
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 Using initial conditions: 
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 From [3] and [4]:  
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 From [1] and [2]:   A1
= 1,  and A

2
= 0  

 The solution is 



  

x
1

t( ) =
1

3
cos 2t

x
2

t( ) = cos 2t

 

 In this problem, both masses oscillate at only one frequency. 



4.10 Calculate the solution to Example 4.1.7 for the initial condition 
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 Solution: 

  

 Given:  x(0) = [-1/3   1]T, 
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 From Eq. (4.27) and example 4.1.7, 
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 Using initial conditions: 
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0 = 2A
1
cos"

1
+ 2A

2
cos"

2
4#$ %&

 

 
 From [3] and [4] 

 

  
 
!

1
= !

2
=
"

2
 

 
 From [1] and [2]: 

 

  
  

A
1

= 0

A
2

= 1
 

 
 The solution is 

 

  

  

x
1

t( ) = !
1

3
cos2t

x
2

t( ) = cos2t
 



 
 In this problem, both masses oscillate at only one frequency (not the same frequency as in 

Problem 4.9, though.) 



4.11 Determine the equation of motion in matrix form, then calculate the natural frequencies 
and mode shapes of the torsional system of Figure P4.11.  Assume that the torsional 

stiffness values provided by the shaft are equal 
  

k
1

= k
2( )  and that disk 1 has three times 

the inertia as that of disk  2(J
1

= 3J
2
) . 

 
 Solution: Let  k = k

1
= k

2
 and J

1
= 3J

2
.  The equations of motion are 

   

J
1
!!!

1
+ 2k!

1
" k!

2
= 0

J
2
!!!

2
" k!

1
+ k!

2
= 0

 

 So, 

  
   
J

2

3 0

0 1

!

"
#

$

%
& !!' + k

2 (1

(1 1

!

"
#

$

%
&' = 0  

 Calculate the natural frequencies: 

  

  

det !"
2 J + K( ) =

!3" 2 J
2

+ 2k !k

!k !"
2 J

2
+ k

= 0

"
1

= 0.482
k

J
2

"
2

= 1.198
k

J
2

 

 Calculate the mode shapes:  mode shape 1: 

 

  

  

!3 0.2324( )k + 2k !k

!k ! 0.2324( )k + k

"

#

$
$

%

&

'
'

u
11

u
12

"

#
$
$

%

&
'
'

= 0

u
11

= 0.7676u
12

 

 

 So, u1 = 
 

0.7676

1

!

"
#

$

%
&  

 mode shape 2: 

  

  

!3 1.434( )k + 2k !k

!k ! 1.434( )k + k

"

#

$
$

%

&

'
'

u
21

u
22

"

#
$
$

%

&
'
'

= 0

u
21

= !0.434u
22

 



 

 So, u2 = 
 

!0.434

1

"

#
$

%

&
'  



4.12 Two subway cars of Fig. P4.12 have 2000 kg mass each and are connected by a coupler.  
The coupler can be modeled as a spring of stiffness k = 280,000 N/m.  Write the equation 
of motion and calculate the natural frequencies and (normalized) mode shapes. 

 
  
 Solution: Given:   m1

= m
2

= m = 2000 kg k = 280,000 N/m  

 The equations of motion are: 

   

m!!x
1
+ kx

1
! kx

2
= 0

m!!x
2
! kx

1
+ kx

2
= 0

 

 In matrix form this becomes: 

  

   

m 0

0 m

!

"
#

$

%
& !!x +

k 'k

'k k

!

"
#

$

%
& x = 0

2000 0

0 2000

!

"
#

$

%
& !!x +

280,000 '280,000

'280,000 280,000

!

"
#

$

%
& x = 0

 

 Natural frequencies: 

  

  

det !"
2 M + K( ) = 0

!2000" 2
+ 280,000 !280,000

!280,000 !2000" 2
+ 280,000

= 0

4 #106
"

4
!1.12 #109

"
2

= 0

"
2

= 0,280 $"
1

= 0 rad/sec and  "
2

= 16.73 rad/sec

 

 Mode shapes:   

 Mode 1,  !1
2

= 0  

  

   

280,000 !280,000

!280,000 280,000

"

#
$

%

&
'

u
11

u
12

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

(u
11

= u
12

u
1

=
1

1

"

#
$
%

&
'

 

 Mode 2,  !2
2

= 280  



  

   

!280,000 !280,000

!280,000 !280,000

"

#
$

%

&
'

u
21

u
22

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

(u
21

= u
22

u
2

=
1

!1

"

#
$

%

&
'

 

 
 Normalizing the mode shapes yields 

  
u

1
=

1

2

1

1

!

"
#
$

%
& ,u

2
=

1

2

1

'1

!

"
#

$

%
&  

 Note that 
  
u

2
=

1

2

!1

1

"

#
$

%

&
'  is also acceptable because a mode shape times a constant (-1 in 

this case) is still a mode shape.



4.13 Suppose that the subway cars of Problem 4.12 are given the initial position of x10 = 
0, x20 = 0.1 m and initial velocities of v10 = v20 = 0.  Calculate the response of the cars. 

 
 Solution: 
 

 Given: 
    
x 0( ) = 0   0.1!" #$

T
, !x 0( ) = 0  

 
 From problem 12, 
 

  

  

u
1

=
1

1

!

"
#
$

%
&  and u

2
=

1

'1

!

"
#

$

%
&

(
1

= 0 rad/s and (
2

= 16.73 rad/s

 

 
 The solution is 

  

    

x t( ) = c
1
+ c

2
t( )u

1
+ Asin 16.73t + !( )u

2

" !x 0( ) = c
2
u

1
+ 16.73Acos !( )u

2
 and x 0( ) = c

1
u

1
+ Asin !( )u

2

 

 Using initial the conditions four equations in four unknowns result: 

  

  

0 = c
1
+ Asin! 1"# $%

0.1 = c
1
& Asin! 2"# $%

0 = c
2

+ 16.73Acos! 3"# $%
0 = c

2
&16.73Acos! 4"# $%

 

 

 From [3] and [4]:
  
c

2
= 0,   and  ! =

"

2
 rad  

 From [1] and [2]:  c1
= 0.05 m and  A = !0.05 m  

 
 The solution is 

  

  

x
1

t( ) = 0.05! 0.05cos16.73t

x
2

t( ) = 0.05 + 0.05cos16.73t
 

 

 Note that if 
  
u

2
=

1

2

!1

1

"

#
$

%

&
'  is chosen as the second mode shape the answer will remain the 

same.  It might be worth presenting both solutions in class, as students are often skeptical 
that the two choices will yield the same result. 

 



4.14 A slightly more sophisticated model of a vehicle suspension system is given in Figure 
P4.14.  Write the equations of motion in matrix form.  Calculate the natural frequencies 
for k1 =103 N/m, k2 = 104 N/m, m2 = 50 kg, and m1 = 2000 kg. 

 
 Solution: The equations of motion are 

   

2000!!x
1
+ 1000x

1
!1000x

2
= 0

50!!x
2
!1000x

1
+ 11,000x

2
= 0

 

In matrix form this becomes: 

  
   

2000 0

0 50

!

"
#

$

%
& !!x +

1000 '1000

'1000 11,000

!

"
#

$

%
&x = 0  

 Natural frequencies: 

 

  

det !"
2 M + K( ) = 0

!2000" 2
+ 1000 !1000

!1000 !50" 2
+ 11,000

= 100,000" 4
! 2.205#107

"
2

+ 107
= 0

"
1,2
2

= 0.454,   220.046  $"
1

= 0.674 rad/s   and   "
2

= 14.8 rad/s

 



4.15 Examine the effect of the initial condition of the system of Figure 4.1(a) on the responses 
x1 and x2 by repeating the solution of Example 4.1.7, first for x10 = 0,x20 = 1 with 

   !x10
= !x

20
 = 0 and then for 

   x10
= x

20
= !x

10
= 0  and

   !x20
= 1.  Plot the time response in each 

case and compare your results against Figure 4.3. 
 
 Solution: From Eq. (4.27) and example 4.1.7, 

  

  

x
1

t( )

x
2

t( )

!

"
#
#

$

%
&
&

=

1

3
A

1
sin 2t + '

1( ) (
1

3
A

2
sin 2t + '

2( )

A
1
sin 2t + '

1( ) + A
2
sin 2t + '

2( )

!

"

#
#
#

$

%

&
&
&

  

 (a)
    
x 0( ) = 0 1!" #$

T
, !x 0( ) = 0 .  Using the initial conditions: 

 

  

  

0 = A
1
sin!

1
" A

2
sin!

2
1#$ %&

1 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = 2A
1
cos!

1
" 2A

2
cos!

2
3#$ %&

0 = 2A
1
cos!

1
+ 2A

2
cos!

2
4#$ %&

 

 From [3] and [4] 
 
!

1
= !

2
=
"

2
 

 From [1] and [2] 
  
A

1
= A

2
=

1

2
 

 The solution is 

  

x
1

t( ) =
1

6
cos 2t !

1

6
cos2t

x
2

t( ) =
1

2
cos 2t +

1

2
cos2t

 

 This is similar to the response of Fig. 4.3 



 

 (b)
    
x 0( ) = 0, !x 0( ) = 0 1!" #$

T
. Using these initial conditions: 

  

  

0 = A
1
sin!

1
" A

2
sin!

2
1#$ %&

0 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = 2A
1
cos!

1
" 2A

2
cos!

2
3#$ %&

1 = 2A
1
cos!

1
+ 2A

2
cos!

2
4#$ %&

 

 From [1] and [2]  !1
= !

2
= 0  

 From [3] and [4] 
  
A

1
=

2

4
,  and A

2
=

1

4
 

 
 The solution is 

 

  

  

x
1

t( ) =
2

12
sin 2t !

1

12
sin2t

x
2

t( ) =
2

4
sin 2t +

1

4
sin2t

 

 
 This is also similar to the response of Fig. 4.3 

 



 



4.16 Refer to the system of Figure 4.1(a).  Using the initial conditions of Example 4.1.7, 
resolve and plot x1(t) for the cases that k2 takes on the values 0.3, 30, and 300.  In each 
case compare the plots of x1 and x2 to those obtained in Figure 4.3.  What can you 
conclude? 

 
 Solution: Let k2 = 0.3, 30, 300 for the example(s) in Section 4.1.  Given  

  

    

x 0( ) = 1 0!" #$
T

 mm, !x 0( ) = 0 0!" #$
T

m
1

= 9,m
2

= 1,k
1

= 24
 

 Equation of motion becomes: 

  

   

9 0

0 1

!

"
#

$

%
& !!x +

24 + k
2

'k
2

'k
2

k
2

!

"
#
#

$

%
&
&

x = 0  

 (a)  k2 = 0.3 

  

  

det !"
2 M + K( ) =

!9" 2
+ 24.3 !0.3

!0.3 !"
2

+ 0.3
= 9" 4

! 27" 2
+ 7.2 = 0

"
2

= 0.2598,2.7042

"
1

= 0.5439

"
2

= 1.6444

 

 Mode shapes: 

 Mode 1,  !1
2

= 0.2958 

  

   

21.6374 !0.3

!0.3 0.004159

"

#
$

%

&
'

u
11

u
12

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

21.6374u
11
! 0.3u

12
= 0

u
11

= 0.01386u
12

u
1

=
0.01386

1

"

#
$

%

&
'

 

 Mode 2,  !2
2

= 2.7042  

  

   

!0.03744 !0.3

!0.3 2.4042

"

#
$

%

&
'

u
21

u
22

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

!0.3u
21

= 2.4042u
22

u
22

= !0.1248u
21

u
2

=
1

!0.1248

"

#
$

%

&
'

 

 The solution is  
  
x t( ) = A

1
sin !

1
t + "

1( )u
1
+ A

2
sin !

2
t + "

2( )u
2

 



 Using initial conditions 

 

  

  

1 = A
1

0.01386( )sin!
1
+ A

2
sin!

2
1"# $%

0 = A
1
sin!

1
+ A

2
&0.1248( )sin!

2
2"# $%

0 = A
1

0.01386( ) 0.5439( )cos!
1
+ A

2
1.6444( )cos!

2
3"# $%

0 = A
1

0.5439( )cos!
1
+ A

2
1.6444( ) &0.1248( )cos!

2
4"# $%

 

 
 From [3] and [4], 
   !1

= !
2

= " / 2  

 
 From [1] and [2], 

  
  

A
1

= 0.1246

A
2

= 0.9983
 

 So, 

  

  

x
1

t( ) = 0.001727cos(0.5439t) + 0.9983cos 1.6444t( )  mm

x
2

t( ) = 0.1246 cos 0.5439t( ) ! cos 1.6444t( )"
#

$
%  mm

 

 
 (b) k2 = 30 

  

  

det !"
2 M + K( ) =

!9" 2
+ 54 !30

!30 !"
2

+ 30
= 9" 4

! 32" 2
+ 720 = 0

"
2

= 2.3795,33.6205

"
1

= 1.5426

"
2

= 5.7983

 

 



 Mode shapes: 

 Mode 1,  !1
2

= 2.3795 

 

  

   

32.5845 !30

!30 27.6205

"

#
$

%

&
'

u
11

u
12

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

30u
11

= 27.6205u
12

u
11

= 0.9207u
12

u
1

=
0.9207

1

"

#
$

%

&
'

 

 
 Mode 2,  !2

2
= 33.6205 

 

  

   

!248.5845 !30

!30 !3.6205

"

#
$

%

&
'

u
21

u
22

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

30u
21

= !3 / 6205u
22

u
21

= !0.1207u
22

u
2

=
!0.1207

1

"

#
$

%

&
'

 

 
 The solution is 

 

  
  
x t( ) = A

1
sin !

1
t + "

1( )u
1
+ A

2
sin !

2
t + "

2( )u
2

 

 
 Using initial conditions, 
 

  

  

1 = A
1

0.9207( )sin!
1
+ A

2
("0.1207sin!

2
1#$ %&

0 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = A
1

0.9207( ) 1.5426( )cos!
1
+ A

2
"0.1207( ) 5.7983( )cos!

2
3#$ %&

0 = A
1

1.5426( )cos!
1
+ A

2
5.7983( )cos!

2
4#$ %&

 

 
 From [3] and [4] 

 
   !1

= !
2

= " / 2  

 
 From [1] and [2] 



 

  
  

A
1

= 0.9602

A
2

= !0.9602
 

 
 So, 
 

  

  

x
1

t( ) = 0.8841cos 1.5426t( ) + 0.1159cos 5.7983t( )  mm

x
2

t( ) = 0.9602 cos 1.5426t( ) ! cos 5.7983t( )"
#

$
%  mm

 

 
 (c)  k2 = 300 
 

  

  

det !"
2 M + K( ) =

!9" 2
+ 324 !300

!300 !"
2

+ 300
= 9" 4

! 3024" 2
+ 7200 = 0

"
2

= 2.3981,333.6019

"
1

= 1.5486

"
2

= 18.2648

 

 
 Mode shapes: 
 
 Mode 1,  !1

2
= 2.3981 

 



  

   

302.4174 !300

!300 297.6019

"

#
$

%

&
'

u
11

u
12

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

302.4174u
11

= 300u
12

u
11

= 0.9920u
12

u
1

=
0.9920

1

"

#
$

%

&
'

 

 
 Mode 2,  !2

2
= 333.6019  

 

  

   

!2678.4174 !300

!300 !33.6019

"

#
$

%

&
'

u
21

u
22

"

#
$
$

%

&
'
'

=
0

0

"

#
$
%

&
'

300u
21

= 33.6019u
22

u
21

= !0.1120u
22

u
2

=
!0.1120

1

"

#
$

%

&
'

 

 
 The solution is 
 

  
  
x t( ) = A

1
sin !

1
t + "

1( )u
1
+ A

2
sin !

2
t + "

2( )u
2

 

 
 Using initial conditions 
 

  

  

1 = A
1

0.9920( )sin!
1
+ A

2
"0.1120( )sin!

2
1#$ %&

0 = A
1
sin!

1
+ A

2
sin!

2
2#$ %&

0 = A
1

0.9920( ) 1.5486( )cos!
1
+ A

2
"0.1120( ) 18.2648( ) 3#$ %&

0 = A
1

1.5486( )cos!
1
+ A

2
18.2648( )cos!

2
4#$ %&

 

 
 From [3] and [4]  !1

= !
2

= " / 2  

 From [1] and [2],  A1 = 0.9058 and A2 = -0.9058. 
 So, 

  

x
1

t( ) = 0.8986cos 1.5486t( ) + 0.1014cos 18.2648t( )  mm

x
2

t( ) = 0.9058 cos 1.5486t( ) ! cos 18.2648t( )"
#

$
%  mm

 



 
 As the value of k2 increases the effect on mass 1 is small, but mass 2 oscillates similar to 

mass 1 with a superimposed higher frequency oscillation. 



4.17 Consider the system of Figure 4.1(a) described in matrix form by Eqs. (4.11), (4.9), and 
(4.6).  Determine the natural frequencies in terms of the parameters m1, m2, k1 and k2.  

How do these compare to the two single-degree-of-freedom frequencies 
  
!

1
= k

1
/ m

1
 

and
  
!

2
= k

2
/ m

2
? 

 
 Solution: 
 
 The equation of motion is 
 

  

   

M!!x + Kx = 0

m
1

0

0 m
2

!

"
#
#

$

%
&
&
!!x +

k
1
+ k

2
'k

2

'k
2

k
2

!

"
#
#

$

%
&
&

x = 0
 

 
 The characteristic equation is found from Eq. (4.19): 
 

  

  

det !"
2 M + K( ) = 0

!m
1
"

2
+ k

1
+ k

2
!k

2

!k
2

!m
2
"

2
+ k

2

m
1
m

2
"

4
! k

1
m

2
+ k

2
m

1
+ m

2( )( )"
2

+ k
1
k

2
= 0

 

 

  
  
!

1,2
2

=

k
1
m

2
+ k

2
m

1
+ m

2( ) ± k
1
m

2
+ k

2
m

1
+ m

2( )"
#

$
%

2
& 4m

1
m

2
k

1
k

2

2m
1
m

2

 

 So, 

  

  

!
1,2

=

k
1
m

2
+ k

2
m

1
+ m

2( ) ± k
1
m

2
+ k

2
m

1
+ m

2( )"
#

$
%

2
& 4m

1
m

2
k

1
k

2

2m
1
m

2

 

 
 In two-degree-of-freedom systems, each natural frequency depends on all four 

parameters (m1, m2, k1, k2), while a single-degree-of-freedom system's natural frequency 
depends only on one mass and one stiffness. 

 
 
 
 
 
 
 
 
 



4.18 Consider the problem of Example 4.1.7 and use a trig identity to show the x1(t) 
experiences a beat.  Plot the response to show the beat phenomena in the response. 

 
 

 Solution Applying the trig identity of Example 2.2.2 to x1 yields 

  
x

1
(t) = (cos 2t + cos2t) = cos(

2 ! 2

2
t)cos(

2 + 2

2
t) = cos0.586t cos3.414t  

 
Plotting x1 and cos(0.586t) yields the clear beat: 

 
 
 

 
 



Problems and Solutions for Section 4.2 (4.19 through 4.33) 
 
4.19 Calculate the square root of the matrix 
 

  
  
M =

13 !10

!10 8

"

#
$

%

&
'  

 

 

  

Hint:  Let M 1/ 2
=

a !b

!b c

"

#
$

%

&
';  calculate M 1/ 2

( )
2

 and compare to M .
"

#
$

%

&
'  

 
 Solution: Given: 

  
  
M =

13 !10

!10 8

"

#
$

%

&
'  

 
 If 

  
  
M 1/ 2

=
a !b

!b c

"

#
$

%

&
' , then 

 
  
M = M 1/ 2 M 1/ 2

=
a !b

!b c

"

#
$

%

&
'

a !b

!b c

"

#
$

%

&
' =

a2
+ b2 !ab ! bc

!ab ! bc b2
+ c2

"

#
$

%

&
' =

13 !10

!10 8

"

#
$

%

&
'  

 
 This yields the 3 nonlinear algebraic equations: 

  

a2
+ b2

= 13

ab + bc = 10

b2
+ c2

= 8

 

 
 There are several possible solutions but only one that makes M1/2 positive definite which 

is  a = 3, b = c = 2 as determined below in Mathcad. Choosing these values results in 
 

  
  
M 1/ 2

=
3 !2

!2 2

"

#
$

%

&
'  



 



4.20 Normalize the vectors 
 

  
 

1

!2

"

#
$

%

&
' ,

0

5

"

#
$
%

&
' ,

!0.1

0.1

"

#
$

%

&
'  

 

 first with respect to unity (i.e.,  x
T x = 1) and then again with respect to the matrix M 

(i.e.,  x
T Mx = 1), where 

 

  
  
M =

3 !0.1

!0.1 2

"

#
$

%

&
'  

 
 Solution: 
 
 (a)  Normalize the vectors 
 

  

   

x
1

=
1

!2

"

#
$

%

&
'

(
1

=
1

xT x
=

1

5

 

 
 Normalized: 

  
  
x

1
=

1

5

1

!2

"

#
$

%

&
' =

0.4472

!0.8944

"

#
$

%

&
'  

 

  

   

x
2

=
0

5

!

"
#
$

%
&

'
2

=
1

xT x
=

1

5

 

 Normalized: 

  
  
x

2
=

0

1

!

"
#
$

%
&  

 

  

   

x
3

=
!0.1

0.1

"

#
$

%

&
'

(
3

=
1

xT x
=

1

0.02

 

 
 Normalized: 



  
  
x

3
= 50

!0.1

0.1

"

#
$

%

&
' =

1

2

!1

1

"

#
$

%

&
' =

!0.7071

0.7071

"

#
$

%

&
'  

 (b)  Mass normalize the vectors 
 

  

   

x
1

=
1

!2

"

#
$

%

&
'

(
1

=
1

xT Mx
=

1

11.4

 

 
 Mass normalized: 

  
  
x

1
=

1

11.4

1

!2

"

#
$

%

&
' =

0.2962

!.5923

"

#
$

%

&
'  

 

  
  
x

2
=

0

5

!

"
#
$

%
&  

 

  
   
!

2
=

1

xT Mx
=

1

50
 

 

  
  
x

2
=

1

50

0

5

!

"
#
$

%
& =

1

2

0

1

!

"
#
$

%
& =

0

0.7071

!

"
#

$

%
&  

 

  

   

x
3

=
!0.1

0.1

"

#
$

%

&
'

(
3

=
1

xT Mx
=

1

0.052

 

 
 Mass normalized: 

  
  
x

3
=

1

0.052

!0.1

0.1

"

#
$

%

&
' =

!0.4385

0.4385

"

#
$

%

&
'  

 



4.21 For the example illustrated in Figure P4.1 with  c1
= c

2
= c

3
= 0 , calculate the matrix  !K . 

 
 Solution: 
 
 From Figure 4.1, 
 

  

   

m
1

0

0 m
2

!

"
#
#

$

%
&
&
!!x +

k
1
+ k

2
'k

2

'k
2

k
2

+ k
3

!

"
#
#

$

%
&
&

x = 0  

 

  

   

!K = M !1/ 2 KM !1/ 2
=

m
1
!1/ 2 0

0 m
2
!1/ 2

"

#
$
$

%

&
'
'

k
1
+ k

2
!k

2

!k
2

k
2

+ k
3

"

#
$
$

%

&
'
'

m
1
!1/ 2 0

0 m
2
!1/ 2

"

#
$
$

%

&
'
'

!K =

m
1
!1 k

1
+ k

2( ) !m
1
!1/ 2m

2
!1/ 2k

2

!m
1
!1/ 2m

2
!1/ 2k

2
m

1
!1 k

2
+ k

3( )

"

#

$
$

%

&

'
'

 

 

 Since 
   
!K T

= !K , !K  is symmetric. 
 
 Using the numbers given in problem 4.2 yields 
  

  
   

!K =
3 !1

!1 6

"

#
$

%

&
'  

 
 This is obviously symmetric. 
 



4.22 Repeat Example 4.2.5 using eight decimal places.  Does PTP = 1, and does 

   
PT !KP = ! =  diag "

1
2 "

2
2#

$
%
&  exactly? 

 
 Solution: From Example 4.2.5, 
 

   

!K =
12 !1

!1 3

"

#
$

%

&
' ( det !K ! )I( ) = )2 !15) + 35 = 0

()
1

= 2.89022777,  and  )
2

= 12.10977223

 

 
 Calculate eigenvectors and normalize them: 
 

  

   

!
1

= 2.89022777

9.10977223 "1

"1 0.10977223

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
(   )9.10977223v

11
= v

12

v
1

= v
11
2

+ v
12
2

= v
11
2

+ 9.10977223( )
2
v

11
2

= 1

)v
11

= 0.10911677  and    v
12

= 0.99402894

v
1

= 0.10911677 0.99402894#$ &'
T

 

  

   

!
2

= 12.10977223

"
#0.10977223 #1

#1 #9.10977223

$

%
&

'

(
)

v
21

v
22

$

%
&
&

'

(
)
)

=
0

0

$

%
&
'

(
)

" v
21

= 9.10977223v
22

v
2

= v
21
2

+ v
22
2

= #9.10977223( )
2
v

22
2

+ v
22
2

= 1

v
21

= #9.10911677, and   v
22

= #0.99402894

v
2

= 0.99402894 0.10911677$% '(
T

 

 Now, 
   
P = v

1
v

2
!" #$ =

0.10911677 %0.99402894

0.99402894 0.10911677

!

"
&

#

$
'  

 Check PTP=I 

  
  
PT P =

1.00000000 0

0 1.00000000

!

"
#

$

%
& = I (to 8 decimal places) 

 Check 
   
PT !KP = ! = diag "

1
,"

2( )  



  

   

! = PT !KP =
2.89022778 0.00000002

0.00000002 12.10977227

"

#
$

%

&
'

diag (
1
,(

2( ) =
2.89022777 0

0 12.10977223

"

#
$

%

&
'

 

 This is accurate to 7 decimal places. 
 



4.23 Discuss the relationship or difference between a mode shape of equation (4.54) and an 
eigenvector of  !K . 

 
 Solution: 
 
 The relationship between a mode shape, u, of    M!!x + Kx = 0  and an eigenvector, v, of 

   !K = M !1/ 2 KM !1/ 2  is given by 
 
     v i

= M 1/ 2u
i

or     u
i
= M !1/ 2v

i
 

 
 If v is normalized, then u is mass normalized. 
 
 This is shown by the relation 
 

     v i
T v

i
= 1 = u

i
T Mu

i
 

 
 
 
 
 
 
4.24 Calculate the units of the elements of matrix  !K . 
 
 Solution: 
 

    !K = M !1/ 2 KM !1/ 2  
 
 M-1/2 has units kg-1/2 

 
 K has units N/m = kg/s2 
 

 So,   !K has units 
  
kg-1/2

( ) kg/s2
( ) kg!1/ 2

( ) = s!2  

 
  
 



4.25 Calculate the spectral matrix Λ and the modal matrix P for the vehicle model of Problem 
4.14, Figure P4.14. 

 
 Solution: From Problem 4.14: 

  
    
M!!x + Kx =

2000 0

0 50

!

"
#

$

%
& !!x +

1000 '1000

'1000 11,000

!

"
#

$

%
&x = 0  

 Calculate eigenvalues: 

  

   

det !K ! "I( ) = 0

!K = M !1/ 2 KM !1/ 2
=

0.5 !3.162

!3.162 220

#

$
%

&

'
(

0.5! " !3.162

!3.162 220 ! "
= "2 ! 220.5" + 100 = 0

"
1,2

= 0.454,220.05

 

 The spectral matrix is 

  
 
! = diag "

1( ) =
0.454 0

0 220.05

#

$
%

&

'
(  

 Calculate eigenvectors and normalize them: 

  

   

!
1

= 0.454

0.0455 "3.162

"3.162 219.55

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

= 0 ) v
11

= 69.426v
12

v
1

= v
11
2

+ v
22
2

= 69.426( )
2
v

12
2

+ v
12
2

= 69.434v
12

= 1

) v
12

= 0.0144,  and v
11

= 0.9999

                                      ) v
1

=
0.9999

0.0144

#

$
%

&

'
(

 

 

  

   

!
2

= 220.05

"219.55 "3.162

"3.162 "0.0455

#

$
%

&

'
(

v
21

v
22

#

$
%
%

&

'
(
(

= 0

v
21

= 0.0144v
22

v
2

= v
21
2

+ v
22
2

= "0.0144( )
2
v

22
2

+ v
22
2

= 1.0001v
22

= 1

) v
22

= 0.9999,  and v
21

= "0.0144

                                       ) v
2

=
"0.0144

0.9999

#

$
%

&

'
(

 

 The modal matrix is 



   
P = v

1
v

2
!" #$ =

0.9999 %0.0144

0.0144 0.9999

!

"
&

#

$
'  

 



4.26 Calculate the spectral matrix Λ and the modal matrix P for the subway car system of   
Problem 4.12, Figure P4.12. 
 
 Solution: From problem 4.12 and Figure P4.12, 

  
    
M!!x + Kx =

2000 0

0 2000

!

"
#

$

%
& !!x +

280,000 '280,000

'280,000 280,000

!

"
#

$

%
&x = 0  

 Calculate eigenvalues: 

  

   

det !K ! "I( ) = 0

!K = M !1/ 2 KM !1/ 2
=

140 !140

!140 140

#

$
%

&

'
(

140 ! " !140

!140 140 ! "
= "2 ! 280" = 0

"
1,2

= 0,280

 

 The spectral matrix is 

  
  
! = diag "

i( ) =
0 0

0 280

#

$
%

&

'
(  

 Calculate eigenvectors and normalize them: 

  

   

!
1

= 0

140 "140

"140 140

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

= 0

v
11

= v
12

v
1

= v
11
2

+ v
12
2

= v
12
2

+ v
12
2

= 1.414v
12

= 1

v
12

= 0.7071

v
11

= 0.7071

v
1

=
0.7071

0.7071

#

$
%

&

'
(

 

 
   

  

   

!
2

= 280

140 "140

"140 140

#

$
%

&

'
(

v
21

v
22

#

$
%
%

&

'
(
(

= 0 ) v
21

= v
22

) v
2

= v
21
2

+ v
22
2

= v
22
2

+ v
22
2

= 14.14v
12

= 1) v
22

= 0.7071,v
21

= "0.7071

) v
2

=
"0.7071

0.7071

#

$
%

&

'
(

 



 The modal matrix is   
   
P = v

1
v

2
!" #$ =

0.7071 %0.7071

0.7071 0.7071

!

"
&

#

$
'  

 



4.27 Calculate   !K  for the torsional vibration example of Problem 4.11.  What are the units 
of  !K ? 

 
 Solution: From Problem 4.11, 
 

  

   

J !!! + K! = J
2

3 0

0 1

"

#
$

%

&
' !!! + k

2 (1

(1 1

"

#
$

%

&
'! = 0

"K = J (1/ 2 KJ (1/ 2

J (1/ 2
= J

2
(1/ 2 0.5774 0

0 1

"

#
$

%

&
'

"K = J
2
(1/ 2 0.5774 0

0 1

"

#
$

%

&
' k

2 (1

(1 1

"

#
$

%

&
' J

2
(1/ 2 0.5774 0

0 1

"

#
$

%

&
'

"K =
k

J
2

0.6667 (0.5774

(0.5774 1

"

#
$

%

&
'

 

 
 The units of   !K  are 
 

  
  

kg !m2

rad

"

#$
%

&'

(1/ 2
N !m
rad

"
#$

%
&'

kg !m2

rad

"

#$
%

&'

(1/ 2

= s(2  



4.28  Consider the system in the Figure P4.28 for the case where m1 = 1 kg, m2 = 4 kg, k1 =  240 
N/m and k2=300 N/m.  Write the equations of motion in vector form and compute each of the 
following 

a) the natural frequencies 
b) the mode shapes 
c) the eigenvalues 
d) the eigenvectors 
e) show that the mode shapes are not orthogonal 
f) show that the eigenvectors are orthogonal 

g) show that the mode shapes and eigenvectors are related by M
! 1

2  
h) write the equations of motion in modal coordinates 

Note the purpose of this problem is to help you see the difference between 
these various quantities. 

 

 
Figure P1.28 A two-degree of freedom system 

Solution From a free body diagram, the equations of motion in vector form are 

 

1 0

0 4
!

"
#

$

%
& !!x +

540 '300

'300 300
!

"
#

$

%
&x =

0

0
!

"
#

$

%
&  

The natural frequencies can be calculated in two ways.  The first is using the determinant 
following example 4.1.5: 
a)  det(!" 2M + K ) = 0 #"1 = 5.5509,"2 = 24.1700 rad/s  

The second approach is to compute the eigenvalues of the matrix  !K = M ! 1
2KM ! 1

2  following 
example 4.4.4, which yields the same answers. The mode shapes are calculate following the 
procedures of example 4.1.6 or numerically using eig(K,M) in Matlab 

 b)   u1 =
0.5076

0.8616
!

"
#

$

%
&,  u2 =

0.9893

'0.1457
!

"
#

$

%
&  

The eigenvectors are vectors that satisfy 
!Kv = !v , where λ are the eigenvalues. These can be 

computed following example 4.2.2, or using [V,Dv]=eig(Kt) in Matlab. The eigenvalues 
and eigenvectors are 
c)    !1 = 30.8120,    !2 = 584.1880 ,   

d)   v1 =
0.2826

0.9592
!

"
#

$

%
&,   v2 =

'0.9592

0.2826
!

"
#

$

%
&  



To show that the mode shapes are not orthogonal, show that u1
T u2 ! 0 : 

e)  u1
T u2 = (0.5076)(0.9893) + (0.8616)(!0.1457) = 0.3767 " 0  

To show that the eigenvectors are orthogonal, compute the inner product to show that v1
T v2 = 0 : 

f)   v1
T v2 = (0.2826)(!0.9592) + (0.9592)(0.2826) = 0  

To solve the next part merely compute M
!1

2v2  and show that it is equal to u2 (see the discussion 
at the top of page 262. 

g)   M
!1

2v2 =
0.9592

!0.1413
"

#
$

%

&
',  normalize to get 

-0.9893

0.1457
"

#
$

%

&
' = !u2   

Likewise, M
!1

2v1 = u1 . Note that if you use Matlab you’ll automatically get normalized vectors.  

But the product M
!1

2v2  will not be normalized, so it must be normalized before comparing it to 
u2. 
 
h) We can write down the modal equations, just as soon as we know the eigenvalues (squares of 
the frequencies).  They are: 

 

!!r1(t) + 30.812r1(t) = 0

!!r2 (t) + 583.189r2 (t) = 0
 

 
 
 
 
 
4.29 Consider the following system: 
 

  
   

1 0

0 4

!

"
#

$

%
& !!x +

3 '1

'1 1

!

"
#

$

%
&x = 0  

 
 where M is in kg and K is in N/m.  (a)  Calculate the eigenvalues of the system.  (b) 

Calculate the eigenvectors and normalize them. 
 
 Solution: Given:   

  
    
M!!x + Kx =

1 0

0 4

!

"
#

$

%
& !!x +

3 '1

'1 1

!

"
#

$

%
&x = 0  

 Calculate eigenvalues: 

  

   

det !K ! "I( ) = 0

!K = M !1/ 2 KM !1/ 2
=

3 !0.5

!0.5 0.25

#

$
%

&

'
(

3! " !0.5

!0.5 0.25! "
= "2 ! 3.25" + 0.5 = 0

"
1,2

= 0.162,3.088

 



 The spectral matrix is 

  
  
! = diag "

i( ) =
0.162 0

0 3.088

#

$
%

&

'
(  

 Calculate eigenvectors and normalize them: 
 

  

   

!
1

= 0.162

2.838 "0.5

"0.5 0.088

#

$
%

&

'
(

v
11

v
21

#

$
%
%

&

'
(
(

= 0 ) v
11

= 1.762v
21

v
1

= v
11
2

+ v
21
2

= 0.1762( )
2
v

21
2

+ v
21
2

= 1.015v
21

= 1

v
21

= 0.9848 and v
11

= 0.1735) v
1

=
0.1735

0.9848

#

$
%

&

'
(

 

 

  

   

!
2

= 3.088

"0.088 "0.5

"0.5 "2.838

#

$
%

&

'
(

v
12

v
22

#

$
%
%

&

'
(
(

= 0 ) v
12

= 1.762v
22

v
2

= v
12
2

+ v
22
2

= "5.676( )
2
v

22
2

+ v
22
2

= 5.764v
22

= 1

) v
22

= 0.1735  and   v
12

= "0.9848) v
2

=
"0.9848

0.1735

#

$
%

&

'
(

 



4.30 The torsional vibration of the wing of an airplane is modeled in Figure P4.30.  Write the 
equation of motion in matrix form and calculate the natural frequencies in terms of the rotational 
inertia and stiffness of the wing (See Figure 1.22). 

 
 Solution: From Figure 1.22, 

  
  
k

1
=

GJ
p

l
1

 and k
2

=

GJ
p

l
2

 

 Equation of motion: 

  

   

J
1

0

0 J
2

!

"
#
#

$

%
&
&
!!' +

k
1
+ k

2
(k

2

(k
2

k
2

!

"
#
#

$

%
&
&
' = 0

J
1

0

0 J
2

!

"
#
#

$

%
&
&
!!' +

GJ
p

1

l
1

+
1

l
2

)

*+
,

-.
(GJ

p

l
2

(GJ
p

l
2

GJ
p

l
2

!

"

#
#
#
#
#

$

%

&
&
&
&
&

' = 0

 

 Natural frequencies: 

  

   

!K = M !1/ 2 KM !1/ 2
=

GJ
p

J
1

1

l
1

+
1

l
2

"

#$
%

&'
!GJ

p

l
2

J
1
J

2

!GJ
p

l
2

J
1
J

2

GJ
p

J
2
l
2

(

)

*
*
*
*
*
*

+

,

-
-
-
-
-
-

det !K ! .I( ) =

GJ
p

J
1

1

l
1

+
1

l
2

"

#$
%

&'
! .

!GJ
p

l
2

J
1
J

2

!GJ
p

l
2

J
1
J

2

GJ
p

J
2
l
2

! .

(

)

*
*
*
*
*
*

+

,

-
-
-
-
-
-

 

 Solving for λ yields 
 

  

  

!
1,2

=

GJ
p

2

1

J
1

1

l
1

+
1

l
2

"

#$
%

&'
+

1

J
2
l
2

(

)
*
*

+

,
-
-

±

GJ
p

2

1

J
1

1

l
1

+
1

l
2

"

#$
%

&'
+

1

J
2
l
2

(

)
*
*

+

,
-
-

2

.
4

J
1
J

2
l
1
l
2

 

 
 The natural frequencies are 
 



  
 
!

1
= "

1
  and  !

2
= "

2
 

 



4.31 Calculate the value of the scalar a such that x1 = [a   -1   1]T and x2 = [1   0   1]T are 
orthogonal. 

 
 Solution: To be orthogonal,    x1

T x
2

= 0  

 

 So,

   

x
1
T x

2
= a !1 1"# $%

1

0

1

"

#

&
&
&

$

%

'
'
'

= a + 1 = 0 .  Therefore, a = -1. 

 
4.32 Normalize the vectors of Problem 4.31.  Are they still orthogonal? 
 
 Solution: From Problem 4.31, with a = -1, 

  

  

x
1

=

!1

!1

1

"

#

$
$
$

%

&

'
'
'

  and  x
2

=

1

0

1

"

#

$
$
$

%

&

'
'
'

 

 Normalize x1:  

  

!x
1( )

T
!x

1( ) = 1

a2 "1 "1 1#$ %&

"1

"1

1

#

$

'
'
'

%

&

(
(
(

= 3! 2
= 1

! = 0.5774

 

 So, 

  

x
1

= 0.5774

!1

!1

1

"

#

$
$
$

%

&

'
'
'

 

 Normalize x2: 

  

  

!x
2( )

T
!x

2( ) = 1

a2 1 0 1"# $%

1

0

1

"

#

&
&
&

$

%

'
'
'

= 2! 2
= 1

! = 0.7071

 

 So, 

  

x
2

= 0.7071

1

0

1

!

"

#
#
#

$

%

&
&
&

 

 Check orthogonality: 

  

   

x
1
T x

2
= 0.5774( ) 0.7071( ) !1 !1 1"# $%

1

0

1

"

#

&
&
&

$

%

'
'
'

= 0  Still orthogonal  



 



4.33 Which of the following vectors are normal?  Orthogonal? 
 

  

  

x
1

=

1

2
0

1

2

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

x
2

=

0.1

0.2

0.3

!

"

#
#
#

$

%

&
&
&

x
3

=

0.3

0.4

0.3

!

"

#
#
#

$

%

&
&
&

 

 
 Solution: 
 
 Check vectors to see if they are normal: 
 

  

  

x
1

= 1 / 2 + 0 + 1 / 2 = 1 = 1 Normal

x
2

= .12
+ .22

+ .32
= .14 = 0.3742 Not normal

x
3

= .32
+ .42

+ .32
= .34 = 0.5831 Not normal

 

 
 Check vectors to see if they are orthogonal: 
 

  

   

x
1
T x

2
= 1 / 2 0 1 / 2!
"

#
$

.1

.2

.3

!

"

%
%
%

#

$

&
&
&

= .2828 Not orthogonal

x
2
T x

3
= .1 .2 .3!" #$

.3

.4

.3

!

"

%
%
%

#

$

&
&
&

= 0.2 Not orthogonal

x
3
Tx

1
= .3 .4 .3!" #$

1 / 2

0

1 / 2

!

"

%
%
%

#

$

&
&
&

= 0.4243 Not orthogonal

 

 
 ∴ Only x1 is normal, and none are orthogonal. 



Problems and Solutions for Section 4.3 (4.34 through 4.43) 
 
4.34 Solve Problem 4.11 by modal analysis for the case where the rods have equal stiffness 

(i.e.,   k1
= k

2
), J

1
= 3J

2
, and the initial conditions are x(0) = 

    
0 1!" #$

T
 and !x 0( ) = 0.  

 
 Solution: From Problem 4.11 and Figure P4.11, with   k = k

1
= k

2
 and J

1
= 3J

2
:  

 

 
   
J

2

3 0

0 1

!

"
#

$

%
& !!' + k

2 (1

(1 1

!

"
#

$

%
&' = 0  

 
Calculate eigenvalues and eigenvectors: 
 

 

   

J !1/ 2
= J

2
!1/ 2

1

3
0

0 1

"

#

$
$
$

%

&

'
'
'

!K = J !1/ 2 KJ !1/ 2
=

k

J
2

2

3

!1

3
!1

3
1

"

#

$
$
$
$

%

&

'
'
'
'

( det !K ! )I( ) = )2 !
5k

3J
2

) +
k 2

3J
2
2

= 0

)
1

=

5! 13( )k

6J
2

( *
1

= )
1
, and  

5 + 13( )k

6J
2

(*
2

= )
2

 

 

 

   

!
1

=

5" 13( )k

6J
2

#

5 + 13( )k

6J
2

"k

3J
2

"k

3J
2

5 + 13( )k

6J
2

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

v
11

v
12

$

%
&
&

'

(
)
)

= 0

# v
11

= 1.3205v
12
# v

1
=

0.7992

0.6011

$

%
&

'

(
)

 

 



 

   

!
2

=

5 + 13( )k

6J
2

"

#1# 13( )k

6J
2

#k

3J
2

#k

3J
2

1# 13( )k

6J
2

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

v2
11

v
22

$

%
&
&

'

(
)
)

= 0

" v
21

= #0.7522v
22
" v

2
=

#0.6011

0.7992

$

%
&

'

(
)

 

 

Now, 
   
P = v

1
v

2
!" #$ =

0.7992 %0.6011

0.6011 0.7992

!

"
&

#

$
'  

Calculate S and S-1: 

 

  

S = J !1/ 2 P =
1

J
2

0.4614 !0.3470

0.6011 0.7992

"

#
$

%

&
'

S !1
= PT J 1/ 2

= J
2
1/ 2 1.3842 0.6011

!1.0411 0.7992

"

#
$

%

&
'

 

Modal initial conditions: 

 

    

r 0( ) = S !1" 0( ) = S !1 0

1

#

$
%
&

'
( = J

2
1/ 2 0.6011

0.7992

#

$
%

&

'
(

!r 0( ) = S !1 !" 0( ) = 0

 

Modal solution: 

 

   

r
1

t( ) =
!

1
2r

10
2

+ !r
10
2

!
1

sin !
1
t + tan"1 !1

r
10

!r
10

#

$
%

&

'
(

r
2

t( ) =
!

2
2r

20
2

+ !r
20
2

!
2

sin !
2
t + tan"1 !2

r
10

!r
20

#

$
%

&

'
(

 

 

 

  

r
1

t( ) = 0.6011J
2
1/ 2 sin !

1
t +

"

2

#

$
%

&

'
( = 0.6011J

2
1/ 2 cos!

1
t

r
2

t( ) = 0.7992J
2
1/ 2 sin !

2
t +

"

2

#

$
%

&

'
( = 0.6011J

2
1/ 2 cos!

2
t

 

 

   

r t( ) =
0.6011J

2
1/ 2 cos!

1
t

0.7992J
2
1/ 2 cos!

2
t

"

#
$
$

%

&
'
'

 



Convert to physical coordinates: 

 

   

! t( ) = Sr t( ) = J
2
1/ 2 0.4614 "0.3470

0.6011 0.7992

#

$
%

&

'
(

0.6011J
2
1/ 2 cos)

1
t

0.7992J
2
1/ 2 cos)

2
t

#

$
%
%

&

'
(
(

! t( ) =
0.2774cos)

1
t " 0.2774cos)

2
t

0.3613cos)
1
t + 0.6387cos)

2
t

#

$
%
%

&

'
(
(

 

where 

  

!
1

= 0.4821
k

J
2

 and !
2

= 1.1976
k

J
2

,  

 



4.35 Consider the system of Example 4.3.1.  Calculate a value of x(0) and 
   
!x 0( )  such that both 

masses of the system oscillate with a single frequency of 2 rad/s. 
 
 Solution: 
 
 From Example 4.3.1, 
 

  

  

S =
1

2

1 / 3 1 / 3

1 !1

"

#
$

%

&
'

S !1
=

1

2

3 1

3 !1

"

#
$

%

&
'

 

 
 From Equations (4.67) and (4.68), 
 

  

   

r
1

t( ) =
!

1
2r

10
2

+ r
10
2

!
1

sin !
1
t + tan"1 !1

r
10

!r
10

#

$
%

&

'
(

r
2

t( ) =
!

2
2r

20
2

+ r
20
2

!
2

sin !
2
t + tan"1 !2

r
20

!r
20

#

$
%

&

'
(

 

 

 Choose x(0) and   !x (0) so that r1(t) = 0.  This will cause the frequency  2  to drop out.  
For r1(t) = 0, its coefficient must be zero. 

 

  
  

!
1
2r

10
2

+ r
10
2

!
1

= 0 or !
1
2r

10
2

+ r
10
2

= 0  

 
 Choose

   r10
= !r

20
= 0 . 

 

 Let r20 = 
   3 / 2  and !r

20
= 0  as calculated in Example 4.3.1. 

 

 So, 
   
r 0( ) = 0 3 / 2!

"
#
$

T

and 
   
!r 0( ) = 0. 

 

 Solve for x(0) and
   
!x 0( ) : 

 



  

    

x 0( ) = Sr 0( ) =
1

12

1 / 3 1 / 3

1 !1

"

#
$

%

&
'

0

3 / 2

"

#
$
$

%

&
'
'

=
0.5

!1.5

"

#
$

%

&
'

!x 0( ) = S!r 0( ) = 0

 



4.36 Consider the system of Figure P4.36 consisting of two pendulums coupled by a spring.  
Determine the natural frequency and mode shapes.  Plot the mode shapes as well as the 
solution to an initial condition consisting of the first mode shape for k = 20 N/m, l = 0.5 
m and m1 = m2 = 10 kg, a = 0.1 m along the pendulum. 

 
 Solution: Given: 

  
  

k = 20 N/m m
1

= m
2

= 10 kg

a = 0.1 m l = 0.5 m
 

 For gravity use   g = 9.81 m/s2.  For a mass on a pendulum, the inertia is:   I = ml2  

 Calculate mass and stiffness matrices (for small θ). The equations of motion are: 

  

   

I
1
!!!

1
= ka2 !

2
"!

1( ) " m
1
gl!

1

I
2
!!!

2
= "ka2 !

2
"!

1( ) " m
2
gl!

2

# ml2
!!!

1

!!!
2

$

%
&
&

'

(
)
)

+
mgl + ka2 "ka2

"ka2 mgl + ka2

$

%
&

'

(
)
!

1

!
2

$

%
&
&

'

(
)
)

=
0

0

$

%
&
'

(
)  

 
 Substitution of the given values yields: 

  
  

2.5 0

0 2.5

!

"
#

$

%
& !!' +

49.05 (0.2

(0.2 49.05

!

"
#

$

%
&' = 0  

 Natural frequencies: 

  

   

!K = M !1/ 2 KM !1/ 2
=

19.7 !0.08

!0.08 19.7

"

#
$

%

&
'

( )
1

= 19.54 and )
2

= 19.7 (*
1

= 4.42 rad/s and *
2

= 4.438 rad/s

 

 Eigenvectors: 

   

!
1

= 19.54

0.08 "0.08

"0.08 0.08

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
( ) v

1
=

1

2

1

1

#

$
%
&

'
(

 

 

   

!
2

= 19.7

"0.08 "0.08

"0.08 "0.08

#

$
%

&

'
(

v
21

v
22

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
( ) v

2
=

1

2

1

"1

#

$
%

&

'
(

 

 

 Now, 
   
P = v

1
v

2
!" #$ =

1

2

1 1

1 %1

!

"
&

#

$
'  

 



 Mode shapes: 

   

u
1

= M !1/ 2v
1

=
0.4472

0.4472

"

#
$

%

&
'

u
2

= M !1/ 2v
2

=
0.4472

!0.4472

"

#
$

%

&
'

 

 
 A plot of the mode shapes is simply 

 
 This shows the first mode vibrates in phase and in the second mode the masses vibrate 

out of phase. 
 

  

    

! 0( ) =
0.4472

0.4472

"

#
$

%

&
' !! 0( ) = 0,   S = M (1/ 2 P =

0.4472 0.4472

0.4472 (0.4472

"

#
$

%

&
'

S (1
= PT M 1/ 2

=
1.118 1.118

1.118 (1.118

"

#
$

%

&
' ,   r 0( ) = S (1! 0( ) =

1

0

"

#
$
%

&
' !r 0( ) = 0

 

 

 From Eq. (4.67) and (4.68): 
  
r
1

t( ) = sin 4.42t +
!
2

"
#$

%
&'

= cos4.45t,   r
2

t( ) = 0  

 Convert to physical coordinates:
   
! t( ) = Sr t( ) =

0.4472cos4.42t

0.4472cos4.42t

"

#
$

%

&
' rad   

 
4.37 Resolve Example 4.3.2 with m2 changed to 10 kg.  Plot the response and compare the 

plots to those of Figure 4.6. 
 
 Solution: From examples 4.3.2 and 4.2.5, with m2 = 10 kg, 



  
    
M!!x + Kx =

1 0

0 10

!

"
#

$

%
& !!x +

12 '2

'2 12

!

"
#

$

%
&x = 0  

 Calculate eigenvalues and eigenvectors: 

  

   

M !1/ 2
=

1 0

0
1

10

"

#

$
$
$

%

&

'
'
'

!K = M !1/ 2 KM !1/ 2
=

12 !0.6325

!0.6325 1.2

"

#
$

%

&
'

 

 

  

    

det( !K ! "I ) = "2 !13.2" + 14 = 0

"
1

= 1.163 #
1

= 1.078 rad/s

"
2

= 12.04 #
2

= 3.469 rad/s

P = v
1

v
2

$% &' =
0.0583 !0.9983

0.9983 0.0583

$

%
(

&

'
)

 

 Calculate S and S-1: 

  

  

S = M !1/ 2 P =
0.0583 !0.9983

0.9983 0.0583

"

#
$

%

&
'

S !1
= PT M 1/ 2

=
0.0583 3.1569

!0.9983 0.1842

"

#
$

%

&
'

 

 Modal initial conditions: 

  

    

r 0( ) = S !1x 0( ) = S !1 1

1

"

#
$
%

&
' =

3.2152

!0.8141

"

#
$

%

&
'

!r 0( ) = S !1
!x 0( ) = 0

 

 Modal solution (from Eqs. (4.67) and (4.68): 

  

  

r
1

t( ) = 3.2152sin 1.078t +
!

2

"

#
$

%

&
' = 3.2152cos1.078t

r
2

t( ) = (0.8141cos3.469t

 

 Covert to physical coordinates: 
 

  

   

x t( ) = Sr t( ) =
0.0583 !0.9983

0.3157 0.0184

"

#
$

%

&
'

3.2152cos1.078t

!0.8141cos3.469t

"

#
$

%

&
'

x t( ) =
0.1873cos1.078t + 0.8127cos3.469t

1.015cos1.078t ! 0.0150cos3.469t

"

#
$

%

&
'

 

 



 
 
 These figures are similar to those of Figure 4.6, except the responses are reversed (θ2 

looks like x2 in Figure 4.6, and θ1 looks like x1 in Figure 4.6) 
 



4.38 Use modal analysis to calculate the solution of Problem 4.29 for the initial conditions 
 

  
    
x 0( ) = 0 1!" #$

T
mm( )  and !x 0( ) = 0 0!" #$

T
 mm/s( )  

 
 Solution:  From Problem 4.29, 
 

  

   

M =
1 0

0 4

!

"
#

$

%
&

'
1

= (
1

= 0.4024 rad/s

'
2

= (
2

= 1.7573 rad/s

P = v
1

v
2

!" $% =
0.1735 )0.9848

0.9848 0.1735

!

"
#

$

%
&

 

 
 Calculate S and S-1: 
 

  

  

S = M !1/ 2 P =
0.1735 !0.9848

0.4924 0.0868

"

#
$

%

&
'

S !1
= PT M 1/ 2

=
0.1735 1.9697

!0.9848 0.3470

"

#
$

%

&
'

 

 
 Modal initial conditions: 
 

  

    

r 0( ) = S !1x 0( ) = S !1 0

1

"

#
$
%

&
' =

1.9697

0.3470

"

#
$

%

&
'

r 0( ) = S !1
!x 0( ) = 0

 

 
 Modal solution (from Eqs. (4.67) and (4.68): 
 

  

  

r
1

t( ) = 1.9697cos0.4024t

r
2
(t) = !.3470cos1.7573t

 

 
 Convert to physical coordinates: 

  

   

x t( ) = Sr t( ) =
0.1735 !0.9848

0.4924 0.0868

"

#
$

%

&
'

1.9697cos0.4024t

0.3470cos1.7573t

"

#
$

%

&
'

                     ( x t( ) =
0.3417cos0.4024t ! 0.3417cos1.7573t

0.9699cos0.4024t + 0.0301cos1.7573t

"

#
$

%

&
'mm

 

 



4.39 For the matrices 
 

  

  

M !1/ 2
=

1

2
0

0 4

"

#

$
$
$

%

&

'
'
'

  and  P =
1

2

1 1

!1 1

"

#
$

%

&
'  

 

 calculate 
  
M !1/ 2 P,  M !1/ 2 P( )

T
,   and PT M !1/ 2  and hence verify that the computations in 

Eq. (4.70) make sense. 
 
 Solution: 
 
 Given 

  

  

M !1/ 2
=

1

2
0

0 4

"

#

$
$
$

%

&

'
'
'

 and P =
1

2

1 1

!1 1

"

#
$

%

&
'  

 
 Now 

  

  

M !1/ 2 P =
0.5 0.5

!2 2 !2 2

"

#
$
$

%

&
'
'

 

 
 So 

  

  

M !1/ 2 P( )
T

=
0.5 !2 2

0.5 !2 2

"

#
$
$

%

&
'
'

PT M !1/ 2
=

0.5 !2 2

0.5 !2 2

"

#
$
$

%

&
'
'

 

 Thus, 
  

M !1/ 2 P( )
T

= PT M !1/ 2 [Equation (4.71)] 

 



4.40 Consider the 2-degree-of-freedom system defined by: 

  
M =

9 0

0 1

!

"
#

$

%
& ,    and  K =

27 '3

'3 3

!

"
#

$

%
& . 

  Calculate the response of the system to the initial condition 
 

  

   

x
0

=
1

2

1

3
1

!

"

#
#
#

$

%

&
&
&

!x
0

= 0  

 
 What is unique about your solution compared to the solution of Example 4.3.1. 
 
 Solution:  Following the calculations made for this system in Example 4.3.1, 

  

  

!
1

= "
1

= 1.414 rad/s,    !
2

= "
2

= 2 rad/s

P =
1

2

1 1

1 #1

$

%
&

'

(
) * S = M #1/ 2 P =

1

2

1

3

1

3
1 #1

$

%

&
&
&

'

(

)
)
)

 and  S #1
= PT M 1/ 2

=
1

2

3 1

3 #1

$

%
&

'

(
)

 

 Next compute the modal initial conditions 

  
    
r 0( ) = S !1x 0( ) =

1

0

"

#
$
%

&
' ,   and   !r 0( ) = S !1

!x 0( ) = 0  

 Modal solution (from Eqs. (4.67) and (4.68)): 

  
   
r t( ) =

cos1.414t

0

!

"
#

$

%
&  

Note that the second coordinate modal coordinate has zero initial conditions and is hence 
not vibrating.  Convert this solution back into physical coordinates: 

 

  

   

x t( ) = Sr t( ) =
1

2

1

3

1

3
1 !1

"

#

$
$
$

%

&

'
'
'

cos1.414t

0

"

#
$

%

&
'

                                 ( x t( ) =
0.236cos1.414t

0.707cos1.414t

"

#
$

%

&
'

 

 
 The unique feature about the solution is that both masses are vibrating at only one 

frequency.  That is the frequency of the first mode shape.  This is because the system is 
excited with a position vector equal to the first mode of vibration.



4.41    Consider the 2-degree-of-freedom system defined by: 

  
M =

9 0

0 1

!

"
#

$

%
& ,    and  K =

27 '3

'3 3

!

"
#

$

%
& . 

             Calculate the response of the system to the initial condition 

  

   

x
0

= 0,    and !x
0

=
1

2

1

3
!1

"

#

$
$
$

%

&

'
'
'

 

 What is unique about your solution compared to the solution of Example 4.3.1 
and to Problem 4.40, if you also worked that? 

 
 
 Solution: From example 4.3.1, 

  

  

!
1

= "
1

= 1.414 rad/s, !
2

= "
2

= 2 rad/s,  P =
1

2

1 1

1 #1

$

%
&

'

(
)

* S = M #1/ 2 P =
1

2

1

3

1

3
1 #1

$

%

&
&
&

'

(

)
)
)

,  and S #1
= PT M 1/ 2

=
1

2

3 1

3 #1

$

%
&

'

(
)

 

 Modal initial conditions: 

  
    
r 0( ) = S !1x 0( ) = 0,  and   !r 0( ) = S !1

!x 0( ) =
0

1

"

#
$
%

&
'  

 Modal solution (from Eqs. (4.67) and (4.68)): 

  

   

r t( ) =

0

1

!
2

cos2t

"

#

$
$
$

%

&

'
'
'

=
0

0.5cos2t

"

#
$

%

&
'  

 Convert to physical coordinates: 

  

   

x t( ) = Sr t( ) =
1

2

1

3

1

3
1 !1

"

#

$
$
$

%

&

'
'
'

0

0.5cos2t

"

#
$

%

&
' =

0.118cos2t

!0.354cos2t

"

#
$

%

&
'  

 
 Compared to Example 4.3.1, only the second mode is excited, because the initial velocity 

is proportional to the second mode shape, and the displacement is zero.  Compared to the 
previous problem, here it is the second mode rather then the first mode that is excited. 



4.42 Consider the system of Problem 4.1.  Let k1 = 10,000 N/m, k2 = 15,000 N/m, and k3 = 
10,000 N/m.  Assume that both masses are 100 kg.  Solve for the free response of this 
system using modal analysis and the initial conditions 

 

  
    
x 0( ) = 1 0!" #$

T
!x 0( ) = 0  

 
 Solution: Given: 

  

    

k
1

= 10,000 N/m m
1

= m
2

= 100 kg

k
2

= 15,000 N/m x 0( ) = 1 0!" #$
T

k
3

= 10,000 N/m !x 0( ) = 0

 

 Equation of motion: 
 

  

    

M!!x + Kx = 0

100 0

0 100

!

"
#

$

%
& !!x +

25,000 '15,000

'15,000 25,000

!

"
#

$

%
&x = 0

 

 
 Calculate eigenvalues and eigenvectors: 
 

  

   

M !1/ 2
=

0.1 0

0 0.1

"

#
$

%

&
'

!K = M !1/ 2 KM !1/ 2
=

250 !150

!150 250

"

#
$

%

&
'

det !K ! (I( ) = (2 ! 500( + 40,000 = 0

(
1

= 100 )
1

= 10 rad/s

(
2

= 400 )
2

= 20 rad/s

 

 

 

   

!
1

= 100

150 "150

"150 150

#

$
%

&

'
(

v
11

v
12

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
(

v
1

=
1

2

1

1

#

$
%
&

'
(

 

 



 

   

!
2

= 400

"150 "150

"150 "150

#

$
%

&

'
(

v
21

v
22

#

$
%
%

&

'
(
(

=
0

0

#

$
%
&

'
(

v
2

=
1

2

1

"1

#

$
%

&

'
(

 

 

 Now, 
   
P = v

1
v

2
!" #$ =

1

2

1 1

1 %1

!

"
&

#

$
'  

 
 Calculate S and S-1: 
 

  

  

S = M !1/ 2 P =
1

2

0.1 0.1

0.1 !0.1

"

#
$

%

&
'

S !1
= PT M 1/ 2

=
1

2

10 10

10 !10

"

#
$

%

&
'

 

 
 Modal initial conditions: 
 

  

    

r 0( ) = S !1x(0) =
1

2

10

10

"

#
$

%

&
'

!r 0( ) = S !1
!x 0( ) = 0

 

 
 Modal solutions: 
 

  

   

r
1

t( ) =
!

1
2r

10
2

+ !r
10
2

!
1

sin !
1
t + tan"1 !1

r
10

!r
10

#

$
%

&

'
(

r
2

t( ) =
!

2
2r

20
2

+ !r
20
2

!
2

sin !
2
t + tan"1 !2

r
20

!r
20

#

$
%

&

'
(

 

 
 So 

  

   

r
1

t( ) = 7.071sin 10t + ! / 2( ) = 7.071cos10t

r
2

t( ) = 7.071sin 20t + ! / 2( ) = 7.071cos20t

r t( ) =
7.071cos10t

7.071cos20t

"

#
$

%

&
'

 

 
 Convert to physical coordinates: 
 



  

   

x t( ) = Sr t( ) =
1

2

0.1 0.1

0.1 0.1

!

"
#

$

%
&

7.071cos10t

7.7071cos20t

!

"
#

$

%
&

x t( ) =

0.5 cos10t + cos20t( )

0.5 cos10t ' cos20t( )

!

"

#
#

$

%

&
&

 

 



4.43 Consider the model of a vehicle given in Problem 4.14 and illustrated in Figure P4.14.  
Suppose that the tire hits a bump which corresponds to an initial condition of 

 

  
   
x 0( ) =

0

0.01

!

"
#

$

%
& !x 0( ) = 0  

 
 Use modal analysis to calculate the response of the car x1(t).  Plot the response for three 

cycles.  
 
 Solution: From Problem 4.14, 

  
    
M!!x + Kx =

2000 0

0 50

!

"
#

$

%
& !!x +

1000 '1000

'1000 11,000

!

"
#

$

%
&x = 0  

 Calculate the eigenvalues and eigenvectors: 

  

    

M !1/ 2
=

0.0224 0

0 0.1414

"

#
$

%

&
' ,  !K = M !1/ 2 KM !1/ 2

=
0.5 !3.1623

!3.1623 0.1414

"

#
$

%

&
'

( det !K ! )I( ) = )2 ! 220.05) + 100 = 0 (
)

1
= 0.4545 *

1
= 0.6741 rad/s

)
2

= 220.05 *
2

= 14.834 rad/s

P = v
1

v
2

"# %& =
0.9999 !0.0144

0.0144 0.9999

"

#
$

%

&
'

 

 Calculate S and S-1: 

  
  
S = M !1/ 2 P =

0.0224 !0.003

0.0020 0.1414

"

#
$

%

&
' ,   S !1

= PT M 1/ 2
=

44.7167 0.1018

!0.6441 7.0703

"

#
$

%

&
'  

 Modal initial conditions: 

  
    
r 0( ) = S !1x 0( ) = S !1 0

0.01

"

#
$

%

&
' =

0.001018

0.07070

"

#
$

%

&
' ,   !r 0( ) = S !1

!x 0( ) = 0  

 Modal solution (from equations (4.67) and (4.68)): 
   
r t( ) =

0.001018cos0.6741t

0.07070cos14.834t

!

"
#

$

%
&  

 Convert to physical coordinates: 



   
x t( ) = Sr t( ) =

0.0224 !0.0003

0.0020 0.1414

"

#
$

%

&
'

0.001018cos0.6741t

0.07070cos14.834t

"

#
$

%

&
' =

2.277 (10!5 cos0.6741t ! 2.277 (10!5 cos14.834t

2.074 (10!6 cos0.6741t + 9.998 (10!3 cos14.834t

"

#
$

%

&
'

 



Problems and Solutions for Section 4.4 (4.44 through 4.55) 
 
4.44 A vibration model of the drive train of a vehicle is illustrated as the three-degree-

of-freedom system of Figure P4.44.  Calculate the undamped free response [i.e. 
M(t) = F(t) = 0, c1 = c2 = 0] for the initial condition x(0) = 0,   !x (0) = [0   0   1]T.  
Assume that the hub stiffness is 10,000 N/m and that the axle/suspension is 
20,000 N/m.  Assume the rotational element J is modeled as a translational mass 
of 75 kg. 

 
 Solution: Let k1 = hub stiffness and k2 = axle and suspension stiffness. 
 The equation of motion is 

  

    

75 0 0

0 100 0

0 0 3000

!

"

#
#
#

$

%

&
&
&

!!x + 10,000

1 '1 0

'1 3 '2

0 '2 2

!

"

#
#
#

$

%

&
&
&

x = 0

x 0( ) = 0 and !x 0( ) = 0 0 1!" $%
T

 m/s

 

 Calculate eigenvalues and eigenvectors: 

  

   

M !1/ 2
=

0.1155 0 0

0 0.1 0

0 0 0.0183

"

#

$
$
$

%

&

'
'
'

!K = M !1/ 2 KM !1/ 2
=

133.33 !115.47 0

!115.47 300 !36.515

0 !36.515 6.6667

"

#

$
$
$

%

&

'
'
'

 

 

  

   

det !K ! "I( ) = "
3
! 440"2

+ 28,222" = 0

"
1

= 0 #
1

= 0 rad/s

"
2

= 77.951 #
2

= 8.8290 rad/s

"
3

= 362.05 #
3

= 19.028 rad/s

 

 



  

  

v
1

=

0.1537

0.1775

0.9721

!

"

#
#
#

$

%

&
&
&

, v
2

=

'0.8803

'0.4222

0.2163

!

"

#
#
#

$

%

&
&
&

, v
3

=

0.4488

'0.8890

0.0913

!

"

#
#
#

$

%

&
&
&

 

 Use the mode summation method to find the solution. 
 Transform the initial conditions: 
 

  
    
q 0( ) = M !1/ 2x 0( ) = 0,    !q 0( ) = M 1/ 2

!x 0( ) = 0 0 54.7723"# $%
T

 

  
 The solution is given by: 
 

  
   
q t( ) = c

1
+ c

4
t( )v

1
+ c

2
sin !

2
t + "

2( )v
2

+ c
3
sin !

3
t + "

3( )v
3
 

 where 

 

    

!
i
= tan"1

#
i
v

i
Tq 0( )

v
i
Tq 0( )

$

%
&

'

(
) i = 2,3

c
i
=

v
i
T
!q 0( )

#
i
cos!

i = 2,3

 

Thus, 
   !2

= !
3

= 0,c
2
"1.3417,  and c

3
= 0.2629  

So, 

 

    

q 0( ) = c
1
v

1
+ c

i
sin!

i
v

i
i=2

3

"

!q 0( ) = c
4
v

1
+ #

i
c

i
cos!

i
v

i
i=2

3

"
 

Premultiply by  v1
T ;  

 

    

v
1
Tq 0( ) = 0 = c

1

v
1
T
!q 0( ) = 53.2414 = c

4

 

So, 

 
   
q t( ) = 53.2414tv

1
+ 1.3417sin 8.8290t( )v

2
+ 0.2629sin 19.028t( )v

3
 

Change to q(t): 

 

   

x t( ) = M !1/ 2q t( )

x t( ) = 0.9449t

1

1

1

"

#

$
$
$

%

&

'
'
'

+

!0.1364

!0.05665

0.005298

"

#

$
$
$

%

&

'
'
'

sin8.8290t +

0.01363

!0.02337

0.0004385

"

#

$
$
$

%

&

'
'
'

sin19.028t  m
 

 
  



4.45 Calculate the natural frequencies and normalized mode shapes of 
 

  

   

4 0 0

0 2 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x +

4 '1 0

'1 2 '1

0 '1 1

!

"

#
#
#

$

%

&
&
&

x = 0  

 
 Solution: Given the indicated mass and stiffness matrix, calculate eigenvalues: 

  

   

M !1/ 2
=

0.5 0 0

0 0.7071 0

0 0 1

"

#

$
$
$

%

&

'
'
'

( !K = M !1/ 2 KM !1/ 2
=

1 !0.3536 0

!0.3536 1 !0.7071

0 !0.7071 1

"

#

$
$
$

%

&

'
'
'

 

  

   

det !K ! "I( ) = "
3
! 3"2

+ 2.375" ! 0.375 = 0

"
1

= 0.2094,   "
2

= 1,    "
3

= 1.7906
 

 The natural frequencies are: 

  

 

!
1

= 0.4576 rad/s

!
2

= 1 rad/s

!
3

= 1.3381 rad/s

 

 The corresponding eigenvectors are: 

  

  

v
1

=

!0.3162

!0.7071

!0.6325

"

#

$
$
$

%

&

'
'
'

v
2

=

0.8944

0

!0.4472

"

#

$
$
$

%

&

'
'
'

v
3

=

0.3162

!0.7071

0.6325

"

#

$
$
$

%

&

'
'
'

 

 The relationship between eigenvectors and mode shapes is 

     u = M !1/ 2v  
 The mode shapes are: 

  

  

u
1

=

!0.1581

!0.5

!0.6325

"

#

$
$
$

%

&

'
'
'

, u
2

=

0.4472

0

!0.4472

"

#

$
$
$

%

&

'
'
'

, u
3

=

0.1581

!0.5

0.6325

"

#

$
$
$

%

&

'
'
'

 

 The normalized mode shapes are 
 

                           

   

û
1

=
u

1

u
1
T u

1

=

0.192

0.609

0.77

!

"

#
#
#

$

%

&
&
&

, û
2

=

0.707

0

'0.707

!

"

#
#
#

$

%

&
&
&

, û
3

=

0.192

'0.609

0.77

!

"

#
#
#

$

%

&
&
&

.



4.46 The vibration is the vertical direction of an airplane and its wings can be 
modeled as a three-degree-of-freedom system with one mass corresponding to the 
right wing, one mass for the left wing, and one mass for the fuselage.  The 
stiffness connecting the three masses corresponds to that of the wing and is a 
function of the modulus E of the wing.  The equation of motion is 

 

  

   

m

1 0 0

0 4 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x
1

!!x
2

!!x
3

!

"

#
#
#

$

%

&
&
&

+
EI

l3

3 '3 0

'3 6 '3

0 '3 3

!

"

#
#
#

$

%

&
&
&

x
1

x
2

x
3

!

"

#
#
#

$

%

&
&
&

=

0

0

0

!

"

#
#
#

$

%

&
&
&

 

 
 The model is given in Figure P4.46.  Calculate the natural frequencies and mode 

shapes.  Plot the mode shapes and interpret them according to the airplane's 
deflection. 

 
Solution:  Given the equation of motion indicated above, the mass-normalized 
stiffness matrix is calculated to be 

   

M ! 1
2 =

1

m

1 0 0

0 0.5 0

0 0 1

"

#

$
$
$

%

&

'
'
'

,   !K = M ! 1
2 KM ! 1

2 =
EI

m"3

3 !1.5 0

!1.5 1.5 !1.5

0 !1.5 3

"

#

$
$
$

%

&

'
'
'

 

Computing the matrix eigenvalue by factoring out the constant 
   

EI

m!3
 yields 

   
det( !K ! "I ) = 0 #"

1
= 0,    "

2
= 3

EI

m"3
,    "

3
= 4.5

EI

m"3
 

and eigenvectors: 

  

v
1

=

0.4082

0.8165

0.4082

!

"

#
#
#

$

%

&
&
&

     v
2

=

'0.7071

0

0.7071

!

"

#
#
#

$

%

&
&
&

   v
3

=

0.5774

'0.5774

0.5774

!

"

#
#
#

$

%

&
&
&

 



The natural frequencies are ω1 = 0, ω2 = 1.7321
   

EI

m!3
 rad/s, and ω3 = 

2.1213
   

EI

m!3
 rad/s. 

 
The relationship between the mode shapes and eigenvectors u is just u = M-1/2v.  
The fist mode shape is the rigid body mode.  The second mode shape corresponds 
to one wing up and one down the third mode shape corresponds to the wings 
moving up and down together with the body moving opposite.  Normalizing the 
mode shapes yields (calculations in Mathcad): 

 
These are plotted: 

 



4.47 Solve for the free response of the system of Problem 4.46.  Where E = 6.9 × 109 
N/m2, l = 2 m, m = 3000 kg, and I = 5.2 × 10-6m4.  Let the initial displacement 

correspond to a gust of wind that causes an initial condition of 
   
!x 0( ) = 0,  x(0) = 

[0.2   0   0]T m.  Discuss your solution. 
 

Solution: From problem 4.43 and the given data 

    

3000 0 0

0 12,000 0

0 0 3,000

!

"

#
#
#

$

%

&
&
&

!!x +

1.346 '1.346 0

'1.346 2.691 '1.346

0 '1.346 1.346

!

"

#
#
#

$

%

&
&
&

(104 x = 0

x 0( ) = 0.2 0 0!" $%
T

m

!x 0( ) = 0

 

 
 Convert to q: 
 

    

I!!q +

4.485 !2.242 0

!2.242 2.242 !2.242

0 !2.242 4.485

"

#

$
$
$

%

&

'
'
'

q = 0  

 
 Calculate eigenvalues and eigenvectors: 
 

   

det !K ! "I( ) = 0 #

                   

"
2

= 0 $
1

= 0 rad/s

"
2

= 4.485 $
2

= 2.118 rad/s

"
3

= 6.727 $
3

= 2.594 rad/s

 

 

  

v
1

=

0.4082

0.8165

0.4082

!

"

#
#
#

$

%

&
&
&

v
2

=

'0.7071

0

0.7071

!

"

#
#
#

$

%

&
&
&

v
3

=

0.5774

'0.5774

0.5774

!

"

#
#
#

$

%

&
&
&

 

 
 The solution is given by 
 

   
q t( ) = c

1
+ c

4
t( )v

1
+ c

2
sin !

2
t + "

2( )v
2

+ c
3
sin !

3
t + "

3( )v
3
 

 
 where 



    

!
i
= tan"1

#
i
v

i
Tq 0( )

v
i
T
!q 0( )

$

%
&

'

(
) i = 2,3

c
i
=

v
i
Tq 0( )

sin!
i

i = 2,3

 

 

 Thus, 
  
!

2
= !

3
=
"

2
,c

2
= #7.7459,   and c

3
= 6.3251 

 So, 

    

q 0( ) = c
1
v

1
+ c

i
sin!

i
v

i
i=2

3

"

!q 0( ) = c
4
v

i
+ #

i
c

i
cos!

i
v

i
i=2

3

"
 

 Premultiply by  v i
T : 

    

v
i
Tq 0( ) = 4.4716 = c

1

v
i
T
!q 0( ) = 0 = c

4

 

 So, 
   
q t( ) = 4.4716v

1
! 7.7459cos 2.118t( )v

2
+ 6.3251cos 2.594t( )v

3
 

 Convert to physical coordinates: 
 

   

x t( ) = M !1/ 2q t( )"

x t( ) =

0.0333

0.0333

0.0333

#

$

%
%
%

&

'

(
(
(

+

0.1

0

!0.1

#

$

%
%
%

&

'

(
(
(

cos2.118t +

0.0667

!0.0333

0.0667

#

$

%
%
%

&

'

(
(
(

cos2.594t  m
 

 
 The first term is a rigid body mode, which represents (in this case) a fixed 

displacement around which the three masses oscillate. Mode two has the highest 
amplitude (0.1 m). 

 



4.48 Consider the two-mass system of Figure P4.48.  This system is free to move in the 

  x1
! x

2
 plane.  Hence each mass has two degrees of freedom.  Derive the linear 

equations of motion, write them in matrix form, and calculate the eigenvalues and 
eigenvectors for m = 10 kg and k = 100 N/m. 

 
 Solution: Given:   m = 10kg,k = 100 N/m  
 Mass 1 

   

x
1
! direction:   m!!x

1
= !4kx

1
+ k x

3
! x

1( ) = !5kx
1
+ kx

3

x
2
! direction:   m!!x

2
= !3kx

2
! kx

2
= !4kx

2

 

 Mass 2 

  

   

x
3
! direction:   m!!x

3
= !4kx

3
! k x

3
! x

1( ) = !kx
1
! 5kx

3

x
4
! direction:   m!!x

4
= !4kx

4
! 2kx

4
= !6kx

4

 

 In matrix form with the values given: 

  

    

10 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10

!

"

#
#
#
#

$

%

&
&
&
&

!!x +

500 0 '100 0

0 400 0 0

'100 0 500 0

0 0 0 600

!

"

#
#
#
#

$

%

&
&
&
&

x = 0

"K = M '1/ 2 KM '1/ 2
=

50 0 '10 0

0 40 0 0

'10 0 50 0

0 0 0 60

!

"

#
#
#
#

$

%

&
&
&
&

 

  

   

det !K ! "I( ) = "
4
! 200"3

+ 14,800"2
! 480,000" + 5,760,000 = 0

           #"
1

= 40,   "
2

= 40,   "
3

= 60,   "
4

= 60
 

 The corresponding eigenvectors are found from solving 
    (
!K ! "

i
)v

i
= 0  for each 

value of the index and normalizing: 

  

  

v
1

=

0

1

0

0

!

"

#
#
#
#

$

%

&
&
&
&

v
2

=

0.7071

0

0.7071

0

!

"

#
#
#
#

$

%

&
&
&
&

v
3

=

0.7071

0

'0.7071

0

!

"

#
#
#
#

$

%

&
&
&
&

v
4

=

0

0

0

1

!

"

#
#
#
#

$

%

&
&
&
&

 

 These are not unique. 
 



 
 
4.49   Consider again the system discussed in Problem 4.48.  Use modal analysis to 
calculate the solution if the mass on the left is raised along the x2 direction exactly 0.01 m 
and let go. 

 
 Solution: From Problem 4.48: 
 

  

    

10 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10

!

"

#
#
#
#

$

%

&
&
&
&

!!x +

500 0 '100 0

0 400 0 0

'100 0 500 0

0 0 0 600

!

"

#
#
#
#

$

%

&
&
&
&

x = 0

M '1/ 2
= 0.3162

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

!

"

#
#
#
#

$

%

&
&
&
&

 

 

  

   

!K = M !1/ 2 KM !1/ 2
=

50 0 !10 0

0 40 0 0

!10 0 50 0

0 0 0 60

"

#

$
$
$
$

%

&

'
'
'
'

(
1

= 40 )
1

= 6.3246 rad/s

(
2

= 40 )
2

= 6.3246 rad/s

(
3

= 60 )
3

= 7.7460 rad/s

(
4

= 60 )
4

= 7.7460 rad/s

 

 

  

  

v
1

=

0

1

0

0

!

"

#
#
#
#

$

%

&
&
&
&

v
2

=

0.7071

0

0.7071

0

!

"

#
#
#
#

$

%

&
&
&
&

v
3

=

0.7071

0

'0.7071

0

!

"

#
#
#
#

$

%

&
&
&
&

v
4

=

0

0

0

1

!

"

#
#
#
#

$

%

&
&
&
&

 

 

 Also, x(0)=[0   0.01   0   0]T m and 
   
!x 0( ) = 0  

 
 Use the mode summation method to find the solution. 
 Transform the initial conditions: 
 



  

    

q 0( ) = M 1/ 2x 0( ) = 0 0.003162 0 0!" #$
T

!q 0( ) = M 1/ 2
!x 0( ) = 0

 

 
 The solution is given by Eq. (4.103), 
 

  
   
x t( ) = d

i
sin !

i
t + "

i( )u
i

i=1

4

#  

 where 

  

    

!
i
= tan"1

#
i
v

i
Tq 0( )

v
i
T
!q 0( )

$

%
&

'

(
) i = 1,2,3,4 (Eq.(4.97))

d
i
=

v
i
Tq 0( )

sin!
i

i = 1,2,3,4 Eq. 4.98( )( )

u
i
= M "1/ 2v

i

 

 
 Substituting known values yields 
 

  

  

!
1

= !
2

= !
3

= !
4

=
"

2
 rad

d
1

= 0.003162

d
2

= d
3

= d
4

= 0

 

 

  

  

u
1

=

0

0.3162

0

0

!

"

#
#
#
#

$

%

&
&
&
&

u
2

=

0.2236

0

0.2236

0

!

"

#
#
#
#

$

%

&
&
&
&

u
3

=

0.2236

0

'0.2236

0

!

"

#
#
#
#

$

%

&
&
&
&

u
4

=

0

0

0

0.3162

!

"

#
#
#
#

$

%

&
&
&
&

 

 
 The solution is 
 

  

   

x t( ) =

0

0.001cos6.3246t

0

0

!

"

#
#
#
#

$

%

&
&
&
&

 

 
 
 



4.50 The vibration of a floor in a building containing heavy machine parts is modeled 
in Figure P4.50.  Each mass is assumed to be evenly spaced and significantly 
larger than the mass of the floor.  The equation of motion then becomes 

  
m

1
= m

2
= m

3
= m( ) . 

 

  

    

mI!!x +
EI

l3

9

64

1

6

13

192
1

6

1

3

1

6
13

192

1

6

9

64

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x
1

x
2

x
3

!

"

#
#
#

$

%

&
&
&

= 0  

 
 Calculate the natural frequencies and mode shapes.  Assume that in placing box 

m2 on the floor (slowly) the resulting vibration is calculated by assuming that the 
initial displacement at m2 is 0.05 m.  If l = 2 m, m = 200 kg, E = 0.6 × 109 N/m2, I 
= 4.17 × 10-5 m4.  Calculate the response and plot your results. 

 
 Solution: 
The equations of motion can be written as 
 

   

m

1 0 0

0 1 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x
1

!!x
2

!!x
3

'

(
)

*
)

+

,
)

-
)

+
EI

l3

9

64

1

6

13

192
1

6

1

3

1

6
13

192

1

6

9

64

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x
1

x
2

x
2

!

"

#
#
#

$

%

&
&
&

= 0  

 
or    mI!!x + Kx = 0  where I is the 3x3 identity matrix. 
 
The natural frequencies of the system are obtained using the characteristic equation 
 

  
K !"

2 M = 0  

 
Using the given mass and stiffness matrices yields the following characteristic equation 
 



  
m3
!

6
"

59EI m3

96l3
!

4
+

41 EI( )
2

m

768l6
!

2
"

7 EI( )
3

6912l9
= 0  

 
Substituting for E, I, m, and l yields the following answers for the natural frequency 
 

  
!

1
= ±

13" 137( ) EI

ml3
, 
  
!

2
= ±

7EI

96ml3
, 
  
!

3
= ±

13+ 137( ) EI

48ml3
 

 
The plus minus sign shown above will cause the exponential terms to change to 
trigonometric terms using Euler’s formula. Hence, the natural frequencies of the system 
are 0.65 rad/sec, 1.068 rad/sec and 2.837 rad/sec. 
 
Let the mode shapes of the system be u1, u2 and u3. The mode shapes should satisfy the 
following equation 
 

  

K !"
1
2 M#

$
%
&

u
i1

u
i2

u
i3

'

(
)

*
)

+

,
)

-
)

= 0,i = 1,2,3  

 

Notice that the system above does not have a unique solution for u1 since 
  

K !"
1
2 M#

$
%
&  

had to be singular in order to solve for the natural frequency! . Solving the above 
equation yields the following relations 
 

  

u
i2

u
i3

=
1

3

96m!
i
2l3

" 7EI

13m!
i
2l3

+ EI
,i = 1,2,3  

and   ui1
= u

i3
,i = 1,3  but for the second mode shape this is different   u21

= u
23

 

 
Substituting the values given yields 
 

  

u
12

u
13

=
1

3

96m!
1
2l3

" 7EI

13m!
1
2l3

+ EI
= "1.088  

 

  

u
22

u
23

=
1

3

96m!
2
2l3

" 7EI

13m!
2
2l3

+ EI
= 0  

 

  

u
32

u
33

=
1

3

96m!
3
2l3

" 7EI

13m!
3
2l3

+ EI
= 1.838  

 



If we let  ui3
= 1,i = 1,2,3, then 

 

  

u
1

=

1

!1.088

1

"

#
$

%
$

&

'
$

(
$

,u
2

=

!1

0

1

"

#
$

%
$

&

'
$

(
$

,u
3

=

1

1.838

1

"

#
$

%
$

&

'
$

(
$

 

 
These mode shapes can be normalized to yield 
 

  

u
1

=

0.5604

!0.6098

0.5604

"

#
$

%
$

&

'
$

(
$

,u
2

=

!0.7071

0

0.7071

"

#
$

%
$

&

'
$

(
$

,u
3

=

0.4312

0.7926

0.4312

"

#
$

%
$

&

'
$

(
$

 

 
This solution is the same if obtained using MATLAB 
 

  

u
1

=

!0.5604

0.6098

!0.5604

"

#
$

%
$

&

'
$

(
$

, 

  

u
2

=

!0.7071

0.0000

0.7071

"

#
$

%
$

&

'
$

(
$

, 

  

u
3

=

0.4312

0.7926

0.4312

!

"
#

$
#

%

&
#

'
#

 

 
The second box, m2, is placed slowly on the floor; hence, the initial velocity can be safely 
assumed zero. The initial displacement at m2 is given to be 0.05 m. 
 
Hence, the initial conditions in vector form are given as 
 

  

x 0( ) =

0

!0.05

0

"

#
$

%
$

&

'
$

(
$

and 

   

!x 0( ) =

0

0

0

!

"
#

$
#

%

&
#

'
#

 

 

The equations of motion given by 
   
M!!x t( ) + Kx t( ) = 0  can be transformed into the modal 

coordinates by applying the following transformation 
 

   
x t( ) = Sr t( ) = M

!
1

2 Pr t( ) where P is the basis formed by the mode shapes of the system, 

given by 
 

  
P = u

1
u

2
u

3
!" #$  

 
Hence, the transformation S is given by 
 



  

S =

!0.04 !0.05 0.03

0.043 0 0.056

!0.04 0.05 0.03

"

#

$
$
$

%

&

'
'
'

 

 
The initial conditions will be also transformed 
 

   

r 0( ) = S !1x 0( ) =

!0.431

0

!0.56

"

#
$

%
$

&

'
$

(
$

 

 
Hence, the modal equations are 
 
with the above initial conditions. 
 
The solution will then be 
 

r t( ) =

0.431cos 0.65t( )

0

0.56cos 2.837t( )

!

"
#

$
#

%

&
#

'
#

 

 
The solution can then be determined by 
 

x t( ) =

0.0172cos 0.65t( ) ! 0.0168cos 2.837t( )

!0.0185cos 0.65t( ) ! 0.0313cos 2.837t( )

0.0172cos 0.65t( ) ! 0.0168cos 2.837t( )

"

#
$

%
$

&

'
$

(
$

 

 
The equations of motion can be also be solved using MATLAB to yield the following 
response.  
 



 
Figure 1 Numerical response due to initial deflection at m2 

 

 
Figure 2 Numerical vs. Analytical Response (shown for x1 and x2 only) 

 
The MATLAB code is attached below 
 
% Set the values of the physical parameters 
% 
************************************************************************
* 
 
% Declare global variables to be used in the differential equation file 
global M K 



 
% Define the mass of the each box 
m=200; 
 
% Define the distance l 
l=2; 
 
% Define the area moment of inertia 
I=4.17*10^-5; 
 
% Define the modulus of elasticity 
E=0.6*10^9; 
 
% Define the flexural rigidity 
EI=E*I; 
 
% Define the system matrices 
% 
************************************************************************
* 
 
% Define the mass matrix 
M=m*eye(3,3); 
 
% Define the stiffness matrix 
K=EI/l^3*[9/64 1/6 13/192;1/6 1/3 1/6;13/192 1/6 9/64]; 
 
% Solve the eigen value problem 
[u,lambda]=eig(M\K); 
 
% Simulate the response of the system to the given initial conditions 
% The states are arranges as: [x1;x2;x3;x1_dot;x2_dot;x3_dot] 
[t,xn]=ode45('sys4p47',[0 10],[0 ; -0.05 ; 0 ; 0 ; 0 ; 0]); 
 
% Plot the results 
plot(t,xn(:,1),t,xn(:,2),'--',t,xn(:,3),'-.'); 
set(gcf,'Color','White'); 
xlabel('Time(sec)'); 
ylabel('Displacement(m)'); 
legend('x_1','x_2','x_3'); 
 
% Analytical solution 
 
for i=1:length(t) 
    xa(:,i)=[0.0172*cos(0.65*t(i))-0.0168*cos(2.837*t(i)); 
             -0.0185*cos(0.65*t(i))-0.0313*cos(2.837*t(i)) ; 



             0.0172*cos(0.65*t(i))-0.0168*cos(2.837*t(i))]; 
end; 
 
% Camparison 
figure; 
plot(t,xn(:,1),t,xa(1,:),'--',t,xn(:,2),t,xa(2,:),'--'); 
set(gcf,'Color','White'); 
xlabel('Time(sec)'); 
ylabel('Displacement(m)'); 
legend('x_1 Numerical','x_1 Analytical','x_2 Numerical','x_2 Analytical'); 
  
 
 
 
4.51 Recalculate the solution to Problem 4.50 for the case that m2 is increased in mass 

to 2000 kg.  Compare your results to those of Problem 4.50.  Do you think it 
makes a difference where the heavy mass is placed? 

 
Solution: Given the data indicated the equation of motion becomes:  

    

200 0 0

0 2000 0

0 0 200

!

"

#
#
#

$

%

&
&
&

!!x + 3.197 '10(4

9 / 64 1 / 6 13 / 192

1 / 6 1 / 3 1 / 6

13 / 192 1 / 6 9 / 64

!

"

#
#
#

$

%

&
&
&

x = 0

x(0) = [0 0.05 0]T , !x(0) = 0

 

 Calculate eigenvalues and eigenvectors:  
 

  

   

M !1/ 2
=

0.07071 0 0

0 0.02246 0

0 0 0.07071

"

#

$
$
$

%

&

'
'
'

!K = M !1/ 2 KM !1/ 2
=

2.2482 0.8246 1.0825

0.8246 0.5329 0.8246

1.0825 0.8246 2.2482

"

#

$
$
$

%

&

'
'
'

(10!7

 

 

  

   

det !K ! "I( ) = "
3
! 9.8255#10!7

"
2

+ 1.3645#10!14
" ! 4.1382 #10!22

= 0

"
1

= 4.3142 #10!9
$

1
= 2.0771#10!5  rad/s

"
2

= 1.1657 #10!7
$

2
= 3.4143#10!4  rad/s

"
3

= 8.2283#10!7
$

3
= 9.0710 #10!4  rad/s

 

 



  

  

v
1

=

0.2443

!0.9384

0.2443

"

#

$
$
$

%

&

'
'
'

v
2

=

0.7071

0

!0.7071

"

#

$
$
$

%

&

'
'
'

v
3

=

0.6636

0.3455

0.6636

"

#

$
$
$

%

&

'
'
'

 

 
 Use the mode summation method to find the solution. Transform the initial 

conditions: 
 

  

    

q 0( ) = M 1/ 2x 0( ) = 0 2.2361 0!" #$
T

!q 0( ) = M 1/ 2
!x 0( ) = 0

 

 
 The solution is given by Eq. (4.103), 

  
   
x t( ) = d

i
sin !

i
t + "

i( )u
i

i=1

4

#  

 
 where 
 

  

    

!
i
= tan"1

#
i
v

i
Tq 0( )

v
i
T
!q 0( )

$

%
&

'

(
) i = 1,2,3 Eq. 4.97( )( )

d
i
=

v
i
Tq 0( )

sin!
i

i = 1,2,3 Eq. 4.98( )( )

u
i
= M "1/ 2v

i

 

 
 Substituting known values yields 
 

  

  

!
1

= !
2

= !
3

=
"

2
 rad

d
1

= #2.0984

d
2

= 0

d
3

= 0.7726

 

 

  

  

u
1

=

0.0178

!0.02098

0.01728

"

#

$
$
$

%

&

'
'
'

u
2

=

0.05

0

!0.05

"

#

$
$
$

%

&

'
'
'

u
3

=

0.04692

0.007728

0.04692

"

#

$
$
$

%

&

'
'
'

 

 
 The solution is 
 



  

   

x t( ) =

!0.03625

0.04403

!0.03625

"

#

$
$
$

%

&

'
'
'

cos 9.7044 (10!5t( ) +

0.03625

0.005969

0.0325

"

#

$
$
$

%

&

'
'
'

cos 6.1395(10!4 t( )  m  

 
 The results are very similar to Problem 50.  The responses of mass 1 and 3 are the 

same for both problems, except the amplitudes and frequencies are changed due 
to the increase in mass 2.  There would have been a greater change if the heavy 
mass was placed at mass 1 or 3. 

 



4.52 Repeat Problem 4.46 for the case that the airplane body is 10 m instead of 4 m as 
indicated in the figure.  What effect does this have on the response, and which 
design (4m or 10 m) do you think is better as to vibration? 

 
 Solution: Given: 

  

    

m

1 0 0

0 10 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x +
EI

l3

3 '3 '

'3 6 '3

0 '3 3

!

"

#
#
#

$

%

&
&
&

x = 0  

 
 Calculate eigenvalues and eigenvectors: 
 

  

   

M !1/ 2
= m!1/ 2

1 0 0

0 0.3612 0

0 0 1

"

#

$
$
$

%

&

'
'
'

!K = M !1/ 2 KM !1/ 2
=

EI

ml3

3 !0.9487 0

!0.9487 0.6 !0.9487

0 !0.9487 3

"

#

$
$
$

%

&

'
'
'

 

 Again choose the parameters so that the coefficient is 1 and compute the 
eigenvalues: 

  

    

det !K ! "I( ) = "3 ! 6.6"2
+ 10.8" = 0

"
1

= 0

"
2

= 3

"
3

= 3.6

v
1

=

!0.2887

!0.9129

!0.2887

#

$

%
%
%

&

'

(
(
(

v
2

=

0.7071

0

!0.7071

#

$

%
%
%

&

'

(
(
(

v
3

=

0.6455

!0.4082

0.6455

#

$

%
%
%

&

'

(
(
(

 

 
 The natural frequencies are 
 

  

 

!
1

= 0 rad/s

!
2

= 1.7321  rad/s

!
3

= 1.8974 rad/s

 

 The relationship between eigenvectors and mode shapes is 

  

   

u = M !1/ 2v

u
1

= m!1/ 2

!0.2887

!0.2887

!0.2887

"

#

$
$
$

%

&

'
'
'

u
2

= m!1/ 2

0.7071

0

!0.7071

"

#

$
$
$

%

&

'
'
'

u
3

=

0.6455

!0.1291

0.6455

"

#

$
$
$

%

&

'
'
'

 



 
 It appears that the mode shapes contain less "amplitude" for the wing masses.  

This seems to be a better design from a vibration standpoint. 



4.53 Often in the design of a car, certain parts cannot be reduced in mass.  For 
example, consider the drive train model illustrated in Figure P4.44.  The mass of 
the torque converter and transmission are relatively the same from car to car.  
However, the mass of the car could change as much as 1000 kg (e.g., a two-seater 
sports car versus a family sedan).  With this in mind, resolve Problem 4.44 for the 
case that the vehicle inertia is reduced to 2000 kg.  Which case has the smallest 
amplitude of vibration? 

 
 Solution: Let k1 = hub stiffness and k2 = axle and suspension stiffness. From 

Problem 4.44, the equation of motion becomes 

  

    

75 0 0

0 100 0

0 0 2000

!

"

#
#
#

$

%

&
&
&

!!x + 10,000

1 '1 0

'1 3 '2

0 '2 2

!

"

#
#
#

$

%

&
&
&

x = 0

x 0( ) = 0 and !x 0( ) = 0 0 1!" $%
T

 m/s.

 

 Calculate eigenvalues and eigenvectors. 
 

  

   

M !1/ 2
=

0.1155 0 0

0 0.1 0

0 0 0.0224

"

#

$
$
$

%

&

'
'
'

!K = M !1/ 2 KM !1/ 2
=

133.33 !115.47 0

!115.47 300 !44.721

0 !44.721 10

"

#

$
$
$

%

&

'
'
'

 

 

  

    

det !K ! "I( ) = "3 ! 443.33"2
+ 29,000" = 0

"
1

= 0 #
1

= 0 rad/s

"
2

= 70.765 #
2

= 8.9311 rad/s

"
3

= 363.57 #
3

= 19.067 rad/s

v
1

=

!0.1857

!0.2144

!0.9589

$

%

&
&
&

'

(

)
)
)

v
2

=

0.8758

0.4063

!0.2065

$

%

&
&
&

'

(

)
)
)

v
3

=

0.4455

!0.8882

0.1123

$

%

&
&
&

'

(

)
)
)

 

 
 Use the mode summation method to find the solution.  Transform the initial 

conditions: 

  

    

q 0( ) = M 1/ 2x 0( ) = 0

!q 0( ) = M 1/ 2
!x 0( ) = 0 0 44.7214!" #$

T  



 
 The solution is given by 
 

  
   
q t( ) = c

1
+ c

4
t( )v

1
+ c

2
sin !

2
t + "

2( )v
2

+ c
3
sin !

3
t + "

3( )v
3
 

where  

    

!
i
= tan"1 #

i
v

i
Tq(0)

v
i
T
!q(0)

$

%
&

'

(
) ,    i = 2,3

c
i
=

v
i
Tq(0)

#
i
cos!

i

,    i = 2,3

 

Thus φ2 = φ3 =0, c2 = -1.3042 and c3 = 0.2635.  Next apply the initial conditions: 

    
q(0) = c

1
v

1
+ c

i
i=2

3

! sin"
i
v

i
  and  !q(0) = c

4
v

1
+ c

i
i=2

3

! sin"
i
v

i
 

 Pre multiply each of these by v1
T to get: 

    c1
= 0 = v

1
Tq(0)  and  c

4
= !42.8845 = v

1
T
!q(0)  

 So 

   q(t) = !42.8845tv
1
!1.3042sin(8.9311t)v

2
+ 0.2635sin(19.067t)v

3
 

 Next convert back to the physical coordinates by 

   

x(t) = M
! 1

2q(t)

       = 0.9195t

1

1

1

"

#

$
$
$

%

&

'
'
'

+

!0.1319

!0.05299

0.007596

"

#

$
$
$

%

&

'
'
'

sin8.9311t +

0.01355

!0.02340

0.0006620

"

#

$
$
$

%

&

'
'
'

sin19.067t  m
 

Comparing this solution to problem 4.44, the car will vibrate at a slightly higher 
amplitude when the mass is reduced to 2000 kg. 

 
 
4.54 Use mode summation method to compute the analytical solution for the response 

of the 2-degree-of-freedom system of Figure P4.28 with the values where m1 = 1 
kg, m2 = 4 kg, k1 =  240 N/m and k2=300 N/m,  to the initial conditions of 

 

x0 =
0

0.01
!

"
#

$

%
&,    !x0 =

0

0
!

"
#

$

%
& . 

Solution: Following the development of equations (4.97) through (4.103) for the mode 
summation for the free response and using the values of computed in problem 1, compute 
the initial conditions for the “q” coordinate system: 

M 1/2
=

1 0

0 2
!

"
#

$

%
& ' q 0( ) =

1 0

0 2
!

"
#

$

%
&

0

0.01
!

"
#

$

%
& =

0

0.02
!

"
#

$

%
&,q 0( ) =

1 0

0 2
!

"
#

$

%
&

0

0
!

"
#

$

%
& =

0

0
!

"
#

$

%
&  

From equation (4.97): 

!1 = tan"1 x

0
#
$%

&
'(

= !2 = tan"1 x

0
#
$%

&
'(

=
)
2

 

From equation (4.98): 



d1 =
v1

T q 0( )

sin !
2( )

= v1
T q 0( ),d2 =

v2
T q 0( )

sin !
2( )

= v2
T q 0( )  

Next compute q t( ) from (4.92) and multiply by M 1/2  to get x t( )  or use (4.103) directly 

to get 
q t( ) = d1 cos !1t( )v1 + d2 cos !2t( )v2 = cos !1t( )v1

T q 0( )v1 + cos !2t( )v1
T q 0( )v1

= cos 5.551t( )
0.0054

0.0184
"

#
$

%

&
' + cos 24.170t( )

(0.0054

0.0016
"

#
$

%

&
'

 

Note that as a check, substitute t = 0  in this last line to recover the correct initial 
condition q 0( ) . Next transform the solution back to the physical coordinates 

x t( ) = M !1/2q t( ) = cos 5.551t( )
0.0054

0.0092
"

#
$

%

&
' + cos 24.170t( )

!0.0054

0.0008
"

#
$

%

&
'  m 

 
4.55 For a zero value of an eigenvalue and hence frequency, what is the corresponding 

time response?  Or asked another way, the form of the modal solution for a non-
zero frequency is 

� 

Asin(!nt + ") , what is the form of the modal solution that 
corresponds to a zero frequency?   Evaluate the constants of integration if the 
modal initial conditions are: 01.0)0(  and ,1.0)0( 11 == rr ! . 

 
 Solution: A zero eigenvalue corresponds to the modal equation:  

btatrtr +=!= )(0)( 11!!  
Applying the given initial conditions: 

ttr

br

abar

01.01.0)(

01.0)0(

1.01.0)0()0(

1

1

1

+=!

==

=!=+=

!  

 



Problems and Solutions for Section 4.5 (4.56 through 4.66) 
 
4.56 Consider the example of the automobile drive train system discussed in Problem 4.44.  

Add 10% modal damping to each coordinate, calculate and plot the system response. 
 
 Solution: Let k1 = hub stiffness and k2 = axle and suspension stiffness. From Problem 

4.44, the equation of motion with damping is 

  

    

75 0 0

0 100 0

0 0 3000

!

"

#
#
#

$

%

&
&
&

!!x + 10,000

1 '1 0

'1 3 '2

0 '2 2

!

"

#
#
#

$

%

&
&
&

x = 0

x 0( ) = 0 and !x 0( ) = 0 0 1!" $%
T

 m/s

 

 Other calculations from Problem 4.44 yield: 

  

  

!
1

= 0 "
1

= 0  rad/s

!
2

= 77.951 "
2

= 8.8290 rad/s

!
3

= 362.05 "
3

= 19.028 rad/s

v
1

=

0.1537

0.1775

0.9721

#

$

%
%
%

&

'

(
(
(

v
2

=

)0.8803

)0.4222

0.2163

#

$

%
%
%

&

'

(
(
(

v
3

=

0.4488

)0.8890

0.0913

#

$

%
%
%

&

'

(
(
(

 

 Use the summation method to find the solution. Transform the initial conditions: 

  

    

q 0( ) = M 1/ 2x 0( ) = 0

!q 0( ) = M 1/ 2
!x 0( ) = 0 0 54.7723!" #$

T  

 Also,  !1
= !

2
= !

3
= 0.1.  

  
  

!
d 2

= 8.7848  rad/s

!
d 3

= 18.932  rad/s
 

 The solution is given by 

  
   
q t( ) = c

1
+ c

2
t( )v

1
+ d

i
e!"i# i t sin #

di
t + $

i( )v
i

2

3

%  

 where

    

!
i
= tan"1

#
di

v
i
Tq 0( )

v
i
T
!q 0( ) +$

i
#

i
v

i
Tq 0( )

%

&
'

(

)
* i = 2,3  Eq. (4.114) 

            
    
d

i
=

v
i
T
!q 0( )

!
di

cos"
i
#$

i
!

i
sin"

i

i = 2,3 

 Thus, 

  

  

!
2

= !
3

= 0

d
2

= 1.3485

d
3

= 0.2642

 



 Now, 

  

    

q 0( ) = c
1
v

1
+ d

i
sin!

i
v

i
i=2

3

"

!q 0( ) = c
2
v

1
+ #$

i
%

i
d

i
sin!

i
+%

di
d

i
cos!

i
&' ()

i=2

3

" v
i

 

 Pre-multiply by   v1
T : 

  

    

v
1
Tq 0( ) = 0 = c

1

v
1
T
!q 0( ) = 53.2414 = c

2

 

 So, 

  
   
q t( ) = 53.2414v

1
!1.3485e!0.8829t sin 8.7848t( )v

2
+ 0.2648te!1.9028t sin 18.932t( )v

3
 

 The solution is given by 

 

   

x t( ) = M !1/ 2q t( )

x t( ) = 0.9449t

1

1

1

"

#

$
$
$

%

&

'
'
'

!

!0.1371

!0.05693

0.005325

"

#

$
$
$

%

&

'
'
'

e!0.8829t sin 8.7848t( )+

0.01369

!0.002349

0.0004407

"

#

$
$
$

%

&

'
'
'

e!1.9028t sin 18.932t( )  m
 

 The following Mathcad session illustrates the solution without the rigid body mode 
(except for x1 which shows both with and without the rigid mode) 

 
        The read solid line is the first mode with the rigid body mode included. 
 
 
 
 



4.57     Consider the model of an airplane discussed in problem 4.47, Figure P4.46.  (a) Resolve 
the problem assuming that the damping provided by the wing rotation is ζi = 0.01 in each 
mode and recalculate the response.  (b) If the aircraft is in flight, the damping forces may 
increase dramatically to ζi = 0.1.  Recalculate the response and compare it to the more 
lightly damped case of part (a). 

 
 Solution: 
 
 From Problem 4.47, with damping 
 

  

    

3000 0 0

0 12,000 0

0 0 3,000

!

"

#
#
#

$

%

&
&
&

!!x + C !x +

13455 '13455 0

'13,455 26910 '13,455

0 '13,455 13,455

!

"

#
#
#

$

%

&
&
&

x = 0  

    

    

x 0( ) = 0.02 0 0!" #$
T

 m

!x 0( ) = 0

%
1

= 0 &
1

= 0 rad/s

%
2

= 4.485 &
2

= 2.118 rad/s

%
3

= 6.727 &
3

= 2.594 rad/s

 

  

  

v
1

=

!0.4082

!0.8165

!0.4082

"

#

$
$
$

%

&

'
'
'

v
2

=

0.7071

0

!0.7071

"

#

$
$
$

%

&

'
'
'

v
3

=

0.5774

!0.5774

0.5774

"

#

$
$
$

%

&

'
'
'

 

 
 The solution is given by 

  
   
q t( ) = c

1
+ c

2
t( )v

1
+ d

i
e!"i# i t sin #

di
t + $

i( )v
i

i=2

3

%  

 where 

  

    

!
i
= tan"1

#
di

v
i
Tq 0( )

v
i
T
!q 0( ) +$

i
#

i
v

i
Tq 0( )

%

&
'

(

)
* i = 2,3

d
i
=

v
i
Tq 0( )

sin!
i

i = 2,3

 (Eq. (4.114)) 

 
 Now, 

  

    

q 0( ) = c
1
v

1
+ d

i
sin!

i
v

i
i=2

3

"

!q 0( ) = c
2
v

1
+ #$

i
%

i
d

i
sin!

i
+%

di
d

i
cos!

i
&' ()v

i
i=2

3

"
 

 Premultiply by   v1
T : 



  

    

v
1
Tq 0( ) = 4.4721 = c

1

v
1
T
!q 0( ) = 0 = c

2

 

 (a)  !1
= !

2
= !

3
= 0.01 

  

  

!
d 2

= 2.1177 rad/s,    !
d 3

= 2.593 rad/s

"
2

= #1.5808 rad,        "
3

= 1.5608 rad

d
2

= 7.7464,                 d
3

= 6.3249

 

 Mode shapes: 

  

   

u
i
= M !1/ 2v

i

u
1

=

!0.007454

!0.007454

!0.007454

"

#

$
$
$

%

&

'
'
'

u
2

=

0.01291

0

!0.01291

"

#

$
$
$

%

&

'
'
'

u
3

=

0.01054

!0.005270

0.01054

"

#

$
$
$

%

&

'
'
'

 

 The solution is given by 

  
   
x t( ) = c

1
+ c

2
t( )u

1
+ d

i
e!"i# i t sin #

di
t + $

i( )u
i

i=2

3

%  

  

( ) ( )

( )5608.15937.2sin

0677.0

0333.0

0667.0

5808.11178.2sin

100.0

0

100.0

1

1

1

0333.0

0259.0

0212.0

+

!
!
!

"

#

$
$
$

%

&

'+

'

!
!
!

"

#

$
$
$

%

&

+

!
!
!

"

#

$
$
$

%

&

=

'

'

te

tetx

t

t

 

 
b) 1.0321 === !!!  

 
Same thing as part (a), but now the following values are obtained 

 

  

!
d 2

= 2.1072 rad/sec        !
d 3

= 2.5807 rad/sec

"
2

= #1.6710 rad              "
3

= 1.4706rad

d
2

= 7.7850                      d
3

= 6.3564

  

 
Notice that the rigid mode is not effected by changing the damping ratio, and hence 

 
4721.4=c  

 
Consequently, the solution becomes 

 



  

x t( ) = 0.0333

1

1

1

!

"

#
#
#

$

%

&
&
&

+

'0.1005

0

0.1005

!

"

#
#
#

$

%

&
&
&

e'0.2118t sin 2.1072t '1.6710( )

                                            +

0.0670

'0.0335

0.0670

!

"

#
#
#

$

%

&
&
&

e'0.2594t sin 2.5807t + 1.4706( )

 

 
Below is the plot of the displacement of the left wing 

 

 
 
 
 



4.58 Repeat the floor vibration problem of Problem 4.50 using modal damping ratios of 
 
   !1

= 0.01 !
2

= 0.1 !
3

= 0.2  

 
 Solution: The equation of motion will be of the form: 
 

  

    

200!!x + C !x + 3.197 !10"4

9 / 64 1 / 6 13 / 192

1 / 6 1 / 3 1 / 6

13 / 192 1 / 6 9 / 64

#

$

%
%
%

&

'

(
(
(

x = 0

x 0( ) = 0 0.05 0#$ &'
T

 m and !x 0( ) = 0.

 

 

  

   

M !1/ 2
= 0.7071

!K = M !1/ 2 KM !1/ 2
=

2.2482 2.6645 1.0825

2.6645 5.3291 2.6645

1.0825 2.6645 2.2482

"

#

$
$
$

%

&

'
'
'

(10!7

det !K ! )I( ) = )3 ! 9.8255(10!7)2
+ 1.3645(10!13) ! 4.1382 (10!21

= 0

)
1

= 4.3142 (10!8 *
1

= 2.0771(10!4  rad/s

)
2

= 1.1657 (10!7 *
2

= 3.34143(10!4  rad/s

)
3

= 8.2283(10!7 *
3

= 9.0710 (10!4  rad/s

 

 

  

  

v
1

=

0.5604

!0.6098

0.5604

"

#

$
$
$

%

&

'
'
'

v
2

=

!0.7071

0

0.7071

"

#

$
$
$

%

&

'
'
'

v
3

=

0.4312

0.7926

0.4312

"

#

$
$
$

%

&

'
'
'

 

 
 Use the mode summation method to find the solution. First transform the initial 

conditions: 

  

    

q 0( ) = M 1/ 2x 0( ) = 0 0.7071 0!" #$
T

!q 0( ) = M 1/ 2
!x 0( ) = 0

 

 The solution is given by Eq. (4.115): 

  
   
x t( ) =

i=1

3

! d
i
e"#i$ i t sin $

di
t + %

i( )u
i
 

 where 

    

!
i
= tan"1

#
di

v
i
Tq 0( )

v
i
T
!q 0( ) +$

i
#

i
v

i
Tq 0( )

%

&
'

(

)
* i = 1,2,3 



   

d
i
=

v
i
Tq ' 0( )

sin!
i

i = 1,2,3,    u
i
= M "1/ 2v

i

#
1

= 0.01,    #
2

= 0.1,       #
3

= 0.2

 

 
 Substituting 

  

  

!
d1

= 2.0770 "10#4  rad/s, !
d2

= 3.3972 "10#4  rad/s  !
d3

= 8.8877 "10#4  rad/s

$
1

= 1.5808 rad,   $
2

= 1.6710 rad,   $
3

= 1.3694 rad

d
1

= 0.4312,    d
2

= 0,        d
3

= 0.5720

 

 The mode shapes are 

  

u
1

=

0.03963

!0.04312

0.03963

"

#

$
$
$

%

&

'
'
'

u
2

=

!0.05

0

0.05

"

#

$
$
$

%

&

'
'
'

u
3

=

0.03049

0.05604

0.03049

"

#

$
$
$

%

&

'
'
'

 

 The solution is 

  

   

x t( ) =

0.01709

!0.01859

0.01709

"

#

$
$
$

%

&

'
'
'

e!2.0771(10!4 t sin 2.0770 (10!4 t !1.5808( )

                           +

0.01744

0.03206

0.01744

"

#

$
$
$

%

&

'
'
'

e!2.0771(10!4 t sin 8.8877 (10!4 t + 1.3694( )m

 

 
 
 
 



4.59 Repeat Problem 4.58 with constant modal damping of  !1
,  !

2
,  !

3
 = 0.1 and compare this 

with the solution of Problem 4.58. 
 
 Solution: Use the equations of motion and initial conditions from Problem 4.58.  The 

mode shapes, natural frequencies and transformed initial conditions remain the same.  
However the constants of integration are effected by the damping ratio so the solution 

  
   
x t( ) = d

i
e!"i# i t sin #

di
t + $

i( )u
i

i=1

3

%  

 has new constants determined by

    

!
i
= tan"1

#
di

v
i
Tq 0( )

v
i
T
!q 0( ) +$

i
#

i
v

i
Tq 0( )

%

&
'

(

)
* i = 1,2,3 

  

   

d
i
=

v
i
Tq ' 0( )

sin!
i

i = 1,2,3

u
i
= M "1/ 2v

i

#
1

= #
2

= #
3

= 0.1

 

 Substituting yields 
 

  
  
!

d1
= 2.0667 "10#4  rad/s,  !

d2
= 3.3972 "10#4  rad/s,   !

d3
= 9.0255"10#4  rad/s  

 

  
  

!
1

= "1.6710  rad,  !
2

= "1.6710  rad,  !
3

= 1.4706 rad

d
1

= 0.4334,    d
2

= 0.0,      d
3

= 0.5633
 

 
 Mode shapes: 
 

  

  

u
1

=

0.03963

!0.04312

0.03963

"

#

$
$
$

%

&

'
'
'

u
2

=

!0.05

0

0.05

"

#

$
$
$

%

&

'
'
'

u
3

=

0.03049

0.05604

0.03049

"

#

$
$
$

%

&

'
'
'

 

 The solution is 
 

  

   

x t( ) =

0.01717

!0.01869

0.01717

"

#

$
$
$

%

&

'
'
'

e!2.0771(10!4 t sin 2.0667 (10!4 t !1.6710( )

                    +

0.01717

0.03157

0.01717

"

#

$
$
$

%

&

'
'
'

e!9.0710(10!4 t sin 9.0255(10!4 t + 1.4706( )m

 

 
 The primary difference between problems 4.58 and 4.59 is the settling time; the 

responses in Problem 4.59 decay faster than those of Problem 4.58. 



4.60 Consider the damped system of Figure P4.1.  Determine the damping matrix and use the 
formula of Eq. (4.119) to determine values of the damping coefficient cI for which this 
system would be proportionally damped. 

 
 Solution: 
 
 From Fig. 4.29, 
 

  

    

m
1

0

0 m
2

!

"
#
#

$

%
&
&
!!x +

c
1
+ c

2
'c

2

'c
2

c
2

+ c
3

!

"
#
#

$

%
&
&
!x +

k
1
+ k

2
'k

2

'k
2

k
2

+ k
3

!

"
#
#

$

%
&
&
x = 0  

 
 From Eq. (4.119) 
 

  

  

C = !M + "K

c
1
+ c

2
#c

2

#c
2

c
2

+ c
3

$

%
&
&

'

(
)
)

=

!m
1
+ " k

1
+ k

2( ) #"k
2

#"k
2

!m
1
+ " k

2
+ k

3( )

$

%
&
&

'

(
)
)

 

 
 To be proportionally damped, 
 

  

  

c
2

= !k
2

c
1

= "m
1
+ !k

1

c
3

= "m
2

+ !k
3

 

Alternately, compute KM-1C symbolically and show that the condition for symmetry: 

 
Requiring the off diagonal elements to be equal enforces symmetry.  This requires 

  m1
k

2
c

3
= m

2
k

2
c

1
+ (m

2
k

1
! m

1
k

3
)c

2
 

 
 
 
 
 
 
 
 



4.61 Let k3 = 0 in Problem 4.60.  Also let   m1
= 1,m

2
= 4,k

1
= 2,k

2
= 1 and calculate c1, c2 and 

c3 such that ζ1 = 0.01 and ζ2 = 0.1. 
 
 Solution: 
 
 From Figure P4.1 the equation of motion is, 

  

    

1 0

0 4

!

"
#

$

%
& !!x +

c
1
+ c

2
'c

2

'c
2

c
2

+ c
3

!

"
#
#

$

%
&
&
!x +

3 '1

'1 1

!

"
#

$

%
&x = 0  

 Calculate natural frequencies: 

  

   

!K = M !1/ 2 KM !1/ 2
=

3 !0.5

!0.5 0.25

"

#
$

%

&
'

det !K ! (I( ) = (2 ! 3.25( + 0.5 = 0

 

  
 

!
1

= 0.1619 "
1

= 0.4024 rad/s

!
2

= 3.0881 "
2

= 1.7573 rad/s
 

 From Eq. (4.124) 

  
  
!

i
=

"

2#
i

+
$#

2
 

 So, 

 

0.01 =
!

2 0.4024( )
+
" 0.4024( )

2
 

 and 

 

0.1 =
!

2 1.7573( )
+
" 1.7573( )

2
 

 Solving for α and β yields 

  
 

! = "0.01096

# = 0.1174
 

 From Eq. (4.119), 

  

  

C =
c

1
+ c

2
!c

2

!c
2

c
2

+ c
3

"

#
$
$

%

&
'
'

= (M + )K =
0.3411 !0.1174

!0.1174 0.07354

"

#
$

%

&
'  

 

 Thus, 

  

c
1

= 0.2238

c
2

= 0.1174

c
3

= !0.04382

 

Since negative damping is not usually possible, this design would not work. 
 
 
 
 
 



4.62 Calculate the constants α and β for the two-degree-of-freedom system of Problem 4.29 

such that the system has modal damping of  !1
= !

2
= 0.3. 

 
 Solution: 
 
 From Problem 4.29 with proportional damping added, 
 

  
    

1 0

0 4

!

"
#

$

%
& !!x + 'M + (K( ) !x +

3 )1

)1 1

!

"
#

$

%
&x = 0  

 
 Calculate natural frequencies: 
 

  

   

!K = M !1/ 2 KM !1/ 2
=

3 !0.5

!0.5 0.25

"

#
$

%

&
'

det !K ! (I( ) = (2 ! 3.25( + 0.5 = 0

 

 

  
 

!
1

= 0.1619 "
1

= 0.4024 rad/s

!
2

= 3.0881 "
2

= 1.7573 rad/s
 

 From Eq. (4.124) 
 

  
  
!

i
=

"

2#
i

+
$#

i

2
 

 

 So, 

 

0.3 =
!

2 0.4024( )
+
" 0.4024( )

2
 

 

 and 

 

0.3 =
!

2 1,7573( )
+
" 1.7573( )

2
 

 
 Solving for α and β yields 
 

  
 

! = 0.1966

" = 0.2778
 



4.63 Equation (4.124) represents n equations in only two unknowns and hence cannot be used 
to specify all the modal damping ratios for a system with n > 2.  If the floor vibration 
system of Problem 4.51 has measured damping of ζ1 = 0.01 and ζ2 = 0.05, determine ζ3. 

 
 Solution: 
 
 From Problem 4.51 
 

  

   

det !K ! "I( ) = "
3
! 9.8255#10!7

"
2

+ 1.3645#10!14
" ! 4.1382 #10!22

= 0

"
1

= 4.3142 #10!9
$

1
= 2.0771#10!5  rad/s

"
2

= 1.1657 #10!7
$

2
= 3.4143#10!4  rad/s

"
3

= 8.2283#10!7
$

3
= 9.0710 #10!4  rad/s

 

 
 Eq. (4.124) 
 

  
  
!

i
=

"

2#
i

+
$#

i

2
 

 
 

Since the problem contains three modes only, and since the first and second modal 
damping ratios are give as 01.01 =!  and 05.02 =!  then the following linear system can 
be set up 

 

 

!

2 2.0771"10#5
( )

+

$ 2.0771"10#5
( )

2
= 0.01

!

2 3.4143"10#4
( )

+

$ 3.4143"10#4
( )

2
= 0.05

 

 
which can be solve to yield  ! = 2.9 "10#7  and  ! = 290.397 . Hence, the modal damping 
of the third mode can be obtained using 4.124 

 

 
!

3
=

"

2#
3

+
$#

3

2
= 0.132  

 
   
 
  
 



4.64 Does the following system decouple?  If so, calculate the mode shapes and write the 
equation in decoupled form. 

 

  
   

1 0

0 1

!

"
#

$

%
& !!x +

5 '3

'3 3

!

"
#

$

%
& !x +

5 '1

'1 1

!

"
#

$

%
&x = 0  

 
 Solution: 
 
 The system will decouple if 
 

  

  

C = !M + "K

5 #3

#3 3

$

%
&

'

(
) =

! + 5" #"

#" ! + "

$

%
&

'

(
)

 

 
 Clearly the off-diagonal terms require 
 
   ! = 3  
 
 Therefore, the diagonal terms require 
 

  
 

5 = ! + 15

3 = ! + 3
 

 
 These yield different values of α, so the system does not decouple. An easier approach is 

to compute CM-1K to see if it is symmetric: 

CM !1K =
5 !3

!3 3
"

#
$

%

&
'

1 0

0 1
"

#
$

%

&
'

5 !1

!1 1
"

#
$

%

&
' =

9 !2

!12 6
"

#
$

%

&
'  

 Since this is not symmetric, the system cannot be decoupled. 
 



4.65 Calculate the damping matrix for the system of Problem 4.63.  What are the units of the 
elements of the damping matrix? 

 
 Solution: 
 
 From Problem 4.58, 
 

  
 

! = "8.8925#10"7

$ = 3.0052 #102
 

 
 From Problem 4.48 
 

  

  

M =

200 0 0

0 2000 0

0 0 200

!

"

#
#
#

$

%

&
&
&

K = 3.197 '10(4

9 / 64 1 / 6 13 / 192

1 / 6 1 / 3 1 / 6

13 / 192 1 / 6 9 / 64

!

"

#
#
#

$

%

&
&
&

 

 
 So, 

  

  

C = !M + "K

C =

0.01334 0.01602 0.006506

0.01602 0.03025 0.01602

0.006506 0.01602 0.01334

#

$

%
%
%

&

'

(
(
(

 

 
 The units are kg/s 
 
4.66 Show that if the damping matrix satisfies  C = !M + "K , then the matrix   CM !1K is 

symmetric and hence that   CM !1K = KM !1C . 
 
 Solution:  Compute the product  CM !1K  where C has the form:  C = !M + "K . 

  

CM !1
= ("M + #K )M !1

= " I + #KM !1 $ CM !1K = "K + #KM !1K

KM !1C = KM !1("M + #K ) = "K + #KM !1K

                                             $ KM !1C = CM !1K

 



Problems and Solutions for Section 4.6 (4.67 through 4.76) 
 
4.67 Calculate the response of the system of Figure 4.16 discussed in Example 4.6.1 if 

F1(t) = δ(t) and the initial conditions are set to zero.  This might correspond to a 
two-degree-of-freedom model of a car hitting a bump. 

 
 Solution: From example 4.6.1, with F1(t) = δ(t), the modal equations are 

  
   

!!r
1
+ 0.2 !r

1
+ 2r

1
= 0.7071! (t)

!!r
2

+ 0.4 !r
2

+ 4r
2

= 0.7071! (t)
 

 Also from the example, 

  

  

!
n1

= 2   rad/s        "
1

= 0.07071             !
d1

= 1.4106  rad/s

!
n2

= 2  rad/s          "
2

= 0.1                     !
d2

= 1.9899  rad/s
 

The solution to an impulse is given by equations (3.7) and (3.8): 
 

  
  
r

i
(t) =

F̂

m
i
!

di

e"#i!nit sin!
di
t  

 This yields 

  
   
r(t) =

0.5012e!0.1t sin1.4106t

0.3553e!0.2t sin1.9899t

"

#
$

%

&
'  

 The solution in physical coordinates is 

  

   

x(t) = M !1/ 2 Pr(t) =
.2357 !.2357

.7071 .7071

"

#
$

%

&
'

0.167e!0.1t sin1.4106t

!0.118e!.02t sin1.9899t

"

#
$

%

&
'

x(t) =
0.0394e!0.1t sin1.4106t + 0.0279e!0.2t sin1.9899t

0.118e!0.1t sin1.4106t ! 0.0834e!0.2t sin1.9899t

"

#
$

%

&
'

 

 



4.68 For an undamped two-degree-of-freedom system, show that resonance occurs at 
one or both of the system’s natural frequencies. 

 
 Solution: 
 
 Undamped two-degree-of-freedom system: 
 
  

    M!!x + Kx = F(t)  
 

 Let 

   
F(t) =

F
1
(t)

0

!

"
#

$

%
&  

 
 Note: placing F1 on mass 1 is one way to do this.  A second force could be placed 

on mass 2 with or without F1. 
 
 Proceeding through modal analysis, 
 
  

    I!!r + !r = PT M "1/ 2F(t)  
 
 Or, 
 

  

   

!!r
1
+!

1
2r

1
= b

1
F

1
(t)

!!r
2

+!
2
2r

2
= b

2
F

1
(t)

 

 
 where b1 and b2 are constants from the matrix PTM-1/2. 
 
 If F1(t) = a cos ωt and ω = ω1 then the solution for r1 is (from Section 2.1), 
 

  
   
r
1
(t) =

!r
10

!
1

sin!
1
t + r

10
cos!

1
t +

b
1
a

2!
1

t sin!
1
t  

 
 The solution for r2 is 
 

  

   

r
2
(t) =

!r
20

!
2

sin!
2
t + r

20
"

b
2
a

!
2
2 "!

1
2

#

$
%

&

'
( cos!

2
t +

b
2
a

!
2
2 "!

1
2

t sin!
1
t  

 
 If the initial conditions are zero, 
 



  

  

r
1
(t) =

b
1
a

2!
1

t sin!
1
t

r
2
(t) =

b
2
a

!
2
2
"!

1
2

cos!
1
t " cos!

2
t( )

 

 
 Converting to physical coordinates X(t) = M-1/2Pr(t) yields 
 

  
  

x
1
(t) = c

1
r
1
(t) + c

2
r

2
(t)

x
2
(t) = c

3
r
1
(t) + c

4
r

2
(t)

 

 
 where ci is a constant from M-1/2P. 
 
 So, if the driving force contains just one natural frequency, both masses will be 

excited at resonance.  The driving force could contain the other natural frequency 
(ω = ωn2), which would cause r1 and r2 to be 

 

  

  

r
1
(t) =

b
1
a

!
1
2
"!

2
2

cos!
2
t " cos!

1
t( )

r
2
(t) =

b
2
a

2!
2

t sin!
2
t

 

 
 and 
 

  
  

x
1
(t) = c

1
r
1
(t) + c

2
r

2
(t)

x
2
(t) = c

3
r
1
(t) + c

4
r

2
(t)

 

 
 so both masses still oscillate at resonance. 
 
 Also, if F1(t) = a1 cos ω1t + a2 cos ω2t where ω1 = ωn1 and ω2 = ωn2, then both r1 

and r2 would be at resonance, so x1(t) and x2(t) would also be at resonance. 
 



4.69 Use modal analysis to calculate the response of the drive train system of Problem 
4.44 to a unit impulse on the car body (i.e., and location q3).  Use the modal 
damping of Problem 4.56.  Calculate the solution in terms of physical coordinates, 
and after subtracting the rigid-body modes, compare the responses of each part. 

 
 Solution: 
 
 Let k1 = hub stiffness and k2 = axle and suspension stiffness. 
 
 From Problems 41 and 51, 
 

  

    

75 0 0

0 100 0

0 0 3000

!

"

#
#
#

$

%

&
&
&

!!q + 10,000

1 '1 0

'1 3 '2

0 '2 2

!

"

#
#
#

$

%

&
&
&

q = 0

M '1/ 2
=

.1155 0 0

0 .1 0

0 0 .0183

!

"

#
#
#

$

%

&
&
&

P =

.1537 '.8803 .4488

.1775 '.4222 '.88910

.9721 .2163 .0913

!

"

#
#
#

$

%

&
&
&

(
1

= 0                      )
n1

= 0 rad/s

(
2

= 77.951             )
n2

= 8.8290 rad/s

(
3

= 362.05             )
n3

= 19.028 rad/s

 

 
 The initial conditions are 0. 
 
 Also 
 

  

  

!
1

= !
2

= !
3

= .1

"
d1

= 8.7848 rad/s

"
d 2

= 18.932 rad/s

 

 
 From equation (4.129): 
 

  
    !!r + diag(2!

i
"

ni
)!r + #r = PT M $1/ 2F(t)  

 
 Modal force vector: 
 



  

   

PT M !1/ 2F(t) =

.01775

.003949

.001668

"

#

$
$
$

%

&

'
'
'

( (t)  

 
 The modal equations are 
 

  

   

!!r
1

= .01775! (t)

!!r
2

+ 1.7658 !r
2

+ 77.951r
2

= .003949! (t)

!!r
3
+ 3.8055!r

3
+ 362.05r

3
= .001668! (t)

 

 
 The solution for r1 is 
 
    r1

(t) = .01775t  

 
 The solutions for r2 and r3 are given by equations 3.7 and (3.8) 
 

  
  
r

i
(t) =

F̂

m
i
!

di

e"#i! i t sin!
di
t  

 
 This yields 
 

  

  

r
2
(t) = 4.4949 !10"4 e".8829t sin8.7848t

r
3
(t) = 8.8083!10"5e"1.9028t sin18.932t

 

 
 The solution in physical coordinates is 
 

  

   

q(t) = M !1/ 2 Pr(t)

q(t) = 3.1496 "10!4 t

1

1

1

#

$

%
%
%

&

'

(
(
(

+

!4.5691"10!5

!1.8978 "10!5

1.7749 "10!6

#

$

%
%
%

&

'

(
(
(

e!.8829t sin8.7848t

          +

4.5647 "10!6

!7.8301"10!6

1.4689 "10!7

#

$

%
%
%

&

'

(
(
(

e!1.9028t sin18.932t   m

 

 
 The magnitude of the components is much smaller than that in problem 51, but 

they do oscillate at the same frequencies. 
 



4.70 Consider the machine tool of Figure 4.28.  Resolve Ex. 4.8.3 if the floor mass m = 
1000 kg, is subject to a force of 10 sint (in Newtons).  Calculate the response.  
How much does this floor vibration affect the machine’s toolhead? 

 
 Solution: 
 
 From example 4.8.3, with F3(t) = 10 sint N and m3 = 1000 kg. 
 

  

    

103
( )

.4 0 0

0 2 0

0 0 1

!

"

#
#
#

$

%

&
&
&

!!x + 104
( )

30 '30 0

'30 38 '8

0 '8 88

!

"

#
#
#

$

%

&
&
&

x =

0

0

10sin t

!

"

#
#
#

$

%

&
&
&

 

 
 Calculating the eigenvalues and eigenvectors yields 
 

  

 

!
1

= 29.980               "
1

= 5.4761  rad/s

!
2

= 868.2743           "
2

= 29.4665  rad/s

!
3

= 921.7378           "
3

= 30.3601  rad/s

 

 
 And 
 

  

  

P =

!.4215 .4989 .7573

!.9048 !.1759 !.3877

!.0602 !.8486 .5255

"

#

$
$
$

%

&

'
'
'

 

 
 Modal force vector: 
 

  

   

PT M !1/ 2F(t) =

!.01904

!.2684

.1662

"

#

$
$
$

%

&

'
'
'

sin t  

 
 Undamped modal equations: 
 

  

   

!!r
1
+ 29.9880r

1
= !.01904sin t

!!r
2

+ 868.2743r
2

= !.2684sin t

!!r
3
+ 921.7378r

3
= .1662sin t

 

 
 Inserting the damping terms, 
 



  

   

!
1

= .1           2!
1
"

1
= 1.0952

!
2

= .01           2!
2
"

2
= .5893

!
3

= .05           2!
3
"

3
= 3.0360

!!r
1
+ 1.0952 !r

1
+ 29.9880r

1
= #.01904sin t

!!r
2

+ .5893!r
2

+ 868.2734r
2

= #.2684sin t

!!r
3
+ 3.0360 !r

3
+ 921.7378r

3
= .1662sin t

 

 
 The damped natural frequencies are 
 

  

  

!
d1

= !
n1

1"#
1
2

= 5.4487 rad/s

!
d 2

= !
n2

1"#
2
2

= 29.4650 rad/s

!
d 3

= !
n3

1"#
3
2

= 30.3222 rad/s

 

 
 The general solution is 
 

    ri
(t) = A

i
e!"i#nit sin(#

di
t !$

i
) + A

0i
sin(#t !%

i
)  

 
 where 
 

  

  

A
0i

=
f

0i

!
ni
2 "! 2

( )
2

+ 2#
i
!

ni
!( )

2
  and  $

i
= tan"1 2#

i
!

ni
!

!
ni
2 "!

%

&
'

(

)
*  

 
 Inserting values, 
 

  

  

A
01

= !6.5643"10!4  m                 #
1

= 3.7764 "10!2   rad

A
02

= !3.0943"10!4  m                #
2

= 6.7952 "10!4   rad

A
03

= 1.8049 "10!4  m                  #
3

= 3.2974 "10!3   rad

 

 
 So, 
 

  

  

r
1
(t) = A

1
e!.5476t sin(5.4487t !"

1
) ! 6.543#10!4 sin(t ! 3.7764 #10!2 )

r
2
(t) = A

2
e!.2947t sin(29.4650t !"

2
) ! 3.0943#10!4 sin(t ! 6.7952 #10!4 )

r
3
(t) = A

3
e!1.5180t sin(30.3222t !"

3
) + 1.8049 #10!4 sin(t ! 3.2974 #10!3)

 

 
 With zero initial conditions: 
 



  

  

A
1

= 1.2047 !10"4   m                      #
1

= .2072  rad

A
2

= 1.0502 !10"5   m                     #
2

= .02002  rad

A
3

= "5.9524 !10"6   m                  #
3

= .1002  rad

 

 
 Now, 
 

  

r
1
(t) = 1.2047 !10"4 e".5476t sin(5.4487t " .2027) " 6.543!10"4 sin(t " 3.7764 !10"2 )

r
2
(t) = 1.0502 !10"5e".2947t sin(29.4650t " .02002) " 3.0943!10"4 sin(t " 6.7952 !10"4 )

r
3
(t) = "5.9524 !10"6 e"1.5180t sin(30.3222t " .1002) + 1.8049 !10"4 sin(t " 3.2974 !10"3)

 

 
 Convert to physical coordinates: 
 

  

   

x(t) = M !1/ 2 Pr(t) =

!.02108 .02494 .03786

!.02023 !.003993 !.008670

!.001904 !.02684 .01662

"

#

$
$
$

%

&

'
'
'

r(t)  

 
 Therefore 
 

  

  

x
1
(t) = !.02108r

1
+ .02494r

2
+ .03786r

3

x
2
(t) = !.02023r

1
! .003933r

2
! .008670r

3

x
3
(t) = !.001904r

1
! .02684r

2
+ .01662r

3

 

 



4.71 Consider the airplane of Figure P4.46 with damping as described in Problem 4.57 
with ζ1 = 0.1.  Suppose that the airplane hits a gust of wind, which applies an 
impulse of 3δ(t) at the end of the left wing and δ(t) at the end of the right wing.  
Calculate the resulting vibration of the cabin [x2(t)]. 

 
 Solution: From Problems 4.46 and 4.57 
 

  

  

M !1/ 2
=

.01826 0 0

0 .009129 0

0 0 .01826

"

#

$
$
$

%

&

'
'
'

P =

0.4082 !0.7071 0.5774

0.8165 0 !0.5774

0.4082 0.7071 0.5774

"

#

$
$
$

%

&

'
'
'

(
1

= 0                      )
n1

= 0 rad/s

(
2

= 4.485               )
n2

= 2.118 rad/s

(
3

= 6.727               )
n3

= 2.594 rad/s

 

 
 Also: 

  

   

!
1

= !
2

= !
3

= 0.1

F(t) =

3

0

1

"

#

$
$
$

%

&

'
'
'
( (t)

)
d1

= 0 rad/s,  )
d 2

= 2.1072 rad/s, )
d 3

= 2.5807 rad/s

 

 From equation (4.129): 
  

    !!r + diag(2!
i
"

ni
)!r + #r = PT M $1/ 2F(t)  

 Modal force vector: 

   

PT M !1/ 2F(t) =

!0.0298

0.0258

0.0422

"

#

$
$
$

%

&

'
'
'

( (t)  

 The modal equations are 

   

!!r
1

= !0.02981" (t)

!!r
2

+ 0.424 !r
2

+ 4.485r
2

= 0.0258" (t)

!!r
3
+ 0.519 !r

3
+ 6.727r

3
= 0.0422" (t)

 

 
 The solution for r1 is 
    r1

(t) = !0.02981t  

 The solutions for r2 and r3 are given by equations (3.7) and (3.8) 



 

  
  
r

i
(t) =

F̂

m
i
!

di

e"#i! i t sin!
di
t  

 This yields 

  

r
2
(t) = 1.2253!10"2 e"0.212t sin2.107t

r
3
(t) = 1.6338 !10"2 e"0.259t sin2.581t

 

 The solution in physical coordinates is 
 
     x(t) = M !1/ 2 Pr(t)  
 
 For x2: 
    x2

(t) = 2.221!10"4 t + 8.06 !10"5e"0.259t sin2.581t  



4.72 Consider again the airplane of Figure P4.46 with the modal damping model of 
Problem 4.57 (ζi = 0.1).  Suppose that this is a propeller-driven airplane with an 
internal combustion engine mounted in the nose.  At a cruising speed the engine 
mounts transmit an applied force to the cabin mass (4m at x2) which is harmonic 
of the form 50 sin 10t.  Calculate the effect of this harmonic disturbance at the 
nose and on the wind tips after subtracting out the translational or rigid motion. 

 
 Solution:  From Problems 4.47 and 4.57 
 

  

  

M !1/ 2
=

.01826 0 0

0 .009129 0

0 0 .01826

"

#

$
$
$

%

&

'
'
'

,     P =

!.4082 .7071 .5774

!.8165 0 !.5774

!.4082 !.7071 .5774

"

#

$
$
$

%

&

'
'
'

(
1

= 0                      )
n1

= 0 rad/s

(
2

= 17.94               )
n2

= 4.2356 rad/s

(
3

= 26.91               )
n3

= 5.1875 rad/s

 

 Also, 

   

!
1

= !
2

= !
3

= 0.1,"#
d1

= 0 rad/s,  #
d 2

= 4.2143 rad/s,   #
d 3

= 5.1615 rad/s

F(t) =

0

50sin10t

0

$

%

&
&
&

'

(

)
)
)

 

 
 The initial conditions are 0.   From equation (4.129): 
 

  
    !!r + diag(2!

i
"

ni
)!r + #r = PT M $1/ 2F(t)  

 
 Modal force vector: 
 

  

   

PT M !1/ 2F(t) =

!.3727

0

!.2635

"

#

$
$
$

%

&

'
'
'

sin10t  

 
 The modal equations are 
 

  

   

!!r
1

= !.3727sin10t

!!r
2

+ .8471!r
2

+ 17.94r
2

= 0

!!r
3
+ 1.0375!r

3
+ 26.91r

3
= !.2635sin10t

 

 
 The solutions are 
 



  

  

r
1
(t) = .003727sin10

r
2
(t) = 0

r
3
(t) = !.006915e!.5188t sin(5.1615t + .0726) + .003569sin(10t + .141)

 

 
 The solutions in physical coordinates is 
 
     x(t) = M !1/ 2 Pr(t)  
 
 The wing tips are x1 and x3, so 
 

 

  

x
1
(t) = x

3
(t) = 2.7780 !10"5 sin10t " 7.2891!10"5e".5188t sin(5.1615t + .0726)

                        + 3.7621!10"5 sin(10t + .141)
 

 



4.73 Consider the automobile model of Problem 4.14 illustrated in Figure P4.14.  Add 
modal damping to this model of ζ1 = 0.01 and ζ2 = 0.2 and calculate the response 
of the body [x2(t)] to a harmonic input at the second mass of 10 sin3t N. 

 
 Solution: From problem 4.14 
 

 

  

M =
2000 0

0 50

!

"
#

$

%
& ,   K =

1000 '1000

'1000 11000

!

"
#

$

%
& ,   P =

.9999 '.1044

.1044 .9999

!

"
#

$

%
&

(
1

= 0.4545        )
1
 = 0.6741  rad/s, and  (

2
= 220.05       )

2
= 14.834  rad/s

 

 Also, 

  

   

!
1

= .01,   !
2

= 0.2,    "
d1

= 0.6741 rad/s,   "
d 2

= 14.534 rad/s

                                   F(t) =
0

10sin3t

#

$
%

&

'
(

 

 
 The initial conditions are all 0. From equation (4.129): 
  

    !!r + diag(2!
i
"

ni
)!r + #r = PT M $1/ 2F(t)  

 Modal force vector: 

  
   
PT M !1/ 2F(t) =

0.02036

1.4141

"

#
$

%

&
'sin3t  

 The modal equations are 

  
   

!!r
1
+ 0.01348 !r

1
+ 0.454r

1
= 0.02036sin3t

!!r
2

+ 5.9336 !r
2

+ 220.046r
2

= 1.4141sin3t
 

 The solutions are 

 

  

r
1
(t) = !0.1088e!0.006741t sin(0.6741t + 1.0914 "10!4 ) + .002445sin(3t ! .004857)

r
2
(t) = !0.07500e!2.9668t sin(14.534t + 1.3087) + .07586sin(3t + 1.26947)

 

 The solutions in physical coordinates is 
     x(t) = M !1/ 2 Pr(t)  
 The response of the body is 

  

  

x
1
(t) = !.002433e!0.006741t sin(.6471t !1.0914 "10!4 )

            + 5.4665"10!5 sin(3t ! .004857)

            + 2.4153"10!5e!2.9668t sin(14.534t !1.3087)

            ! 2.4430 "10!5 sin(3t + 1.2694)

 

 
 
 
 
 
 



4.74 Determine the modal equations for the following system and comment on 
whether or not the system will experience resonance. 

    
 

!!x +
2 !1

!1 1
"

#
$

%

&
'x =

1

0
"

#
$

%

&
'sin(0.618t)  

 
Solution: Here M = I so that the eigenvectors and mode shapes are the same.  
Computing the natural frequencies from det(!" 2I + K ) = 0   yields:  

ω1 = 0.618 rad/s  and ω2 =1.681 rad/s 
Next solve for the mode shapes and normalize them to get  

P =
0.526 !0.851

0.851 0.526
"

#
$

%

&
',    so that PT

1

0
"

#
$

%

&
' =

0.526

!0.851
"

#
$

%

&
'  

The modal equations then become: 

 

!!r1 + (0.618)2 r1 = !!r1 + 0.3819r1 = 0.526sin(0.618t)

!!r2 + (1.618)2 r2 = !!r2 + 2.6179r2 = !0.851sin(0.618t)
 

The driving frequency is equal to the natural frequency of mode one so the system 
exhibits resonance. 

 
4.75 Consider the following system and compute the solution using the mode 
summation method. 
 

 

M =
9 0

0 1
!

"
#

$

%
&,   K =

27 '3

'3 3
!

"
#

$

%
&,   x(0) =

1

0
!

"
#

$

%
&,   !x(0) =

0

0
!

"
#

$

%
&  

 
Solution: From Example 4.2.4 

 M
1
2 =

3 0

0 1
!

"
#

$

%
&, M ' 1

2 =

1
3 0

0 1
!

"
#

$

%
&  and V =

1

2

1 1

1 '1
!

"
#

$

%
&.  Also (1 = 2,(2 = 2 rad/s  

 

 

Appropriate IC are q0 =M
1
2 x0 =

3

0
!

"
#

$

%
&,  !q0 =M

1
2 v0 =

0

0
!

"
#

$

%
&  

 

!i = tan"1 # i v i
T q(0)

 v i
T
!q(0)

= tan"1 # i v i
T q(0)

 0
$

!1

!2

%

&
'

(

)
* =

+
2
+
2

%

&

'
'
'
'

(

)

*
*
*
*

 

di =
v i

T q(0)

sin!i

"
d1

d2

#

$
%

&

'
( =

3 2
2

3 2
2

#

$

%
%
%

&

'

(
(
(

 

q1(t)

q2 (t)
!

"
#

$

%
& =

3 2

2
sin 2t +

'
2

(
)*

+
,-

1

2

1

1
!

"
#
$

%
& +

3 2

2
sin 2t +

'
2

(
)*

+
,-

1

2

1

.1
!

"
#

$

%
&  

 



q1(t)

q2 (t)
!

"
#

$

%
& =

3

2
cos 2t( )

1

1
!

"
#
$

%
& +

3

2
cos 2t( )

1

'1
!

"
#

$

%
&

x(t) = M '1/2q(t) =
3

2
cos 2t( )

1
3 0

0 1
!

"
#

$

%
&

1

1
!

"
#
$

%
& +

3

2
cos 2t( )

1
3 0

0 1
!

"
#

$

%
&

1

'1
!

"
#

$

%
&

 

 

x(t) =
3

2
cos 2t( )

1 / 3

1
!

"
#

$

%
& +

3

2
cos 2t( )

1 / 3

'1
!

"
#

$

%
&  

x(t) =

1

2
cos 2t( ) +

1

2
cos(2t)

3

2
cos 2t( ) !

3

2
cos 2t( )

"

#

$
$
$
$

%

&

'
'
'
'

 

 
 
 



Problems and Solutions for Section 4.7 (4.76 through 4.79) 
 
4.76 Use Lagrange's equation to derive the equations of motion of the lathe of Fig. 4.21 for the 

undamped case. 
 
 Solution: Let the generalized coordinates be !1

,!
2
 and !

3
. 

 The kinetic energy is 

  
   
T =

1

2
J

1
!!
1
2

+
1

2
J

2
!!

2
2

+
1

2
J

3
!!

3
2  

 The potential energy is 

  
  
U =

1

2
k

1
!

2
"!

2( )
2

+
1

2
k

2
!

3
"!

2( )
2
 

 There is a nonconservative moment M(t) on inertia 3. The Lagrangian is 

  
   
L = T !U =

1

2
J

1
!"
1
2

+
1

2
J

2
!"

2
2

+
1

2
J

3
!"

3
2
!

1

2
k

1
"

2
!"

1( )
2
!

1

2
k

2
"

3
!"

2( )
2
 

 Calculate the derivatives from Eq. (4.136): 

  

   

!L

! !"
1

= J
1
!"
1

d

dt

!L

! !"
1

#

$%
&

'(
= J

1
!!"

1

!L

! !"
2

= J
2
!"

2

d

dt

!L

! !"
2

#

$%
&

'(
= J

2
!!"

2

!L

! !"
3

= J
3
!"

3

d

dt

!L

! !"
3

#

$%
&

'(
= J

3
!!"

3

!L

!"
1

= )k
1
"

1
+ k

1
"

2

!L

!"
2

= )k
1
"

1
) k

1
+ k

2( )"2
+ k

2
"

3

!L

!"
3

= )k
2
"

2
) k

2
"

3

 

 Using Eq. (4.136) yields 

  

   

J
1
!!!

1
+ k

1
!

1
" k

2
!

2
= 0

J
2
!!!

2
" k

1
!

1
+ k

1
+ k

2( )!2
" k

2
!

3
= 0

J
3
!!!

3
" k

2
!

2
+ k

2
!

3
= M t( )

 

 
 In matrix form this yields 



  

   

J
1

0 0

0 J
2

0

0 0 J
3

!

"

#
#
#

$

%

&
&
&

!!' +

k
1

(k
1

0

(k
1

k
1
+ k

2
(k

2

0 (k
2

k
2

!

"

#
#
#

$

%

&
&
&
' =

0

0

M t( )

!

"

#
#
#

$

%

&
&
&

 

 



4.77 Use Lagrange's equations to rederive the equations of motion for the automobile of 
Example 4.8.2 illustrated in Figure 4.25 for the case  c1

= c
2

= 0 . 

 
 Solution:  Let the generalized coordinates be x and θ. 
 The kinetic energy is 

  
   
T =

1

2
m!x2

+
1

2
J !! 2  

 The potential energy is (ignoring gravity) 

  
  
U =

1

2
k

1
x ! l

1
"( )

2
+

1

2
k

2
x + l

2
"( )

2
 

 The Lagrangian is 

  
   
L = T !U =

1

2
m!x2

+
1

2
J !" 2

!
1

2
k

1
x ! l

1
"( )

2
!

1

2
k

2
x + l

2
"( )

2
 

 Calculate the derivatives from Eq. (4.136): 

  

   

!L

!!x
= m!x

d

dt

!L

!!x
"
#$

%
&'

= m!!x

!L

! !(
= J !(

d

dt

!L

! !(
"
#$

%
&'

= J !!(

!L

!x
= ) k

1
+ k

2( )x + k
1
l
1
) k

1
l
2( )(

!L

!(
= k

1
l
1
) k

2
l
2( )x ) k

1
l
2
2

( )(

 

 Using Eq. (4.136) yields 

  

   

m!!x + k
1
+ k

2( )x + k
1
l
1
! k

2
l
2( )" = 0

J !!" + k
1
l
2
! k

1
l
1( )x ! k

1
l
1
2

+ k
2
l
2
2

( )" = 0
 

 In matrix form this yields 
 

  

    

m 0

0 J

!

"
#

$

%
&
!!x
!!'

!

"
#

$

%
& +

k
1
+ k

2
k

2
l
2
( k

1
l
1

k
2
l
2
( k

1
l
1

k
1
l
1
2

+ k
2
l
2
2

!

"
#
#

$

%
&
&

x

'

!

"
#

$

%
& = 0  

 



4.78 Use Lagrange's equations to rederive the equations of motion for the building model 
presented in Fig. 4.9 of Ex. 4.4.3 for the undamped case. 

 
 Solution: 
 
 Let the generalized coordinates be x1, x2, x3 and x4. 
 The kinetic energy is 
 

  
   
T =

1

2
m

1
!x
1
2

+
1

2
m

2
!x

2
2

+
1

2
m

3
!x

3
2

+
1

2
m

4
!x

4
2  

 
 The potential energy is (ignoring gravity) 
 

  
  
U =

1

2
k

1
x

1
2

+
1

2
k

2
x

2
! x

1( )
2

+
1

2
k

3
x

3
! x

2( )
2

+
1

2
k

4
x

4
! x

3( )
2
 

 
 The Lagrangian is 
 

  

   

L = T !U =
1

2
m!x

1
2

+
1

2
m!x

2
2

+
1

2
m!x

3
2

+
1

2
m!x

4
2

!
1

2
k

1
x

1
2
!

1

2
k

2
x

2
! x

1( )
2 1

2
k

3
x

3
! x

2( )
2
!

1

2
k

4
x

4
! x

3( )
2
 

 
 Calculate the derivatives from Eq. (4.136): 
 

  

   

!L

!!x
1

= m
1
!x
1

d

dt

!L

!!x
1

"

#$
%

&'
= m

1
!!x

1

!L

!!x
1

= m
2
!x

2

d

dt

!L

!!x
1

"

#$
%

&'
= m

2
!!x

2

!L

!!x
1

= m
3
!x

3

d

dt

!L

!!x
1

"

#$
%

&'
= m

3
!!x

3

!L

!!x
1

= m
4
!x

4

d

dt

!L

!!x
1

"

#$
%

&'
= m

4
!!x

4

 

 
  



  

!L

!x
1

= " k
1
+ k

2( )x
1
+ k

2
x

2

!L

!x
2

= k
2
x

1
" k

2
+ k

3( )x
2

+ k
3
x

3

!L

!x
3

= k
2
x

2
" k

2
+ k

4( )x
3
" k

4
x

4

!L

!x
4

= k
4
x

3
" k

4
x

4

 

 
Using Eq. (4.136) yields 
 

  

   

m
1
!!x

1
+ k

1
+ k

2( )x
1
! k

2
x

2
= 0

m
2
!!x

2
! k

2
x

1
+ k

2
+ k

3( )x
2
! k

3
x

3
= 0

m
3
!!x

3
! k

3
x

2
+ k

3
+ k

4( )x
3
! k

4
x

4
= 0

m
4
!!x

4
! k

4
x

3
+ k

4
x

4
= 0

 

 
In matrix form this yields 
 

  

    

m
1

0 0 0

0 m
2

0 0

0 0 m
3

0

0 0 0 m
4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

!!x +

k
1
+ k

2
'k

2
0 0

'k
2

k
2

+ k
3

'k
3

0

0 'k
3

k
3
+ k

4
'k

4

0 0 'k
4

k
4

!

"

#
#
#
#
#

$

%

&
&
&
&
&

x = 0  



4.79 Consider again the model of the vibration of an automobile of Fig. 4.25.  In this case 
include the tire dynamics as indicated in Fig. P4.79.  Derive the equations of motion 
using Lagrange formulation for the undamped case. Let m3 denote the mass of the car 
acting at c.g. 

 
 Solution: 
 
 Let the generalized coordinates be  x1

,x
2
,x

3
 and ! .  The kinetic energy is 

 

  
   
T =

1

2
m

1
!x
1
2

+
1

2
m

2
!x

2
2

+
1

2
m

3
!x

3
2

+
1

2
J !! 2  

 
 The potential energy is (ignoring gravity) 

   
U =

1

2
k

1
x

3
! !

1
" ! x

1( )
2

+
1

2
k

2
(x

3
! !

2
" ! x

2
)2

+
1

2
k

3
x

1
2

+
1

2
k

4
x

2
2  

 The Lagrangian is thus: 

  

   

L = T !U =
1

2
m

1
!x

1
2

+
1

2
m

2
!x

2
2

+
1

2
m

3
!x

3
2

+
1

2
J !" 2

!
1

2
k

1
x

3
! l

1
" ! x

1( )
2

!
1

2
k

2
x

3
+ l

2
" ! x

2( )
2
!

1

2
k

3
x

1
2
!

1

2
k

4
x

2
2

 

 
 Calculate the derivatives indicated in Eq. (4.146): 
 

  

   

!L

!!x
1

= m
1
!x

1

d

dt

!L

!!x
1

"

#$
%

&'
= m

1
!!x

1

!L

!!x
2

= m
2
!x

2

d

dt

!L

!!x
2

"

#$
%

&'
= m

1
!!x

2

!L

!!x
3

= m
3
!x

3

d

dt

!L

!!x
3

"

#$
%

&'
= m

3
!!x

3

!L

!(
= J !(

d

dt

!L

! !!(
"
#$

%
&'

= J !!(

 

 



  

!L

!x1

= " k1 + k3( )x1 + k1x3 " k1l1#

!L

!x2

= " k2 + k4( )x2 + k2x3 " k2l2#

!L

!x3

= k1x1 + k2x2 " k1 + k2( )x3 + k1l1 + k2l2( )#

!L

!#
= "k1l1x1 " k2l2x2 + k1l1 + k2l2( )x3 " k1l1

2
+ k2l2

2
( )#

 

 
 Using Eq. (4.146) yields 
 
 

 

 

m1!!x1 + k3 + k1( )x1 ! k1x3 + k1l1" = 0

m2!!x2 + k4 + k2( )x2 ! k2x3 ! k2l2" = 0

m3!!x3 ! k1x1 ! k2x2 + k1 + k2( )x3 ! k1l1 ! k2l2( )" = 0

J !!" + k1l1x1 ! k2l2x2 ! k1l1 ! k2l2( )x3 + k1l1
2

+ k2l2
2

( ) = 0

 

 
in matrix form 

 

 

m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 J

!

"

#
#
#
#

$

%

&
&
&
&

!!x1

!!x2

!!x3

!!'

(

)

*
*

+

*
*

,

-

*
*

.

*
*

+

k3 + k1( ) 0 /k1 k1l1
0 k4 + k2( ) /k2 k2l2

/k1 /k2 k1 + k2( ) / k2l2 + k1l1( )

k1l1 k2l2 / k2l2 + k1l1( ) k1l1
2

+ k2l2
2

( )

!

"

#
#
#
#
#

$

%

&
&
&
&
&

x1

x2

x3

'

(

)

*
*

+

*
*

,

-

*
*

.

*
*

= 0  

 



Problems and Solutions for Section 4.9 (4.80 through 4.90) 
 
4.80 Consider the mass matrix 

   
  
M =

10 !1

!1 1

"

#
$

%

&
'  

 and calculate M-1, M-1/2, and the Cholesky factor of M.  Show that 

   

  

LLT
= M

M !1/ 2 M !1/ 2
= I

M 1/ 2 M 1/ 2
= M

 

 
 Solution: Given  

  
M =

10 !1

!1 1

"

#
$

%

&
'  

 The matrix, P, of eigenvectors is 

  
  
P =

!0.1091 !0.9940

!0.9940 0.1091

"

#
$

%

&
'  

 The eigenvalues of M are 

  
 

!
1

= 0.8902

!
2

= 10.1098
 

 From Equation  

  

  

M !1
= Pdiag

1

"
1

,
1

"
2

#

$
%

&

'
(PT ,    M !1

=
0.1111 0.1111

0.1111 1.1111

#

$
%

&

'
(  

 From Equation 

  

  

M !1/ 2
= Vdiag "

1
!1/ 2 ,"

2
!1/ 2#

$
%
&V

T

M !1/ 2
=

0.3234 0.0808

0.0808 1.0510

#

$
'

%

&
(

 

 The following Mathcad session computes the Cholesky decomposition. 

 
  



4.81 Consider the matrix and vector 

   
  
A =

1 !"

!" "

#

$
%

&

'
(       b =

10

10

#

$
%

&

'
(  

 use a code to solve Ax = b for ε = 0.1, 0.01, 0.001, 10-6, and 1. 
 
 Solution: 
 
 The equation is 
 

  
  

1 !"

!" "

#

$
%

&

'
(x =

10

10

#

$
%

&

'
(  

 
 The following Mathcad session illustrates the effect of ε on the solution, a 

entire integer difference.  Note that no solution exists for the case ε = 1. 

 
 

 So the solution to this problem is very sensitive, and ill conditioned, because 
of the inverse. 

 
 



4.82 Calculate the natural frequencies and mode shapes of the system of 
Example 4.8.3.  Use the undamped equation and the form given by equation 
(4.161). 

 
 Solution: 
 
 The following MATLAB program will calculate the natural frequencies and 

mode shapes for Example 4.8.3 using Equation (4.161). 
 
 m=[0.4 0 0;0 2 0;0 0 8]*1e3; 
 k=[30 –30 0;-30 38 –8;0 –8 88]1e4; 
 [u, d]=eig(k,m); 
 w=sqrt (d); 
 
 The matrix d contains the square of the natural frequencies, and the matrix u 

contains the corresponding mode shapes. 



4.83 Compute the natural frequencies and mode shapes of the undamped 
version of the system of Example 4.8.3 using the formulation of equation 
(4.164) and (4.168).  Compare your answers. 

 
 Solution: 
 
 The following MATLAB program will calculate the natural frequencies and 

mode shapes for Example 4.8.3 using Equation (4.161). 
 
 m=[0.4 0 0;0 2 0;0 0 8]*1e3; 
 k=[30 –30 0;-30 38 –8;0 –8 88]1e4; 
 mi=inv(m); 
kt=mi*k; 
 [u, d]=eig(k,m); 
 w=sqrt (d); 
 
 The number of floating point operations needed is 439. 
 The matrix d contains the square of the natural frequencies, and the matrix u 

contains the corresponding mode shapes. 
 
 
 The following MATLAB program will calculate the natural frequencies and 

mode shapes for Example 4.8.3 using Equation (4.168). 
 
 m=[0.4 0 0;0 2 0;0 0 8]*1e3; 
 k=[30 –30 0;-30 38 –8;0 –8 88]1e4; 
 msi=inv(sqrt(m)); 
kt=msi*k*msi; 
 [p, d]=eig(kt); 
 w=sqrt (d); 
 u=msi*p; 
 
 The number of floating point operations needed is 461. 
 The matrix d contains the square of the natural frequencies, and the matrix u 

contains the corresponding mode shapes. 
 
 The method of Equation (4.161) is faster. 



4.84 Use a code to solve for the modal information of Example 4.1.5. 
 
 Solution: See Toolbox or use the following Mathcad code: 

 



4.85 Write a program to perform the normalization of Example 4.4.2 (i.e., 
calculate α such that the vector αv1 is normal). 

 
 Solution: 
 
 The following MATLAB program will perform the normalization of 

Example 4.4.2. 
 
 x=[.4450 .8019 1]; 

mag=sqrt(sum(x.^2)); 
xnorm=x/mag; 

 
 The variable mag is the same as α, and xnorm is the normalized vector.  

The original vector x can be any length. 



4.86 Use a code to calculate the natural frequencies and mode shapes obtained 
for the system of Example 4.2.5 and Figure 4.4. 

 
 Solution: See Toolbox or use the following Mathcad code: 

 



4.87 Following the modal analysis solution of Window 4.4, write a program to 
compute the time response of the system of Example 4.3.2. 

 
 Solution: The following MATLAB program will compute and plot the time 

response of the system of Example 4.3.2. 
 
 t=(0:.1:10)’; 
 
 m=[1 0;0 4]; 
 k=[12 –2;-2 12]; 
n=max(size(m)); 
 
 x0=[1 1]’; 
xd0=[0 0]’; 
 
 msi=inv(sqrtm(m)); 
 kt=msi*k*msi; 
 
 [p, w]=eig(kt); 
 for i=1: n-1 
  for j=1: n-I 
   if w(j,j)>w(j+1,j+1) 
    dummy=w(j,j); 
    w(j,j)=w(j+1,j+1); 
    w(j+1,j+1)=dummy; 
    dummy=p(:,j); 
    p(:,j)=p(:,j+1); 
    p(:,j+1)=dummy; 
   end 
  end 
 end 
 pt=p’; 
 s=msi*p; 
 si=pt*sqrtm(m); 
 
 r0=si*x0; 
 rd0=si*xd0; 
 r=[]; 
 for i=1: n, 
  wi=sqrt(w(i,i)); 
  rcol=(swrt((wi*r0(i))^2+rd0(i)^2/wi)*… 
   sin(wi*t+atan2(wi*r0(i),rd0(i))); 
  r(:,i)=rcol; 
 end 
 x=s*r; 
 plot(t,x); 
 end 



4.88 Use a code to solve the damped vibration problem of Example 4.6.1 by 
calculating the natural frequencies, damping ratios, and mode shapes. 

 
 Solution: See Toolbox or use the following Mathcad code (all will do this) 

 



4.89 Consider the vibration of the airplane of Problems 4.46 and 4.47 as given 
in Figure P4.46.  The mass and stiffness matrices are given as 
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           K =
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 where m = 3000 kg, l = 2 m, I = 5.2 × 10-6 m4, E = 6.9 × 109 N/m2, and the 

damping matrix C is taken to be C = (0.002)K.  Calculate the natural 
frequencies, normalized mode shapes, and damping ratios. 

 
 Solution: Use the Toolbox or use a code directly such as the following 

Mathcad session: 

 



 
The normalized mode shapes are 

 



4.90 Consider the proportionally damped, dynamically coupled system given 
by 
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 and calculate the mode shapes, natural frequencies, and damping ratios. 
 
 Solution: Use the Toolbox or any of the codes.  A Mathcad solution is 

shown: 

 
 



 



Problems and Solutions Section 4.10 (4.91 through 4.98) 
 
4.91* Solve the system of Example 1.7.3 for the vertical suspension system of a car with 

m = 1361 kg, k =  2.668 x 105 N/m, and c = 3.81 x 104 kg/s subject to the initial 
conditions of x(0) = 0 and v(0) = 0.01 m/s2. 

 
 Solution: Use a Runge Kutta routine such as the one given in Mathcad here or 

use the toolbox: 

 



 
 
4.92* Solve for the time response of Example 4.4.3 (i.e., the four-story building of 

Figure 4.9).  Compare the solutions obtained with using a modal analysis 
approach to a solution obtained by numerical integration. 

 
 Solution: The following code provides the numerical solution. 

 
 which compares very well with the plots given in Figure 4.11 obtained by plotting 

the modal equations.  One could also plot the modal response and numerical 
response on the same graph to see a more rigorous comparison. 

 



4.93* Reproduce the plots of Figure 4.13 for the two-degree of freedom system of 
Example 4.5.1 using a code. 

 
 Solution: Use any of the codes.  The trick here is to construct the damping matrix 

from the given modal information by first creating it in modal form and then 
transforming it back to physical coordinates as indicated in the following Mathcad 
session: 

 
 



4.94*. Consider example 4.8.3 and a) using the damping ratios given, compute a 
damping matrix in physical coordinates, b) use numerical integration to compute 
the response and plot it, and c) use the numerical code to design the system so that 
all 3 physical coordinates die out within 5 seconds (i.e., change the damping 
matrix until the desired response results). 

  
Solution: A Mathcad solution is presented.  The damping matrix is found, as in 
the previous problem, by keeping track of the various transformations.  Using the 
notation of the text, the damping matrix is constructed from: 

  

C = M
1

2 P
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as computed using the code that follows.  With this form of the matrix the 
damping ratios are adjusted until the desired criteria are met: 

 

 
In changing the damping ratios it is best to start with the rubber component which 
is the first mode-damping ratio.  Doubling it nails the first two coordinates but 
does not affect the third coordinate enough.  Hence the second mode-damping 
ratio must be changed (doubled here) to attack this mode.  This could be 
accomplished by adding a viscoelastic strip as described in Chapter 5 to the metal.  
Thus the ratios given in the code above do the trick as the following plots show.  
Note also how much the damping matrix changes. 



 

 
 



4.95*. Compute and plot the time response of the system (Newtons): 
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subject to the initial conditions: 
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Solution:  The following Mathcad session illustrates the numerical solution of 
this problem using a Runge Kutta solver.  

 
 



4.96* Consider the following system excited by a pulse of duration 0.1 s (in Newtons): 
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and subject to the initial conditions:  
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Compute and plot the response of the system.  Here Φ indicates the Heaviside 
Step Function introduced in Section 3.2. 
 
Solution: The following Mathcad solution (see example4.10.3 for the other 
codes) gives the solution: 

 



It is also interesting to examine the first 20 seconds more closely to see the effect 
of the impact: 

 
Note that the impact has much more of an effect on the response than does the 
initial condition. 

 



4.97.* Compute and plot the time response of the system (Newtons): 

   

5 0

0 1

!

"
#

$

%
&
!!x

1

!!x
2

!

"
#
#

$

%
&
&

+
3 '0.5

'0.5 0.5

!

"
#

$

%
&
!x
1

!x
2

!

"
#
#

$

%
&
&

+
30 '1

'1 1

!

"
#

$

%
&

x
1

x
2

!

"
#
#

$

%
&
&

=
1

1

!

"
#
$

%
&sin(4t)  

subject to the initial conditions: 

  
x

0
=

0

0.1

!

"
#

$

%
&  m,    v

0
=

1

0

!

"
#
$

%
&  m/s  

 Solution:  Following the codes of Example 4.10.2 yields the solution directly.   

 



4.98.* Compute and plot the time response of the system (Newtons): 
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subject to the initial conditions: 
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Solution: Again follow Example 4.10.2 for the various codes. Mathcad is given. 
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Problems and Solutions Section 5.1 (5.1 through 5.5) 
 
5.1 Using the nomograph of Figure 5.1, determine the frequency range of vibration for which 

a machine oscillation remains at a satisfactory level under rms acceleration of 1g. 
 
 Solution: 
 
 An rms acceleration of 1 g is about 9.81 m/s2.  From Figure 5.1, a satisfactory level 

would occur at frequencies above 650 Hz. 
 
 
5.2 Using the nomograph of Figure 5.1, determine the frequency range of vibration for which 

a structure's rms acceleration will not cause wall damage if vibrating with an rms 
displacement of 1 mm or less. 

 
 Solution: 
 
 From Figure 5.1, an rms displacement of 1 mm (1000 µm) would not cause wall damage 

at frequencies below 3.2 Hz. 
 
 
5.3 What natural frequency must a hand drill have if its vibration must be limited to a 

minimum rms displacement of 10 µm and rms acceleration of 0.1 m/s2?  What rms 
velocity will the drill have? 

 
 Solution: 
 
 From Figure 5.1, the natural frequency would be about 15.8 Hz or 99.6 rad/s.  The rms 

velocity would be 1 mm/s. 
 
 
5.4 A machine of mass 500 kg is mounted on a support of stiffness 197,392,000 N/m.  Is the 

vibration of this machine acceptable (Figure 5.1) for an rms amplitude of 10 µm?  If not, 
suggest a way to make it acceptable. 

 
 Solution: 
 

 The frequency is 
 
!

n
=

k

m
=  628.3 rad/s = 100 Hz. 

 For an rms displacement of 10 µm the vibration is unsatisfactory.  To make the vibration 
satisfactory, the frequency should be reduced to 31.6 Hz.  This can be accomplished by 
reducing the stiffness and/or increasing the mass of the machine. 
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5.5 Using the expression for the amplitude of the displacement, velocity and acceleration of 
an undamped single-degree-of-freedom system, calculate the velocity and acceleration 
amplitude of a system with a maximum displacement of 10 cm and a natural frequency of 
10 Hz.  If this corresponds to the vibration of the wall of a building under a wind load, is 
it an acceptable level? 

 
 Solution: 
 
 The velocity amplitude is 
 

  
  
v(t) = A!

n
= 0.1 m( )

10

2"
#
$%

&
'(

= 0.159 m /s 

 
 The acceleration amplitude is 
 

  
  
a t( ) = A!

n
2

= 0.1 m( )
10

2"
#
$%

&
'(

2

= 0.253 m /s2 

 

 The rms displacement is 
  

A

2
=

0.1

2
= 0.0707 m = 70,700 µm (from equation (1.21)).  At 

10 Hz and 70,700 µm , this could be destructive to a building. 
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Problems and Solutions Section 5.1 (5.6 through 5.26) 
 
5.6 A 100-kg machine is supported on an isolator of stiffness 700 × 103 N/m.  The machine 

causes a vertical disturbance force of 350 N at a revolution of 3000 rpm.  The damping 
ratio of the isolator is ζ = 0.2.  Calculate (a) the amplitude of motion caused by the 
unbalanced force, (b) the transmissibility ratio, and (c) the magnitude of the force 
transmitted to ground through the isolator. 

 
 Solution: 
 
 (a) From Window 5.2, the amplitude at steady-state is 
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F

o
/ m
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n
2 "! 2
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n
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 Since 
 
!

n
=

k

m
 = 83.67 rad/s and 
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= 314.2 rad/s, 

 
 (b) From equation (5.7), the transmissibility ratio is 
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 Since 
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n

 = 3.755, this becomes 
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 (c) The magnitude is 
 

  

  

F
T

=
F

T

F
0

!

"#
$

%&
F

0
= 0.1368( ) 350( ) = 47.9( )  
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5.7 Plot the T.R. of Problem 5.6 for the cases ζ = 0.001, ζ = 0.025, and ζ = 1.1. 
 
 Solution: 
 

  T.R.=

  

1+ 2!r( )
2

1" r 2
( )

2
+ 2!r( )

2
  

 
 A plot of this is given for ζ = 0.001, ζ = 0.025, and ζ = 1.1. The plot is given here from 

Mathcad: 
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5.8 A simplified model of a washing machine is illustrated in Figure P5.8.  A bundle of wet 
clothes forms a mass of 10 kg (mb) in the machine and causes a rotating unbalance.  The 
rotating mass is 20 kg (including mb) and the diameter of the washer basket (2e) is 50 
cm.  Assume that the spin cycle rotates at 300 rpm.  Let k be 1000 N/m and ζ = 0.01.  
Calculate the force transmitted to the sides of the washing machine.  Discuss the 
assumptions made in your analysis in view of what you might know about washing 
machines. 

 

 Solution: The transmitted force is given by 
  
F

T
= k 2

+ c2
!

r
2  where 

  
c = 2!"

n
,   "

n
=

k

m
= 7.071  rad/s, "

r
= 300

2#

60
=31.42 rad/s,  

 and X is given by equation (2.84) as 

  

X =
m

0
e

m

r 2

1! r 2
( )

2
+ 2"r( )

2
 

 Since
  
r =

!
r

!
n

= 4.443 , then X = 0.1317 m and 

  FT
= (0.1317) (1000)2

+ [2(0.01)(20)(7.071)]2(31.42)2
= 132.2 N  

 Two important assumptions have been made: 
i) The out-of-balance mass is concentrated at a point and 
ii) The mass is constant and distributed evenly (keep in mind that water enters and 

leaves) so that the mass actually changes. 
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5.9 Referring to Problem 5.8, let the spring constant and damping rate become variable.  The 
quantities m, mb, e and ω are all fixed by the previous design of the washing machine.  
Design the isolation system (i.e., decide on which value of k and c to use) so that the 
force transmitted to the side of the washing machine (considered as ground) is less than 
100N. 

 
 Solution: 
 
 The force produced by the unbalance is Fr = mba where a is given by the magnitude of 

equation (2.81): 
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= 2467.4 N  

 
 Since FT < 100 N, 
 

  
  
T.R. =

F
T

F
r

=
100

2467.4
= 0.0405 

 
 If the damping ratio is kept at 0.01, this becomes 
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 Solving for r yields r = 5.079. 
 

 Since 
  
r =

!
r

k / m
,  
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5.0792
= 765 N/m  

 and 

  
  
c = 2! km = 2 0.01( ) 765( ) 20( ) = 2.47  kg/s  
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5.10 A harmonic force of maximum value of 25 N and frequency of 180 cycles/min acts on a 
machine of 25 kg mass.  Design a support system for the machine (i.e., choose c, k) so 
that only 10% of the force applied to the machine is transmitted to the base supporting the 
machine. 

 
 Solution: From equation (5.7), 
 

  T.R.

  

= 0.1 =
1+ 2!r( )

2

1" r 2
( )

2
+ 2!r( )

2
  (1) 

 If we choose ζ = 0.1, then solving the equation (1) numerically yields r = 3.656.  Since r 

=
  

!

k / m
 then: 
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3.6562
= 665 N/m  

 and 

  
  
c = 2! km = 2 0.1( ) 665( ) 25( ) = 25.8 kg/s  
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5.11 Consider a machine of mass 70 kg mounted to ground through an isolation system of 
total stiffness 30,000 N/m, with a measured damping ratio of 0.2.  The machine produces 
a harmonic force of 450 N at 13 rad/s during steady-state operating conditions.  
Determine (a) the amplitude of motion of the machine, (b) the phase shift of the motion 
(with respect to a zero phase exciting force), (c) the transmissibility ratio, (d) the 
maximum dynamic force transmitted to the floor, and (e) the maximum velocity of the 
machine. 

 
 Solution: 
 
 (a) The amplitude of motion can be found from Window 5.2: 
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 where 
 
!

n
=

k

m
 = 20.7 rad/s.  So, 

 
    X = 0.0229 m  
 
 (b) The phase can also be found from Window 5.2: 
 

  
   
! = tan"1 2#$

n
$

$
n
2 "$ 2

= 22.5! = 0.393 rad  

 

 (c) From Eq. 5.7, with r = 
 

!

!
n

=0.628 

 

  

  

T.R. =
1+ 2!r( )

2

1" r 2
( )

2
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2
= 1.57  

 
 (d) The magnitude of the force transmitted to the ground is 
 

  
  
F

T
= T.R.( ) F

0
= 450( ) 1.57( ) = 707.6 N  

 
 (e) The maximum velocity would be 
 

  
  
! A

0
= 13( ) 0.0229( ) = 0.298 m/s  



5- 9 

5.12 A small compressor weighs about 70 lb and runs at 900 rpm.  The compressor is mounted 
on four supports made of metal with negligible damping. 

 (a) Design the stiffness of these supports so that only 15% of the harmonic force 
produced by the compressor is transmitted to the foundation. 

 (b) Design a metal spring that provides the appropriate stiffness using Section 1.5 (refer 
to Table 1.2 for material properties). 

 
 Solution: 
 
 (a)  From Figure 5.9, the lines of 85% reduction and 900 rpm meet at a static deflection 

of 0.35 in.  The spring stiffness is then 
 

  
  
k =

mg

!
s

=
70 lb

0.35 in
= 200 lb/in  

 
 The stiffness of each support should be k/4 = 50 lb/in. 
 
 (b) Try a helical spring given by equation (1.67): 
 

  
  
k = 50 lb/in = 8756 N/m =

Gd 4

64nR3
 

 
 Using R = 0.1 m, n = 10, and G = 8.0 × 1010 N/m2 (for steel) yields 
 

  

  

d =
64 8756( ) 10( ) 0.1( )

3

8.0 !1010
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= 0.0163 m =  1.63 cm  
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5.13 Typically, in designing an isolation system, one cannot choose any continuous value of k 
and c but rather, works from a parts catalog wherein manufacturers list isolators available 
and their properties (and costs, details of which are ignored here).  Table 5.3 lists several 
made up examples of available parts.  Using this table, design an isolator for a 500-kg 
compressor running in steady state at 1500 rev/min.  Keep in mind that as a rule of thumb 
compressors usually require a frequency ratio of r =3. 

 
 Solution: 
 

 Since 
  
r =

!

k / m
,  then 

 

  
  
k =

m! 2

r 2
=

500 1500
2"
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32
= 1371/103  N/m  

 
 Choose isolator R-3 from Table 5.3.  So, k = 1000 × 103 N/m and c = 1500 N⋅s/m. 
 
 Check the value of r: 
 

  
  
r =

1500
2!
60

"
#$

%
&'

1000 (103 / 500
= 3.51 

 
 This is reasonably close to r = 3. 
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5.14 An electric motor of mass 10 kg is mounted on four identical springs as indicated in 
Figure P5.14.  The motor operates at a steady-state speed of 1750 rpm.  The radius of 
gyration (see Example 1.4.6 for a definition) is 100 mm.  Assume that the springs are 
undamped and choose a design (i.e., pick k) such that the transmissibility ratio in the 
vertical direction is 0.0194.  With this value of k, determine the transmissibility ratio for 
the torsional vibration (i.e., using θ rather than x as the displacement coordinates). 

 
 Solution: 
 TABLE 5.3  Catalog values of stiffness and damping properties of various off-the-shelf 

isolators 
  

Part No.a R-1 R-2 R-3 R-4 R-5 M-1 M-2 M-3 M-4 M-5 
k(103N/m) 250 500 1000 1800 2500 75 150 250 500 750 
c(N⋅s/m) 2000 1800 1500 1000 500 110 115 140 160 200 

 
 aThe "R" in the part number designates that the isolator is made of rubber, and the "M" 

designates metal.  In general, metal isolators are more expensive than rubber isolators. 
 
 With no damping, the transmissibility ratio is 
 

  
  
T.R. =  

1

r 2
!1

 

 
 where 
 

  

  

r =
!

4k / m
=

1750
2"
60

#
$%

&
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4k / 10
=

579.5

4k

0.0194 =
1

579.5( )
2

4k
)1

4k = 6391 N/m

 

 
 For each spring, k = 1598 N/m. 
 
 For torsional vibration, the equation of motion is 
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 where 
  
r =

0.250 m

2
 = 0.125 m and from the definition of the radius of gyration and the 

center of percussion (see Example 1.4.6): 
 

  
  
I = mk

0
2

= 10( ) 0.1( )
2

= 0.1kg⋅m2 

 
 So, 

  

  

0.1!!! + 4 1598( ) 0.125( )
2
! = 0

!!! + 998.6! = 0

 

 
 The frequency ratio, r, is now 
 

  

  

r =

1750
2!
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"
#$

%
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998.6
= 5.80

T.R. =
1

r 2 (1
= 0.0306
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5.15 A large industrial exhaust fan is mounted on a steel frame in a factory.  The plant 
manager has decided to mount a storage bin on the same platform.  Adding mass to a 
system can change its dynamics substantially and the plant manager wants to know if this 
is a safe change to make.  The original design of the fan support system is not available.  
Hence measurements of the floor amplitude (horizontal motion) are made at several 
different motor speeds in an attempt to measure the system dynamics.  No resonance is 
observed in running the fan from zero to 500 rpm.  Deflection measurements are made 
and it is found that the amplitude is 10 mm at 500 rpm and 4.5 mm at 400 rpm.  The mass 
of the fan is 50 kg and the plant manager would like to store up to 50 kg on the same 
platform.  The best operating speed for the exhaust fan is between 400 and 500 rpm 
depending on environmental conditions in the plant. 

 
 Solution: 
 
 A steel frame would be very lightly damped, so 
 

 
  

X

Y
=

1

1! r 2
 

Since no resonance is observed between 0 and 500 rpm, r < 1. 

When 
 
! = 500

2"
60

#
$%

&
'(

= 52.36  rad/s, X = 10 mm, so 

 

 

  

10 =
Y

1!
52.36
"

n

#

$%
&

'(

2
 

 

Also, at 
 
! = 400

2"
60

#
$%

&
'(

= 41.89  rad/s, X = 4.5 mm, so 

 

 

  

4.5 =
Y

1!
41.89
"

n

#

$%
&

'(

2
 

 
Solving for ωn  and Y yields 
 
ωn = 59.57 rad/s 
Y = 2.275 mm 
The stiffness is k = mωn

2 = (50)(59.57)2 = 177,453 N/m. If an additional 50 kg is added 
so that m = 100 kg, the natural frequency becomes 

 
  
!

n
=

177,453

100
= 42.13 rad/s = 402.3 rpm 
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This would not be advisable because the normal operating range is 400 rpm to 
500 rpm, and resonance would occur at 402.3 rpm. 
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5.16  A 350-kg rotating machine operates at 800 cycles/min.  It is desired to reduce the 
transmissibility ratio by one-fourth of its current value by adding a rubber vibration 
isolation pad.  How much static deflection must the pad be able to withstand? 

 
 Solution: 
 
 From equation (5.12), with R = 0.25: 
 

  

  

r =
2 ! 0.25

1! 0.25
= 1.528 =

"

k / m
=

800
2#
60

$
%&

'
()

k / 350

k = 1.053*106  N/m

 

 
 The static deflection is 
 

  
  
!

s
=

mg

k
=

350( ) 9.81( )

1.053"106
= 3.26 mm  

 
5.17 A 68-kg electric motor is mounted on an isolator of mass 1200 kg.  The natural frequency 

of the entire system is 160 cycles/min and has a measured damping ratio of ζ = 1.  
Determine the amplitude of vibration and the force transmitted to the floor if the out-of-
balance force produced by the motor is F(t) = 100 sin (31.4t) in newtons. 

 
 Solution: 
 
 The amplitude of vibration is given in Window 5.2 as 
 

  

  

A
0

=
F

0
/ m

!
n
2 "! 2

( )
2

+ 2#!
n
!( )

2$
%&

'
()

1/ 2
 

 

 where F0 = 100 N, m = 1268 kg, ω = 31.4 rad/s, and 
  
!

n
= 160

2"
60

#
$%

&
'(

= 16.76  rad/s.  So, 

 
    X = 6.226 !10"5  m  
 

 The transmitted force is given by Eq. (5.6), with 
  
r =

31.4

16.76
= 1.874  
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F
T

= F
0

1+ 2!r( )
2

1" r 2
( )

2
+ 2!r( )

2
= 85.97 N  
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5.18 The force exerted by an eccentric (e = 0.22 mm) flywheel of 1000 kg, is 600 cos(52.4t) in 
newtons.  Design a mounting to reduce the amplitude of the force exerted on the floor to 
1% of the force generated.  Use this choice of damping to ensure that the maximum force 
transmitted is never greater than twice the generated force. 

 
 Solution: 
 
 Two conditions are given.  The first is that T.R. = 2 at resonance (r = 1), and the second 

is that T.R. = 0.01 at the driving frequency.  Use the first condition to solve for ζ.  From 
equation (5.7), 

  

  

T .R. = 2 =
1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

! = 0.2887

 

 

 At the frequency, 
  
r =

52.4

k / 1000
, so 

 

  

  

T .R. = 0.01 =

1+ 2 0.2887( )r!
"

#
$

2

1% r 2
( )

2
+ 2 0.2887( )r!
"

#
$

2

!

"

&
&
&

#

$

'
'
'

r = 57.78 =
52.4

k / 1000

k = 822.6 N/m

 

 
 Also, 
 

    c = 2! km = 523.6 kg/s  
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5.19 A rotating machine weighing 4000 lb has an operating speed of 2000 rpm.  It is desired to 
reduce the amplitude of the transmitted force by 80% using isolation pads.  Calculate the 
stiffness required of the isolation pads to accomplish this design goal. 

 
 Solution: 
 
 Using Figure 5.9, the lines of 2000 rpm and 80% reduction meet at  !s

= 0.053 in.  The 

spring stiffness should be 
 

  
  
k =

mg

!
s

=
4000 lb

0.053 in
= 75,472 lb/in  
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5.20 The mass of a system may be changed to improve the vibration isolation characteristics.  
Such isolation systems often occur when mounting heavy compressors on factory floors.  
This is illustrated in Figure P5.20.  In this case the soil provides the stiffness of the 
isolation system (damping is neglected) and the design problem becomes that of choosing 
the value of the mass of the concrete block/compressor system.  Assume that the stiffness 
of the soil is about k = 2.0 × 107 N/m and design the size of the concrete block (i.e., 
choose m) such that the isolation system reduces the transmitted force by 75%.  Assume 
that the density of concrete is ρ = 23,000 N/m3.  The surface area of the cement block is 4 
m2.  The steady-state operating speed of the compressor is 1800 rpm. 

 
 Solution: 
 
 Using Figure 5.9, the lines of 75% reduction and 1800 rpm cross at δs = 0.053 in = 

0.1346 cm.  Thus the weight of the block should be 
 

  
  
W

T
= m + M( )g = k!

s
= 2.0 "107 0.1346 "10#2

( ) = 26,924 N  

 
 The compressor weights mg = (2000 lb)(4.448222 N/lb) = 8896.4 N. The concrete block 

should weight W = WT – 8896.4 = 18,028 N.  The volume of the block needs to be 
 

  
  
V =

W

!
=

18,028

23,000
= 0.7838 m2  

 
 Assume the surface area is part exposed to the surface.  Let the top be a meters on each 

side (square) and b meters deep.  The volume and surface area equations are 
 

  

  

A = 4m2
= a2

V = 0.7838 m3
= a2b

 

 
 Solving for a and b yields 
 

  

  

a = 2 m

b = 0.196 m
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5.21 The instrument board of an aircraft is mounted on an isolation pad to protect the panel 
from vibration of the aircraft frame.  The dominant vibration in the aircraft is measured to 
be at 2000 rpm.  Because of size limitation in the aircraft's cabin, the isolators are only 
allowed to deflect 1/8 in.  Find the percent of motion transmitted to the instrument pane if 
it weights 50 lb. 

 
 Solution: 
 
 From equation (2.71), with negligible damping, 
 

  

  

X

Y
=

1

1! r 2
( )

2
 

 
 This is the same as the equation that yields Figure 5.9.  The lines of 2000 rpm and δs = 

0.125 in meet at 93%.  So only 7% of the plane's motion is transmitted to the instrument 
panel. 

 
 
5.22 Design a base isolation system for an electronic module of mass 5 kg so that only 10% of 

the displacement of the base is transmitted into displacement of the module at 50 Hz.  
What will the transmissibility be if the frequency of the base motion changes to 100 Hz?  
What if it reduces to 25 Hz? 

 
 Solution: Using Figure 5.9, the lines of 90% reduction and ω = (50 Hz)(60) = 3000 rpm 

meet at δs = 0.042 in = 0.1067 cm.  The spring stiffness is then 
 

  
  
k =

mg

!
s

=
5( ) 9.81( )

0.001067
= 45,979 N/m  

 

 The natural frequency is   ! = k / m  = 95.89 rad/s. 

 At ω = 100 Hz, 
  
r =

100 2!( )

95.89
= 6.552, so the transmissibility ratio is 

 

  
  
T .R. =

1

r 2
!1

= 0.0238  

 

 At ω = 25 Hz, 
  
r =

100 2!( )

95.89
= 1.638, so the transmissibility ratio is 

 

  
  
T .R. =

1

r 2
!1

= 0.594  
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5.23 Redesign the system of Problem 5.22 such that the smallest transmissibility ratio possible 
is obtained over the range 50 to 75 Hz. 
 
 Solution: 
 
 If the deflection is limited, say 0.1 in, then the smallest transmissibility ratio in the 

frequency range of 50 to 75 Hz (3000 to 4500 rpm) would be 0.04 (96% reduction).  The 
stiffness would be 

 

  

  

k =
mg

!
s

=
5( ) 9.81( )

0.1( ) 2.54( ) 0.01( )
= 19,311 N/m  

 
 
 
 
5.24 A 2-kg printed circuit board for a computer is to be isolated from external vibration of 

frequency 3 rad/s at a maximum amplitude of 1 mm, as illustrated in Figure P5.24.  
Design an undamped isolator such that the transmitted displacement is 10% of the base 
motion.  Also calculate the range of transmitted force. 

 
 Solution: 
 
 Using Figure 5.9, the lines of 90% reduction and ω = 3(2π)(60)=1131 rpm meet at δs = 

0.3 in = 0.762 cm.  The stiffness is 
 

  
  
k =

mg

!
s

=
(2)(9.81)

0.00762
= 2574.8 N/m  

 
 From Window 5.1, the transmitted force would be 
 

  
  
F

T
= kYr 2 1

1! r 2

"
#$

%
&'

 

 

 Since Y = 0.001 m and r = 
 

3

2574.8 / 2
= 0.08361 

 
    FT

= 0.0181 N  
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5.25 Change the design of the isolator of Problem 5.24 by using a damping material with 
damping value ζ chosen such that the maximum T.R. at resonance is 2. 

 
 Solution: 
 
 At resonance, r = 1 and T.R. = 2, so 
 

  
 
2 =

1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

 

 
 Solving for ζ yields ζ = 0.2887.  Also T.R. = 0.01 at ω = 3 rad/s, so 
 

  

  

0.01 =
1+ 0.3333r 2

1! r 2
( )

2
+ 0.3333r 2

"

#

$
$
$

%

&

'
'
'

r = 6.134

 

 
 Solving for k, 
 

  
  
k =

m! 2

r 2
=

2( ) 3( )
2

6.1342
= 0478 N/m  

 
 The damping constant is 
 

    c = 2! km = 0.565 kg/s  
 
 
5.26 Calculate the damping ratio required to limit the displacement transmissibility to 4 at 

resonance for any damped isolation system. 
 
 Solution: 
 
 At resonance r = 1, so 
 

  

  

T .R. = 4 =
1+ 4! 2

4! 2

"

#
$

%

&
'

1/ 2

! = 0.129
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Problems and Solutions Section 5.3 (5.27 through 5.36) 
 
5.27 A motor is mounted on a platform that is observed to vibrate excessively at an operating 

speed of 6000 rpm producing a 250-N force.  Design a vibration absorber (undamped) to 
add to the platform.  Note that in this case the absorber mass will only be allowed to 
move 2 mm because of geometric and size constraints. 

 
 Solution: 
 
 The amplitude of the absorber mass can be found from equation (5.22) and used to solve 

for ka: 
 

  

  

X
a

= 0.002 m =
F

0

k
a

=
250

k
a

k
a

= 125,000 N/m

 

 
 From equation (5.21), 
 

  

  

! 2
=

k
a

m
a

m
a

=
k

a

! 2
=

125,000

6000
2"
60

#
$%

&
'(

)

*
+

,

-
.

2
= 0.317 kg
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5.28 Consider an undamped vibration absorber with β = 1 and µ = 0.2.  Determine the 

operating range of frequencies for which 
  
Xk / F

0
! 0.5. 

 
 Solution: 
 

 From equation (5.24), with β = 

  

!
a

!
p

= 1(i.e., !
a

= !
p
) and µ = 0.2,  

 

  

  

Xk

F
0

=

1!
"
"

a

#

$%
&

'(

1+ 0.2 1( )
2
!

"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
1!

"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
! 0.2 1( )

2

=

1!
"
"

a

#

$%
&

'(

2

"
"

a

#

$%
&

'(

4

! 2.2
"
"

a

#

$%
&

'(

2

+ 1

 

 

 For 
  

Xk

F
0

 = 0.5, this yields 

 

  

  

0.5
!
!

a

"

#$
%

&'

4

( 0.1
!
!

a

"

#$
%

&'

2

( 0.5 = 0  

 
 Solving for the physical solution gives 
 

  

  

!
!

a

"

#$
%

&'
= 1.051 

 

 Solving for 

 

!
!

a

"

#$
%

&'
 gives 

 

  

  

!
!

a

"

#$
%

&'
= 0.955,  1.813 
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 Comparing this to the sketch in Figure 5.15, the values for which 

  

Xk

F
0

! 5 are 

    0.955!
a
"! " 1.051!

a
  and  ! # 1.813!

a
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5.29 Consider an internal combustion engine that is modeled as a lumped inertia attached to 
ground through a spring.  Assuming that the system has a measured resonance of 100 
rad/s, design an absorber so that the amplitude is 0.01 m for a (measured) force input of 
102 N. 

 
 Solution: 
 
 The amplitude of the absorber mass can be found from equation (5.22) and used to solve 

for ka: 
 

  

  

X
a

= 0.01m =
F

0

k
a

=
100

k
a

k
a

= 10,000 N/m

 

 
 Choose ω = 2ωn = 200 rad/s.  From equation (5.21), 
 

  
  
m

a
=

k
a

!
2

=
10,000

2002
= 0.25 kg  

 
 
5.30 A small rotating machine weighing 50 lb runs at a constant speed of 6000 rpm.  The 

machine was installed in a building and it was discovered that the system was operating 
at resonance.  Design a retrofit undamped absorber such that the nearest resonance is at 
least 20% away from the driving frequency. 

 
 Solution: 
 
 By observing Figure 5.15, the values of µ = 0.25 and β = 1 result in the combined 

system's natural frequencies being 28.1% above the driving frequency and 21.8% below 

the driving frequency (since 

 

! =
"

a

"
p

 = 1 and ω = ωp).  So the absorber should weigh 

 

  
  
m

a
= µm = 0.25( ) 50 lb( ) = 12.5 lb  

 
 and have stiffness 
 

  

  

k
a

= m
a
!

a
2

= m
a
! 2

= 12.5 lb( ) 4.448222 N/lb( )
1

9.81

"
#$

%
&'

6000( )
2 2(

60

"
#$

%
&'

2

k
a

= 2.24 )106  N/m = 12,800 lb/in
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5.31  A 3000-kg machine tool exhibits a large resonance at 120 Hz.  The plant manager 
attaches an absorber to the machine of 600 kg tuned to 120 Hz.  Calculate the range of 
frequencies at which the amplitude of the machine vibration is less with the absorber 
fitted than without the absorber. 

 
 Solution: 
 

 For 
  

Xk

F
0

 = 1, equation (5.24) yields 

 

  

  

1+ µ
!

a

!
p

"

#
$

%

&
'

2

(
!
!

a

"

#$
%

&'

2)

*

+
+

,

-

.

.
1(

!
!

a

"

#$
%

&'

2)

*

+
+

,

-

.

.
( µ

!
a

!
p

"

#
$

%

&
'

2

= 1(
!
!

a

"

#$
%

&'

2

 

 

 Since 
  
µ =

m
a

m
=

600

3000
= 0.2,  this becomes 

  

!
!

a

"

#$
%

&'
= 0,  1.0954. 

 

 For 
  

Xk

F
0

 = -1, equation (5.24) yields 

 

  

  

1+ µ
!

a

!
p

"

#
$

%

&
'

2

(
!
!

p

"

#
$

%

&
'

2)

*

+
+

,

-

.

.
1(

!
!

a

"

#$
%

&'

2)

*

+
+

,

-

.

.
( µ

!
a

!
p

"

#
$

%

&
'

2

=
!
!

a

"

#$
%

&'

2

(1

!
a

!
p

"

#
$

%

&
'

2

!
!

a

"

#$
%

&'

4

( 2 + µ + 1( )
!

a

!
p

"

#
$

%

&
'

2)

*

+
+

,

-

.

.
!
!

a

"

#$
%

&'

2

+ 2 = 0

 

 
 Since 

  
!

a
= !

p
,  

  

  

!
!

a

"

#$
%

&'

4

( 3.2
!
!

a

"

#$
%

&'

2

+ 2 = 0

!
!

a

"

#$
%

&'
= 0.9229,1.5324

 

 

 The range of frequencies at which 

  

Xk

F
0

 > 1 is 

    0 <! < 0.9229!
a
 and 1.0954!

a
<! < 1.5324!

a
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 Since ωa = ωp, 
  0 < ω < 695.8 rad/s and 825.9 < ω < 1155.4 rad/s 
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5.32 A motor-generator set is designed with steady-state operating speed between 2000 and 
4000 rpm.  Unfortunately, due to an imbalance in the machine, a large violent vibration 
occurs at around 3000 rpm.  An initial absorber design is implemented with a mass of 2 
kg tuned to 3000 rpm.  This, however, causes the combined system natural frequencies 
that occur at 2500 and 3000 rpm.  Redesign the absorber so that ω1 < 2000 rpm and ω2 > 
4000 rpm, rendering the system safe for operation. 

 
 Solution: The mass of the primary system can be computed from equation (5.25).  Since 

 

! =
"

a

"
p

 = 1 and 

  

!
1

!
a

"

#$
%

&'

2

=
2500

3000

"
#$

%
&'

2

= 0.6944,  then 

 

  

  

1( )
2

0.6944( )
2
! 1+ 1( )

2
1+ µ( )"

#$
%
&'

0.6944( ) + 1 = 0

µ = 0.1344

m =
m

a

µ
=

2

0.1344
= 14.876 kg

 

 
 By increasing µ to 0.55 and decreasing β to 0.89, the design goal can be achieved.  The 

mass and stiffness of the absorber should be 
 

  

  

m
a

= µm = 0.55( ) 14.876( ) = 8.18 kg

k
a

= m
a
!

a
2

= m
a
" 2!

p
2

= 8.18( ) 0.89( )
2

3000
2#
60

$
%&

'
()

*

+
,

-

.
/

2

= 639,600 N/m
 

 
5.33 A rotating machine is mounted on the floor of a building.  Together, the mass of the 

machines and the floor is 2000 lb.  The machine operates in steady state at 600 rpm and 
causes the floor of the building to shake.  The floor-machine system can be modeled as a 
spring-mass system similar to the optical table of Figure 5.14.  Design an undamped 
absorber system to correct this problem.  Make sure you consider the bandwidth. 

 
 Solution: To minimize the transmitted force, let ωa = ω = 600 rpm.  Also, since the floor 

shakes at 600 rpm, it is assumed that ωp = 600 rpm so that β = 1.  Using equation (5.26) 
with µ = 0.1 yields 

 

  
  

!
n

!
a

= 0.8543,  1.1705  

 
 So the natural frequencies of the combined system are ω1 = 512.6 rpm and ω2 = 702.3 

rpm.  These are sufficiently enough away from 600 rpm to avoid problems.  Therefore 
the mass and stiffness of the absorber are 
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m
a

= µm = 0.1( ) 2000 lbm( ) = 200 lbm

k
a

= m
a
!

a
2

= 200 lbm( )
slug

32.1174 lbm

"
#$

%
&'

600
2(
60

"
#$

%
&'

)

*
+

,

-
.

2

= 25,541 lb/ft
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5.34 A pipe carrying steam through a section of a factory vibrates violently when the driving 
pump hits a speed of 300 rpm (see Figure P5.34).  In an attempt to design an absorber, a 
trial 9-kg absorber tuned to 300 rpm was attached.  By changing the pump speed it was 
found that the pipe-absorber system has a resonance at 207 rpm.  Redesign the absorber 
so that the natural frequencies are 40% away from the driving frequency. 

 
 Solution: 
 
 The driving frequency is 300 rpm.  40% above and below this frequency is 180 rpm and 

420 rpm.  This is the design goal. 
 
 The mass of the primary system can be computed from equation (5.25).  Since 

 

! =
"

a

"
p

= 1 and 

  

!
1

!
a

"

#$
%

&'

2

=
207

300

"
#$

%
&'

2

= 0.4761,  then 

 

  

  

1( )
2

0.4761( )
2
! 1+ 1( )

2
1+ µ( )"

#$
%
&'

0.4761( ) + 1 = 0

µ = 0.5765

m =
m

a

µ
=

9

0.5765
= 15.611 kg

 

 
 By increasing µ to 0.9 and decreasing β to 0.85, the design goal can be achieved.  The 

mass and stiffness of the absorber should be 
 

  

  

m
a

= µm = 0.9( ) 15.611( ) = 14.05 kg

k
a

= m
a
!

a
2

= m
a
" 2!

p
2

= 14.05( ) 0.85( )
2

300
2#
60

$
%&

'
()

*

+
,

-

.
/

2

= 10,020 N/m
 

 
 Note that µ is very large, which means a poor design. 



5- 32 

5.35 A machine sorts bolts according to their size by moving a screen back and forth using a 
primary system of 2500 kg with a natural frequency of 400 cycle/min.  Design a vibration 
absorber so that the machine-absorber system has natural frequencies below 160 
cycles/min and above 320 rpm.  The machine is illustrated in Figure P5.35. 

 
 Solution: 
 
 Using Equation (5.26), and choose (by trial and error) β = 0.4 and µ = 0.01, the design 

goal of ω1 < 160 rpm and ω2 > 320 rpm can be achieved.  The actual values are ω1 = 
159.8 rpm and ω2 = 400.4 rpm.  The mass and stiffness of the absorber should be 

 

  

  

m
a

= µm = 0.01( ) 2500( ) = 25 kg

k
a

= m
a
!

a
2

= m
a
" 2!

[
2

= 25( ) 0.2( )
2

400
2#
60

$
%&

'
()

*

+
,

-

.
/

2

= 1754.6 N/m
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5.36 A dynamic absorber is designed with µ = 1/4 and ωa = ωp.  Calculate the frequency range 

for which the ratio
  
Xk / F

0
< 1. 

 
 Solution: 
 

 From Equation (5.24), with β = 

 

!
a

!
p

 = 1 and µ = 0.25, 

 

  

  

Xk

F
0

=

1!
"
"

a

#

$%
&

'(

2

1+ 0.25 12
( ) !

"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
1!

"
"

a

#

$%
&

'(

2)

*

+
+

,

-

.

.
! 0.25 1( )

2

=

1!
"
"

a

#

$%
&

'(

2

"
"

a

#

$%
&

'(

4

! 2.25
"
"

a

#

$%
&

'(

2

+ 1

 

 

 For
  

Xk

F
0

= 1, this yields 

 

  

  

!
!

a

"

#$
%

&'

4

(1.25
!
!

a

"

#$
%

&'

2

= 0

!
!

a

"

#$
%

&'
= 0,  1.118

 

 

 For 
  

Xk

F
0

 = 1, this yields 

  

  

!
"
"

a

#

$%
&

'(

4

+ 3.25
"
"

a

#

$%
&

'(

2

! 2 = 0

"
"

a

= 0.9081,  1.557
#

$%
&

'(

 

 

 Comparing this to the sketch in Figure 5.15, the values for which 

  

Xk

F
0

< 1 are 
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    0.9081!
a

<! < 1.118!
a
 and ! > 1.557!

a
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Problems and Solutions Section 5.4 (5.37 through 5.52) 
 
5.37 A machine, largely made of aluminum, is modeled as a simple mass (of 100 kg) attached 

to ground through a spring of 2000 N/m.  The machine is subjected to a 100-N harmonic 
force at 20 rad/s.  Design an undamped tuned absorber system (i.e., calculate ma and ka) 
so that the machine is stationary at steady state.  Aluminum, of course, is not completely 
undamped and has internal damping that gives rise to a damping ratio of about ζ = 0.001.  
Similarly, the steel spring for the absorber gives rise to internal damping of about ζa = 
0.0015.  Calculate how much this spoils the absorber design by determining the 
magnitude X using equation (5.32). 

 
 Solution: 
 
 From equation (5.21), the steady-state vibration will be zero when 
 

  
  
!

2
=

k
a

m
a

 

 
 Choosing µ = 0.2 yields 
 

  

  

m
a

= µm = 0.2( ) 100( ) = 20 kg

k
a
 

= m
a
!

a
2

= 20( ) 20( )
2

= 8000 N/m
 

 
 With damping of ζ = 0.001 and ζa = 0.0015, the values of c and ca are 
 

  

  

c = 2! km = 2 0.001( ) 2000( ) 100( ) = 0.894 kg/s

c
a

= 2!
a

k
a
m

a
= 2 0.0015( ) 8000( ) 20( ) = 1.2 kg/s

 

 
 From equation (5.32), 
 

  

  

X =

k
a
! m

a
"

2
( ) F

0
+ c

a
"F

0
j

det K !"
2 M +" jC( )

 

 
 Since 
 

  
  
M =

100 0

0 20

!

"
#

$

%
& C =

2.0944 '1.2

'1.2 1.2

!

"
#

$

%
& K =

10,000 '8000

'8000 8000

!

"
#

$

%
&  

 
 the denominator is –6.4×107-1.104×106j, so the value of X is 
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X =

k
a
m

a
!

2
( ) F

0
+ c

a
!F

0
j( )

det K "!
2 M +! jC( )

 

 
 Using Window 5.4, the magnitude is 
 

  
  
X = 3.75!10"5  m  

 
 This is a very small displacement, so the addition of internal damping will not affect the 

design very much. 
 
 
 
5.38 Plot the magnitude of the primary system calculated in Problem 5.37 with and without 

the internal damping.  Discuss how the damping affects the bandwidth and performance 
of the absorber designed without knowledge of internal damping. 

 
 Solution: From Problem 5.37, the values are 
 

  

  

m = 100 kg m
a

= 20 kg

c = 0.8944 kg/s c
a

= 1.2 kg/s

k = 2000 N/m k
a

= 8000 N/m

F
0

= 100 N ! = 20 rad/s

 

 
 Using Equation (5.32), the magnitude of X is plotted versus ω with and without the 

internal damping (c).  Note that X is reduced when X < F0/k = 0.05 m and magnified 
when X > 0.05 m. The plots of the two values of X show that there is no observable 
difference when internal damping is added.  In this case, knowledge of internal damping 
is not necessary. 
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5.39 Derive Equation (5.35) for the damped absorber from Eqs. (5.34) and (5.32) along with 
Window 5.4.  Also derive the nondimensional form of Equation (5.37) from Equation 
(5.35).  Note the definition of ζ given in Equation (5.36) is not the same as the ζ values 
used in Problems 5.37 and 5.38. 

 
 Solution: 
 
 Substituting Equation (5.34) into the denominator of Equation (5.32) yields 
 

  

  

X

F
0

=

k
a
! m

a
" 2

( ) + c
a
" j

!m" 2
+ k( ) !m

a
" 2

+ k
a( )#

$
%
& + k ! m + m

a( )"
2

( )c
a
"#

$
%
&

j
 

 

 Referring to Window 5.4, the value of 

  

X

F
0

 can be found by noting that 

 

 

  

A
1

= k
a
! m

a
"

B
1

= c
a
"

A
2

= !m" 2
+ k( ) !m

a
"

2
+ k

a( ) ! m
a
k

a
"

2

B
2

= k ! m + m
a( )"

2
( )c

a
"

 

 
 Since 
 

  

  

X

F
0

=
A

1
2

+ B
1
2

A
2
2

+ B
2
2

 

 
 then 
 

  

  

X 2

F
0
2

=

k
a
! m

a
" 2

( )
2

+ c
a
2" 2

!m" 2
+ k( ) !m

a
" 2

+ k
a( ) ! m

a
k

a
" 2#

$
%
&

2

+ k ! m + m
a( )"

2#
$

%
&

2
c

a
2"2

 

 
 which is Equation (5.35) 
 

 To derive Equation (5.37), substitute 
  
c

a
= 2!m

a
"

p
,k

a
= m

a
"

a
2 ,  and m

a
= µm,  then 

multiply by k2 to get 
 



5- 39 

  

  

X 2k 2

F
0
2

=

k 2 !
a
2 "! 2

( )
2

+ 4# 2!
p
2!

dr
2 k 2

k " m! 2
( ) !

a
2 "! 2

( ) " µm
a
2! 2$

%
&
'

2

+ k " 1" µ( )m! 2$% &'
2

4( )# 2!
p
2! 2

 

 

 Substituting 
  
k = m!

p
2 ,! = r!

p
,  and !

a
= "!

p
 yields 

 

  

X 2k 2

F
0
2

=

m2!
p
4 " 2!

p
2 # r 2!

p
2( ) + 4$ !

p
2!

dr
2 k 2

!
p
2 # r 2!

p
2( ) " 2!

p
2 # r 2!

p
2( )m # µm" 2r 2!

p
4%

&
'
(

2

+ m!
p
2 # 1# µ( )mr 2!

p
2%

&
'
(

2

4( )$ 2r 2!
p
2

 

 

 Canceling m2 and 
  
!

p
8  yields 

 

  

  

X 2k 2

F
0
2

=

! 2 " r 2
( )

2
+ 2#r( )

2

1" r 2
( ) ! 2 " r 2

( ) " µr 2! 2$
%

&
'

2

+ 2#r( )
2

1" r 2 " µr 2
( )

2
 

 
 Rearranging and taking the square root gives the form of Equation (5.37): 
 

  

  

Xk

F
0

=

2!r( )
2

+ r 2 " # 2
( )

2

2!r( )
2

r 2 "1+ µr 2
( )

2
+ µr 2# 2 " r 2 "1( ) r 2 " # 2

( )$
%

&
'

2
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5.40 (Project)  If you have a three-dimensional graphics routine available, plot Equation (5.37) 
[i.e., plot (X/Δ) versus both r and ζ for 0 < ζ < 1 and 0 < r < 3, and a fixed µ and β.]  
Discuss the nature of your results.  Does this plot indicate any obvious design choices?  
How does it compare to the information obtained by the series of plots given in Figures 
5.19 to 5.21?  (Three-dimensional plots such as these are becoming commonplace and 
have not yet been taken advantage of fully in vibration absorber design.) 

 Solution: To compare to Figure 5.18, the values µ = 0.25 and β = 0.8 in Equation (5.37) 
yield 
 

  

  

X

!
=

2"r( )
2

+ r 2 # 0.64( )
2

2"r( )
2

1.25r 2 #1( )
2

+ 0.16r 2 # r 2 #1( ) r 2 # 0.64( )$
%

&
'

2
 

 
 This is plotted for 0.5 < r < 2 and 0.5 < ζ < 1.  A Mathcad plot is given. 
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 This supplies much more information than two-dimensional plots. 
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5.41 Repeat Problem 5.40 by plotting 
  
X / !  versus r and β for a fixed ζ and µ. 

 
 Solution:  Using Equation (5.37) with µ = 0.25 and ζ 0.1 yields 
 

  

  

X

!
=

0.04r 2
+ r 2 " # 2

( )
2

0.04r 2 1.25r 2 "1( )
2

+ 0.25r 2# 2 " r 2 "1( ) r 2 " # 2
( )$

%
&
'

2
 

 
 This is plotted for 0.5 < r < 1.25 and 0 < β < 3. 
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5.42 (Project) The full damped vibration absorber equations (5.32) and (5.33) have not 
historically been used in absorber design because of the complicated nature of the 
complex arithmetic involved.  However, if you have a symbolic manipulation code 
available to you, calculate an expression for the magnitude X by using the code to 
calculate the magnitude and phase of Equation (5.32).  Apply your results to the absorber 
design indicated in Problem 5.37 by using ma, ka and ζa as design variables (i.e., design 
the absorber). 

 
 Solution: 
 
 Equation (5.32): 
 

  

  

X =

k
a
! m

a
"

2
( ) F

0
+ c

a
"F

0

det K !"
2 M +" jC( )

 

 
 where M, C and K are defined above Equation (5.32). 
 
 Using Equation (5.34) for the denominator, then calculating the magnitude yields 
 

  

X =

k
a
! m

a
" 2

( ) F
0
2

+ c
a
2" 2 F

0
2

k ! m" 2
( ) k

a
! m

a
" 2

( ) ! m
a
k

a
+ c

a
c( )"

2#
$

%
&

2

+ k
a
c + kc

a
! c

a
m + m

a( ) + cm
a( )"

2#
$

%
&

2

" 2
 

 
 The phase is 

  
 
! = tan"1 Im

Re

#
$%

&
'(

 

 where the imaginary part, denoted Im, is 

  
  
Im = !ck

a
2l + 2k

a
m

a
! 2k

a
km

a
! k

a
2m

a( )"
2  

 and the real part, denoted Re, is 

  

  

Re = k
a
2k + c

a
2
! k

a
2m ! 2k

a
km

a
! k

a
2m

a( )"
2

+ k + k
a( )m

a
2

+ 2k
a
mm

a
! c

a
2 m + m

a( )( )"
4
! mm

a
2
"

6
 

 From Problem 5.37 and its solution, the values are 
m = 100 kg ma = 20 kg 
c = 0.8944 kg/s ca = 1.2 kg/s 
k = 2000 N/m ka = 8000 N/m 
F0 = 100 N ω = 20 rad/s 

 
 Substituting these values into the magnitude equation yields 

  
  
X = 3.75!10"5  m  

 
 This is the same result as given in Problem 5.37. 
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5.43 A machine of mass 200 kg is driven harmonically by a 100-N force at 10 rad/s.  The 

stiffness of the machine is 20,000 N/m.  Design a broadband vibration absorber [i.e., 
Equation (5.37)] to limit the machine's motion as much as possible over the frequency 
range 8 to 12 rad/s.  Note that other physical constraints limit the added absorber mass to 
be at most 50 kg. 

 
 Solution: 
 

 Since 
 
!

p
=

k

m
 = 10 rad/s, then r ranges from 

 

  

  

8

10
! r !

12

10

0.8 ! r ! 1.2

 

 
 By observing Figure 5.21, the values of µ = 0.25, β = 0.8, and ζ = 0.27 yield a reasonable 

solution for the required range of r.  So the values of ma, ca, and ka are 
 
 ma = µm = (0.25)(200) = 50 kg 
 ca = 2ζmaωa = 2(0.27)(50)(10) = 270 kg/s 

 ka = ma!a"
2! p

2
= (50)(10)(0.8)2 (10)2

= 32000 N/m  

 
 Note that an extensive optimization could have been used to solve for µ, β, and ζ, but this 

is not covered until section 5.5. 
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5.44 Often absorber designs are afterthoughts such as indicated in example 5.3.1.  Add a 
damper to the absorber design of Figure 5.17 to increase the useful bandwidth of 
operation of the absorber system in the event the driving frequency drifts beyond the 
range indicated in Example 5.3.2. 

 
 Solution: 
 
 From Examples 5.3.1 and 5.3.2, 
 

  

  

m = 73.16 kg m
a

= 18.29 kg

k = 2600 N/m k
a

= 6500 N/m

7.4059 <! < 21.0821 rad/s

 

 
 The values µ and β are 
 

  

  

µ =
m

a

m
= 0.25

! =
"

a

"
p

=
k

a
/ m

a

k / m
= 3.1623

 

 
 Choosing ζ = 0.2 (by trial and error) will allow ω to go beyond 21.0821 rad/s without 

  

X
k

F
0

 going above 1.  However, it will not prevent 
  

Xk

F
0

 from going above 1 when ω < 

7.4089 rad/s.  The value of ca is 
 

  
  
c

a
= 2!m

a
"

p
= 2(0.2)(18.29)

2600

73.16
= 43.61 kg/s  
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5.45 Again consider the absorber design of Example 5.3.1.  If the absorber spring is made of 
aluminum and introduces a damping ratio of ζ = 0.001, calculate the effect of this on the 
deflection of the saw (primary system) with the design given in Example 5.3.1. 

 
 Solution: 
 
 From Examples 5.3.1 and 5.3.2, 
 

  

  

X =

k
a
! m

a
"

2
( ) F

0
+ c

a
"F

0
j

det K !"
2 M +" jC( )

 

 

 where 
  
c

a
= 2! k

a
m

a
= 2 0.001( ) 6500( ) 18.29( ) = 0.6896 kg/s  

 
 Since 
 

 
  
M =

73.16 0

0 18.29

!

"
#

$

%
& C =

0.6896 '0.6896

'0.6896 0.6896

!

"
#

$

%
& K =

9100 '6500

'6500 6500

!

"
#

$

%
&  

 
 The denominator is -1.4131×107-12,363j when ω = 7.4089 rad/s, 
 

  
  
X

1
= 0.00499 m  

 
 and when ω = 21.0821 rad/s, 
 

  
  
X

2
= 0.00512 m  

 
 The nondimensional values become 
 

  

  

X
j
k

F
0

= 0.999

X
2
k

F
0

= 1.023

 

 

 There is very little effect on the saw deflection since the values of 

  

Xk

F
0

 are still 

approximately 1 at the endpoints of the driving frequency range. 
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5.46 Consider the undamped primary system with a viscous absorber as modeled in Figure 
5.22 and the rotational counterpart of Figure 5.23.  Calculate the magnification factor 

  
Xk / M

O
 for a 400 kg compressor having a natural frequency of 16.2 Hz if driven at 

resonance, for an absorber system defined by µ = 0.133 and ζ = 0.025. 
 
 Solution: 
 
 From Eqs. (5.39), with µ = 0.133, ζ = 0.025, and r = 1: 
 

  

  

Xk

M
0

=
4! 2

+ r 2

4! 2 r 2
+ µr 2 "1( )

2
+ r 2 "1( )

2
= 150.6  

 
 The design with ζ = 0.1 produces the smallest displacement. 
 
 
 
 
 
 

5.47 Recalculate the magnification factor 
  
Xk / M

O
 for the compressor of Problem 5.46 if the 

damping factor is changed to ζ = 0.1.  Which absorber design produces the smallest 
displacement of the primary system ζ = 0.025 or ζ = 0.1? 

 
 Solution: 
 
 From Equation (5.39), with µ = 0.133, ζ = 0.1, and r = 1: 
 

  

  

Xk

M
0

=
4! 2

+ r 2

4! 2 r 2
+ µr 2 "1( )

2
+ r 2 "1( )

2
= 38.34  

 
 The design with ζ = 0.1 produces the smallest displacement. 
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5.48 Consider a one-degree-of-freedom model of the nose of an aircraft (A-10) as illustrated in 
Figure P5.48.  The nose cracked under fatigue during battle conditions.  This problem has 
been fixed by adding a viscoelastic material to the inside of the skin to act as a damped 
vibration absorber as illustrated in Figure P5.48.  This fixed the problem and the vibration 
fatigue cracking disappeared in the A-10's after they were retrofitted with viscoelastic 
damping treatments.  While the actual values remain classified, use the following data to 
calculate the required damping ratio given M = 100 kg, fa = 3 Hz, and k = 3.533 × 106 
N/m, such that the maximum response is less than 0.25 mm.  Note that since mass always 
needs to be limited in an aircraft, use µ = 0.1 in your design. 

 
 Solution: 
 

 From Equation (5.39), with µ = 0.1, and r = 
  

30(2! )

k / m
 = 1.885, and M0 replaced by F0, 

 

  

  

Xk

F
0

=
4! 2

+ 1.885( )
2

4! 2 1.1( ) 1.885( )
2
"1#

$%
&
'(

2

1.885( )
2
"1#

$%
&
'(

2

1.885( )
2

=
4! 2

+ 3.553

33.834! + 23.159

 

 

 With no damping
  

Xk

F
0

= 0.392 .  This value must be reduced.  Choose a "high" damping 

ratio of ζ = 0.7 so that 
 

  
  

Xk

F
0

= 0.372  

 The value of ca is 
 

  
  
c

a
= 2!µm

k

m
= 2 0.7( ) 0.1( ) 100( )

106

100
= 1400 kg/s  
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5.49 Plot an amplification curve such as Figure 5.24 by using Equation (5.39) for ζ = 0.02 
after several values of µ (µ = 0.1, 0.25, 0.5, and 1).  Can you form any conclusions about 
the effect of the mass ratio on the response of the primary system?  Note that as µ gets 

large 
  
Xk / M

O
 gets very small.  What is wrong with using very large µ in absorber 

design? 
 
 Solution: 
 
 From Equation (5.39), with ζ = 0.1: 
 

  

  

Xk

M
0

=
0.0016 + r 2

0.0016 r 2
+ µr 2

!1( )
2

+ r 2
!1( )

2
r 2

 

 
 The following plot shows amplitude curves for µ = 0.1, 0.25, 0.5, and 1. 

 
 Note that as the mass ratio, µ, increases, the response of the primary system decreases, 

particularly in the region near resonance.  A higher mass ratio, however, indicates a poor 
design (and can be quite expensive). 
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5.50 A Houdaille damper is to be designed for an automobile engine.  Choose a value for ζ 

and µ if the magnification 
  
Xk / M

O
 is to be limited to 4 at resonance.  (One solution is 

µ = 1, ζ = 0.129.) 
 
 Solution: 
 
 From Equation (5.39), with r = 1: 
 

  
  

Xk

M
0

=
4! 2

+ 1

4! 2
µ

2
 

 

 For 
  

Xk

M
0

 = 4, 

 
 

   64! 2
µ

2
= 4! 2

+ 1 
 
 If µ is limited to 0.3, then the value of ζ is 

  

 

64! 2 0.3( )
2

= 4! 2
+ 1

! = 0.754

 

 
 
 
5.51 Determine the amplitude of vibration for the various dampers of Problem 5.46 if ζ = 0.1, 

and F0 = 100 N. 
 
 Solution: 
 
 From Problem 5.46, 
 

  
  
k = m!

n
2

= 400( ) 16.2( ) 2"( )#
$

%
&

2
= 4.144 '106 N/m  

 
 Also, µ = 0.1, r = 1, and F0 = 100 N.  So, from Equation (5.39), with M0 replaced by F0, 
 

  

  

X =
F

0

k

4! 2
+ r 2

4! 2 r 2
+ µr 2 "1( )

2
+ r 2 "1( )

2
r 2

= 0.00123 m  
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5.52 (Project) Use your knowledge of absorbers and isolation to design a device that will 
protect a mass from both shock inputs and harmonic inputs.  It may help to have a 
particular device in mind such as the module discussed in Figure 5.6. 

 
 Solution: 
 
 One way to approach this problem would be to design an isolator to protect the mass 

from shock inputs, and an absorber to protect the mass from harmonic disturbances.  An 
absorber would be particularly useful if the frequency of the harmonic disturbance(s) is 
well known. 

 
 This is a very general approach to such a problem, and solutions will vary greatly 

depending on the particular parameters involved in an actual system. 
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Problems and Solutions Section 5.5 (5.53 through 5.66) 
 
5.53 Design a Houdaille damper for an engine modeled as having an inertia of 1.5 kg.m2 and a 

natural frequency of 33 Hz.  Choose a design such that the maximum dynamic 
magnification is less than 6: 

 

  

  

Xk

M
0

< 6  

 
 The design consists of choosing J2 and ca, the required optimal damping. 
 
 Solution: 
 
 From Equation (5.50), 
 

  

  

Xk

M
0

!

"#
$

%&
max

= 1+
2

µ
 

 

 Since 

  

Xk

M
0

< 6,  then 

  

 

6 > 1+
2

µ

µ > 0.4

 

 
 Choose µ = 0.4.  From Equation (5.49), the optimal damping is 
 

  

  

!
op

=
1

2 µ + 1( ) µ + 2( )
= 0.3858  

 
 The values of J2 and ca are 
 

  

  

J
2

= µJ
1

= 0.4( ) 1.5 kg !m2 / rad( ) = 0.6 kg !m2 / rad

c
a

= 2"
op

J
2
#

p
= 2 0.3858( ) 0.6( ) 33( ) 2$( )  = 95.98 N !m ! s/rad
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5.54 Consider the damped vibration absorber of equation (5.37) with β fixed at β = 1/2 and µ 
fixed at µ = 0.25.  Calculate the value of !  that minimizes

  
X / ! .  Plot this function for 

several values of 0 < !  < 1 to check your design.  If you cannot solve this analytically, 

consider using a three-dimensional plot of 
  
X / !  versus r and !  to determine your 

design. 
 
 Solution: 
 
 From equation (5.37), with β = 0.5 and µ = 0.25, let 
 

  

  

f r,!( ) =
X

"

4! 2r 2
+ r 2 # 0.25( )

2

4! 2r 2 1.25r 2 #1( )
2

+ 0.065r 2 # r 2 #1( ) r 2 # 0.25( )$
%

&
'

2
 

 

 From equataions (5.44) and (5.45), with 
  
f =

A1/ 2

B1/ 2
,  

 

  
  

!f

!"
= 0  

 becomes 
   BdA! AdB  
 

 Since 
  
B = 4! 2r 2 1.25r "1( )

2
+ 0.0625r 2 " r 2 "1( ) r 2 " 0.25( )#
$

%
&

2

 and 

  
A = 4! 2r 2

+ r 2 " 0.25( )
2
,  then 

 

  

  

dA =
!A

!"
= 8"r 2

dB =
!B

!"
= 8"r 2 1.25r 2 #1( )

2
 

 
 So, 
 

  

  

4! 2r 2 1.25r 2 "1( )
2

+ 0.0625r 2 " 42 "1( ) r 2 " 0.25( )#
$

%
&

2

{ } 8!r 2
( )

= 4! 2r 2
+ r 2 " 0.25( )

2

{ } 8!r 2
( ) 1.25r 2 "1( )

2

0.0625r 2 " r 2 "1( ) r 2 " 0.25( )
2#

$'
%
&(

= r 2 " 0.25( )
2

1.25r 2 "1( )
2
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 Taking the square root yields 
 

  
  
0.625r 2

! r 2
!1( ) r 2

! 0.25( ) = ± r 2
! 0.25( ) 1.25r 2

!1( )  

 
 Solving for r yields 
 
    r = 0.4896,  0.9628  
 
 Now take the derivative 
 

  
  

!f

!r
= 0  

 
 becomes 
 
   BdA = AdB  
 

 Since 
  
B = 4! 2r 2 1.25r 2 "1( )

2
+ 0.0625r 2 " r 2 "1( ) r 2 " 0.25( )#
$

%
&

2

 and 

  
A = 4! 2r 2

+ r 2 " 0.25( )
2
,  then 

 

  

  

dA !
"A

"#
= 8# 2r + 2 r 2 $ 0.25( ) 2r( )

dB !
"B

"#
= 8# 2r 1.25r 2 $1( )

2
+ 8# 2r 2 1.25r 2 $ 2r( )( ) 2.5r( )

+2 0.0625r 2 $ 42 $1( ) r 2 $ 0.25( )%
&

'
( 0.125r $ 2r( ) r 2 $ 0.25( ) $ r 2 $1( ) 2r( )%
&

'
(

 

 
 Solving B dA = A dB for ζ yields 
 

  

  

r = 0.4896!" = 0.1145!
X

#
st

= 1.4279

r = 0.9628!" = 0.3197 !
X

#
st

= 6.3029

 

 
 To determine the optimal damping ratio, make a plot of

  
X / !   versus r for ζ = 0.01, 

0.1145, 0.3197, and 0.7. 
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 The value of ζ = 0.3197 yields the best overall response (i.e., the lowest maximum). 
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5.55 For a Houdaille damper with mass ratio µ = 0.25, calculate the optimum damping ratio 
and the frequency at which the damper is most effective at reducing the amplitude of 
vibration of the primary system. 

 
 Solution: 
 
 From equation (5.49), with µ = 0.25, 
 

  

  

!
op

=
1

2 µ + 1( ) µ + 2( )
= 0.422  

 
 From equation (5.48), 
 

  
  
r =

2

2 + µ
= 0.943 

 
 The damper would be most effective at  ! = r!

n
= 0.943!

n
, i.e., where the amplitude is 

greatest: 
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5.56 Consider again the system of Problem 5.53.  If the damping ratio is changed to ζ = 0.1, 

what happens to
  
Xk / M

0
? 

 
 Solution: 
 
 If ζop = 0.1, the value of µ becomes 
 

  

 

0.1 =
1

2 µ + 1( ) µ + 2( )

0.02µ
2

+ 0.06µ = 0.96 = 0

µ = !8.589,  5.589

 

 

 Clearly µ = 5.589 is the physical solution.  The maximum value of 

  

Xk

M
0

 would be 

 

  

  

Xk

M
0

!

"#
$

%&
max

= 1+
2

µ
= 1.358  

 
 which is less than 6 (the requirement of Problem 5.53).  Note that the value of µ is 

extremely large. 
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5.57 Derive Equation (5.42) from Equation (5.35) and derive Equation (5.49) for the optimal 
damping ratio. 

 
 Solution: 
 
 Equation (5.37) is derived from Equation (5.35) in Problem 5.39. 
 
 Start with Equation (5.37): 
 

  

  

Xk

F
0

=

2!r( )
2

+ r 2 " # 2
( )

2

2!r( )
2

r 2 "1+ µr 2
( )

2
+ µr 2# 2 " r 2 "1( ) r 2 " # 2

( )$
%

&
'

2
 

 
 To derive Equation (5.42), which is the same as Equation (5.39), note that 

  c = k
a

= !
a

= 0,  which also means β = 0.  Since this is a moment equation, F0 is replaced 

by M0.  Therefore, 
 

  

  

Xk

F
0

=
2!r( )

2
+ r 4

2!r( )
2

r 2 "1+ µr 2
( )

2
+ r 2 "1( )

2
r 4

=
4! 2

+ r 4

4! 2 r 2
+ µr 2 "1( )

2
+ r 2 "1( )

2
r 2

 

 
 which is Equation (5.42) after canceling r2. 
 

 To derive Equation (5.49), first let Equation (5.42) be f(r,ζ).  Since
  
f =

A1/ 2

B1/ 2
, where 

  A = 4! 2
+ r 2  and 

  
B = 4! 2 r 2

+ µr 2 "1( )
2

+ r 2 "1( )
2
r 2 ,  then 

 

  
  

!f

!"
= 0  

 
 becomes 
   BdA = AdB  
 
 where 

  

  

dA !
"A

"#
= 8#

dB !
"B

"#
= 8# r 2

+ µr 2 $1( )
2
 

 So, 
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4! 2 r 2
+ µr 2 "1( )

2
+ r 2 "1( )

2
r 2{ } 8!( ) = 4! 2

+ r 2
{ } 8!( ) r 2

+ µr 2 "1( )
2

r 2 "1( )
2

= r 2
+ µr 2 "1( )

2

r 2 "1( ) = ± r 2
+ µr 2 "1( )

 

 
 Taking the minus sign (the plus sign yields r = 0). 
 

  

  

2 + µ( )r 2
! 2 = 0

r =
2

2 + µ( )

 

 

 Now take the other partial derivative
  

!f

!r
= 0 , which becomes 

 

  

  

BdA = AdB

dA !
"A

"r
= 2r

dB !
"B

"r
= 16# 2r 1+ µ( ) r 2

+ µr 2 $1( ) + 4r3 r 2 $1( ) + 2r r 2 $1( )
2

 

 
 So, 

  

  

4! 2 r 2
+ µr 2 "1( )

2
+ r 2 "1( )

2
r 2{ } 2r( )

= 4! 2
+ r 2

{ } 16! 2r 1+ µ( ) r 2
+ µr 2 "1( ) + 4r3(r 2 "1) + 2r r 2 "1( )

2#
$%

&
'(

 

 

 Substituting 

  

r =
2

2 + µ( )
 yields, after rearranging 

 

 

 

4! 2 2

2 + µ
+

2µ

2 + µ
"1

#

$
%

&

'
(

2

+
2

2 + µ
"1

#

$
%

&

'
(

2
2

2 + µ

)
*+

,
-.

= 4! 2
+

2

2 + µ

#

$
%

&

'
( 8! 2 1" µ( )

2

2 + µ
+

2µ

2 + µ
"1

)
*+

,
-.

+ 2
2

2 + µ

)
*+

,
-.

2

2 + µ
"1

)
*+

,
-.

+
2

2 + µ
"1

)
*+

,
-.

2#

$
%
%

&

'
(
(

 

 
 Expanding and canceling terms yields 
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4! 4 1+ µ( ) 2 + µ( ) + 2! 2

µ "
2

2 + µ
= 0  

 
 The physical solution for ζ is 
 

  

 

! =
1

2 1+ µ( ) 2 + µ( )
 

 which is Equation (5.49). 
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5.58 Consider the design suggested in Example 5.5.1.  Calculate the percent change in the 
maximum deflection if the damping constant changes 10% from an optimal value.  If the 
optimal damping is fixed but the mass of the absorber changes by 10%, what percent 

change in 
  
Xk / M

0 max
 results?  Is the optimal absorber design more sensitive to changes 

in ca or ma? 
 
 Solution: 
 
 From Problems 5.51 and 5.46, F0 = 100 N, k = 4.144 × 106 N/m, and µ = 0.133.  The 

optimal damping is 
 

  

  

!
op

=
1

2 1+ µ( ) 2 + µ( )
= 0.4549  

 
 The deflection is given by Equation (5.42), and M0 replaced by F0, 
 

  

  

X =
F

0

k

4! 2
+ r 2

4! 2 r 2
+ µr 2 "1( )

2
+ r 2 "1( )

2
r 2

 

 

 Also, the maximum displacement will occur at 

  

r =
2

2 + µ( )
 = 0.9683.  If the damping 

constant changes by 10%, ζ will also change by 10% since

  

! =
c

a

2m"
p

.  The value of X 

for 0.9 
  
!

op
,!

op
,  and 1.1 !

op
 is  

 

  

  

! = 0.9!
op

" X = 3.870 #10$4  m

! = !
op

" X = 3.870 #10$4  m

! = 1.1!
op

" X = 3.870 #10$4  m

 

 
 There  is no change in X with a 10% change in ζop. 
 

 If ma changes by 10%, µ will also change by 10% since
 
µ =

m
a

m
.  The value of 

  

Xk

F
0

!

"#
$

%&
max

 

for 0.9µ, µ, and 1.1µ is 
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0.9µ ! r = 0.9714 !
Xk

F
0

"

#$
%

&'
max

= 17.708(+10.4%)

µ ! r = 0.9683 !
Xk

F
0

"

#$
%

&'
max

= 16.038

1.1µ ! r = 0.9318 !
Xk

F
0

"

#$
%

&'
max

= 14.671 (8.5%( )

 

 
 The displacement is more sensitive to changes in ma than ca. 
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5.59 Consider the elastic isolation problem described in Figure 5.26.  Derive equations (5.57) 
and (5.58) from equation (5.53). 

 
 Solution: 
 
 Rewrite equation (5.53) in matrix form as 
 

  

  

k
1
! m" 2

+ jc" ! jc"

! jc" ! k
2

+ jc"( )

#

$
%
%

&

'
(
(

X
1

X
2

#

$
%
%

&

'
(
(

=
F

0

0

#

$
%

&

'
(  

 
 The inverse of the matrix on the left is 
 

  

  

1

!k
2

k
1
! m" 2

( ) ! jc" k
1
+ k

2
m" 2

( )

! k
2

+ jc"( ) jc"

jc" k
1
m" 2

+ jc"

#

$
%
%

&

'
(
(

 

 
 Solving for X1 and X2 yields 
 

  

  

X
1

=
k

2
+ jc!( ) F

0

k
2

k
1
" m! 2

( ) + jc! k
1
+ k

2
" m!

dr
2

( )

X
2

=
c!

dr
F

0
j

k
2

k
1
" m! 2

( ) + jc! k
1
+ k

2
" m!

dr
2

( )

 

 
 which are equations (5.54) and (5.55). 
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5.60 Use the derivative calculation for finding maximum and minimum to derive equations 
(5.57) and (5.58) for the elastic damper system. 

 
 Solution: 
 
 From equation (5.56) 
 

  

  

T .R. =

1+ 4 1+ !( )
2
" 2r 2

1# r 2
( )

2
+ 4" 2r 2 1+ ! # r 2!( )

2
 

 
 Equation (5.45) is applicable here, so that 
 
   BdA = AdB  
 

 where 
  
A = 1+ 4 1+ !( )

2
" 2r 2  and 

  
B = 1! r 2

( )
2

+ 4" 2r 2 1+ # ! r 2#( )
2
 differentiating with 

respect to ζ yields 
 

  

  

dA !
"A

"#
= 8 1+ $( )

2
#r 2

dB !
"B

"#
= 8#r 2 1+ $ % r 2$( )

2
 

 
 So, 
 

  

  

1! r 2
( )

2
+ 4" 2r 2 1+ # ! r 2#( )

2

{ } 8( ) 1+ #( )
2
"r 2

= 1+ 4 1+ #( )
2
" 2r 2{ } 8"r 2

( ) 1+ # ! r 2#( )
2

1! r 2
( )

2
1+ #( )

2
= 1+ # ! r 2#( )

2

1! r 2
( ) 1+ #( ) = ± 1+ # ! r 2#( )

 

 
 The minus sign yields the physical result 
 

  

  

r 2 2! + 1( ) = 2 1+ !( )

r =
2 1+ !( )

1+ 2!

 

 
 which is equation (5.57) 
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 Differentiating with respect to r yields 
 

  

  

dA !
"A

"r
= 8 1+ #( )

2
$ 2r

dB !
"B

"r
= 2 1% r 2

( ) %2r( ) + 8$ 2r 1+ # % r 2#( )
2

+ 8$ 2r 2 1+ # % r 2#( ) %2r#( )

 

 
 So, 

  

  

1! r 2
( )

2
+ 4" 2r 2 1+ # ! r 2#( )

2

{ } 8" 2r( ) 1+ #( )
2

= 1+ 4 1+ #( )
2
" 2r 2{ } !4r 1! r 2

( ) + 8" 2r 1+ # ! r 2#( )
2
!16#" 2r3 1+ # ! r 2#( )$

%&
'
()

 

 
 Substituting for r and manipulating yields 
 

 

 

64! 1+ !( )
5 1

1+ 2!
"
#$

%
&'

(

)
*

+

,
-.

4
+ 8 ! 1+ !( )

2
+ 1+ !( )

3
1+ 2!( ) / 2 1+ !( )

4(
)*

+
,-
. 2 / 1+ 2!( ) = 0  

 
 Solving for ζ yields the physical result 
 

  

 

! =

2 1+ 2"( ) / "

4 1+ "( )
 

 
 which is Equation (5.58). 
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5.61 A 1000-kg mass is suspended from ground by a 40,000-N/m spring.  A viscoelastic 
damper is added, as indicated in Figure 5.26.  Design the isolator (choose k2 and c) such 
that when a 70-N sinusoidal force is applied to the mass, no more than 100 N is 
transmitted to ground. 

 
 Solution: 
 
 From equation (5.59), 
 

  

  

T .R.( )
max

= 1+ 2!

F
T

F
0

=
100

70
= 1.429 = 1+ 2!

! = 0.2143

 

 
 The isolator stiffness should be 
 

  
  
k

2
= ! k

1
= 0.2143( ) 40,000( ) = 8571N/m  

 
 From equation (5.58), 
 

  

  

!
op

=

2 1+ 2"( ) / "

4 1+ "( )
= 0.7518  

 
 The isolator damping should be 
 

  
  
c = 2!

op

k
1

m
= 2 0.7518( )

40,000

1000
= 9.51kg/s  
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5.62 Consider the isolation design of Example 5.5.2.  If the value of the damping coefficient 
changes 10% from the optimal value (of 188.56 kg/s), what percent change occurs in 
(T.R.)max?  If c remains at its optimal value and k2 changes by 10%, what percent change 
occurs in (T.R.)max?  Is the design of this type of isolation more sensitive to changes in 
damping or stiffness? 

 
 Solution: 
 
 From Example 5.5.2, c = 188.56 kg/s and k2 = 200 N/m.  If the value of c changes by 

10%, the value of T.R. becomes (with r = 5 and γ = 0.5), 
 

  

  

0.9c ! "
op

= 0.4243 ! T .R. = 0.1228(#1.78%)

c ! "
op

= 0.4714 ! T .R. = 0.1250

1.1c ! "
op

= 0.5185 ! T .R. = 0.1267 +1.39%( )

 

 
 If the value of k2 changes by 10%, the value of T.R. becomes (with r = 5 and ζ = 0.4714), 
 

  

  

0.9k
2

! " = 0.45 ! T .R. = 0.1327 +6.17%( )

k
2

! " = 0.5 ! T .R. = 0.1250

1.1k
2

! " = 0.55 ! T .R. = 0.1183 #5.31%( )

 

 
 This design is more sensitive to changes in stiffness. 
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5.63 A 3000-kg machine is mounted on an isolator with an elastically coupled viscous damper 
such as indicated in Figure 5.26.  The machine stiffness (k1) is 2.943 × 106 N/m, γ = 0.5, 
and c = 56.4 × 103 N⋅s/m.  The machine, a large compressor, develops a harmonic force 
of 1000 N at 7 Hz.  Determine the amplitude of vibration of the machine. 

 
 Solution: 
 
 The amplitude of vibration is given by Equation (5.54) as 
 

  

  

X
1

=
k

2
+ jc!( ) F

0

k
2

k
1
" m! 2

( ) + jc! k
1
+ k

2
" m!

dr
2

( )
 

 
 Since F0 = 1000 N, ω = 7(2π) = 43.98 rad/s, m = 3000 kg, c = 56.4 × 103 N⋅s/m, k1 = 

2.943 × 106 N/m, and k2 = γk1 = 1.4715× 106 N/m, then 
 

    X1
= !4.982 "10!4

!1.816 "10!4 j  

 
 The magnitude is 
 

  
  
X

1
= 5.303!10"4  m  
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5.64 Again consider the compressor isolation design given in Problem 5.63.  If the isolation 
material is changed so that the damping in the isolator is changed to ζ = 0.15, what is the 
force transmitted?  Next determine the optimal value for the damping ratio and calculate 
the resulting transmitted force. 

 
 Solution: 
 

 From Problem 5.63, γ = 0.5, F0 = 1000 N, and 

  

r =
!

k
1

/ m
=

7 2"( )

2.943#106 / 3000
 = 

1.404.  Since ζ = 0.15, the transmitted force is [from Equation (5.56)], 
 

  

  

F
T

= F
0

1+ 4 1+ !( )
2
" 2r 2

1# r 2
( )

2
+ 4" 2r 2 1+ ! # r 2!( )

2
= 1188 N  

 
 The optimal value for the damping ratio is found from equation (5.58): 
 

  

  

!
op

=

2 1+ 2"( ) / "

4 1+ "( )
= 0.4714  

 
 The transmitted force is then 
 
    FT

= 1874 N  
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5.65 Consider the optimal vibration isolation design of Problem 5.64.  Calculate the optimal 
design if the compressor's steady-state driving frequency changes to 24.7 Hz.  If the 
wrong optimal point is used (i.e., if the optimal damping for the 7-Hz driving frequency 
is used), what happens to the transmissibility ratio? 

 
 Solution: 
 
 From Problems 5.63 and 5.64, γ = 0.5, F0 = 1000 N, k1 = 2.943 × 106 N, and m = 3000 

kg. 
 
 The optimal damping is 
 

  

  

!
op

=

2 1+ 2"( ) / "

4 1+ "( )
= 0.4714  

 
 The value of c and k2 would be 
 

  

  

c = 2!
op

k
1
m = 88.589 kg/s

k
2

= " k
1

= 1.472 #106  N/m
 

 
 The isolation design is independent of the driving frequency in this problem, so the 

transmissibility ratio would not change. 
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5.66 Recall the optimal vibration absorber of Problem 5.53.  This design is based on a steady-
state response.  Calculate the response of the primary system to an impulse of magnitude 
M0 applied to the primary inertia J1.  How does the maximum amplitude of the transient 
compare to that in steady state? 

 
 Solution: 
 
 The response of the system given in Problem 5.53 cannot be solved by the means of 

modal analysis given in Chapter 4 because the system is not proportionally damped.  
However, the steady-state response of a damped system to an impulse is simply zero.  
Therefore, the maximum amplitude of the transient will be of interest.  For a sinusoidal 
input, a numerical simulation might be necessary to determine the effects of the transient 
response. 
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Problems and Solutions Section 5.6 (5.67 through 5.73) 
 
5.67 Compare the resonant amplitude at steady state (assume a driving frequency of 100 Hz) 

of a piece of nitrite rubber at 50°F versus the value at 75°F.  Use the values for η from 
Table 5.2. 

 
 Solution: 
 
 From equation (5.63), 
 

  

  

X =
F

0

k 1+! j( ) " m# 2
 

 

 At resonance 
 
! =

k

m
 so 

 

  

  

X =
F

0

k 1!" j( ) !1
=

F
0

k" j
 

 
 The magnitude is 
 

  
  
X =

1

!
F

0

k

"

#$
%

&'
 

 
 At 50°, η = 0.5 and at 75°, η = 0.28, so 
 

  

   

X
50!

=
2F

0

k

X
75!

=
3.57F

0

k
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5.68 Using Equation (5.67), calculate the new modulus of a 0.05 × 0.01 × 1, piece of pinned-
pinned aluminum covered with a 1-cm-thick piece of nitrite rubber at 75°F driven at 100 
Hz. 

 
 Solution: 
 
 From Table 1.2, E1 = 7.1 × 1010 N/m2 for aluminum.  From Table 5.2, 

  E2
= 2.758 !107 N/m2 for nitrate rubber, Also, 

 

  

  

I = I
1

=
1

3
0.05( ) 1( )

3
= 0.01667 m4

e
2

=
E

2

E
1

=
2.758 !107

7.1!1010
= 3.885!10"4

h
2

=
H

2

H
1

=
0.01

0.01
= 1

 

 
 From Equation (5.67), 
 

  

  

E =
E

1
I

1

I
1+ e

2
h

2
2

+ 3 1+ h
2( )

2 e
2
h

2

1+ e
2

j
2

!

"
#

$

%
& = 7.136 '1010  N/m2  

 
5.69 Calculate Problem 5.68 again at 50°F.  What percent effect does this change in 

temperature have on the modulus of the layered material? 
 
 Solution: 
 

 From Problem 5.68, with   E2
= 4.137 !107  N/m2, 

 

  

  

I = I
1

= 0.01667 m4

e
2

=
E

2

E
1

=
4.137 !107

7.1!1010
= 5.827 !10"4

h
2

=
H

2

H
1

=
0.01

0.01
= 1

 

 
 From Equation (5.67), 
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E =
E

1
I

1

I
1+ e

2
h

2
2

+ 3 1+ h
2( )

2 e
2
h

2

1+ e
2
h

2

!

"
#

$

%
& = 7.154 '1010  N/m2  

 
 This is an increase of 0.25% of the layered material's modulus. 
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5.70 Repeat the design of Example 5.6.1 by 
 (a)  changing the operating frequency to 1000 Hz, and 
 (b)  changing the operating temperature to 50°F. 
 Discuss which of these designs yields the most favorable system. 
 
 Solution: 
 

 From Ex. 5.6.1,   E1
= 7.1!1010 N/m2 and h2 = 1. 

 
 (a)  75°, 1000 Hz 
 

  

  

!
2

= 0.55

E
2

= 4.826 "107 N/m2

e
2

=
E

2

E
1

= 6.797 "10#4

 

 
 From Equation (5.68), 
 

  

  

! =

e
2
h

2
3+ 6h

2
+ 4h

2
2

+ 2e
2
h

2
2

+ e
2
2h

2
4

( )

1+ e
2
h

2( ) 1+ 4e
2
h

2
+ 6e

2
h

2
2

+ 4e
2
h

2
3
+ e

2
2h

2
4

( )
!

2
= 0.00481 

 
 (b)  50°, 1000 Hz 
 

  

  

!
2

= 0.5

E
2

= 4.137 "107  N/m2

e
2

=
E

2

E
1

=
4.137 "107

7.1"1010
= 5.827 "10#4

 

 
 From Equation (5.68), 
 
   ! = 0.00375 
 
 Increasing the driving frequency results in a higher loss factor compared to the effects of 

lowering the temperature. 
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5.71 Reconsider Example 5.6.2.  Make a plot of thickness of the damping treatment versus 
loss factor. 

 
 Solution: 
 
 From Ex. 5.6.2, η2 = 0.261, e2 = 0.01, and H1 = 1 cm.  So, from Equation (5.69), 
 

  
  
! = 14e

2

H
2
2

H
1
2
!

2
= 0.03654H

2
2 H

2
 in cm( )  

 

 
A plot of η versus H2 in centimeters 
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5.72 Calculate the maximum transmissibility coefficient of the center of the shelf of Example 
5.6.1.  Make a plot of the maximum transmissibility ratio for this system frequency, using 
Table 5.2 for each temperature. 

 
 Solution: If the system is modeled as shown in Figure 5.18, then the maximum 

transmissibility occurs at (from Equation (5.50)), 

  

  

Xk

F
0

!

"#
$

%&
max

= 1+
2

µ
 

 where µ is found from Equation (5.49) as the solution to 

  

 

! =
1

2 µ + 1( ) µ + 2( )
 

 The value of ζ is 
 

!

2
 at resonance.  So, at 75° and 100 Hz, 

  

  

! =
"

2
=

0.00151

2
= 0.000755 =

1

2 µ + 1( ) µ + 2( )

                             # µ = 935

Xk

F
0

= 1+
2

935
= 1.002

 

 For 50° and 100 Hz, η = 0.00375 (from Problem 5.70), so 

  

  

! =
"

2
=

0.00375

2
= 0.001875 =

1

2 µ + 1( ) µ + 2( )

µ = 375.6

Xk

F
0

= 1+
2

375.6
= 1.005
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This gives some idea of  the 
relationship, but not a very 
good one as it includes only 
two points 
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5.73 The damping ratio associated with steel is about ζ = 0.001.  Does it make any difference 
whether the shelf in Example 5.6.1 is made out of aluminum or steel?  What percent 
improvement in damping ratio at resonance does the rubber layer provide the steel shelf? 

 
 Solution: 
 
 If the shelf in Ex. 5.6.1 is made out of steel, E1 = 2.0 × 1011 N/m2.  Therefore, 
 

  
  
e

2
=

E
2

E
1

=
2.758 !107

2.0 !1011
= 0.0001379  

 
 Also, η2 = 0.55 and h2 = 1.  From Equation (5.68), 
 

  

  

! =

e
2
h

2
3+ 6h

2
+ 4h

2
2

+ 2e
2
h

2
2

+ e
2
2 H

2
4

( )

1+ e
2
h

2( ) 1+ 4e
2
h

2
+ 6e

2
h

2
3
+ 4e

2
h

2
3
+ e

2
h

2
4

( )
!

2
= 0.0005  

 

 At resonance, 
 
! =

"

2
= 0.00025. The rubber actually reduced the damping of the steel 

shelf by 75%. 
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Problems and Solution Section 5.7 (5.74 through 5.80) 
 
5.74 A 100-kg compressor rotor has a shaft stiffness of 1.4 × 107 N/m.  The compressor is 

designed to operate at a speed of 6000 rpm.  The internal damping of the rotor shaft 
system is measured to be ζ = 0.01. 

 (a)  If the rotor has an eccentric radius of 1 cm, what is the rotor system's critical speed? 
 (b) Calculate the whirl amplitude at critical speed.  Compare your results to those of 

Example 5.7.1. 
 
 Solution: 
 (a)  The critical speed is the rotor's natural frequency, so 
 

  
  
!

c
=

k

m
=

1.4 "107

100
= 374.2 rad/s =  3573 rpm  

 
 (b)  At critical speed, r = 1, so from Equation (5.81), 
 

  

  

X =
!

2"
=

0.01

2 0.01( )
= 0.5 m  

 
 So a system with higher eccentricity and lower damping has a greater whirl amplitude 

(see Example 5.7.1). 
 
 
5.75 Redesign the rotor system of Problem 5.74 such that the whirl amplitude at critical speed 

is less than 1 cm by changing the mass of the rotor. 
 
 Solution: From Problem 5.74, k = 1.4 × 107 N/m, m = 100 kg, ζ = 0.01, and α = 0.01m.  

Since the whirl amplitude at critical speed must be less than 0.01 m, the value of ζ that 
would satisfy this is, from equation (5.81), 

  

X =
!

2"

" =
!

2X
=

0.01

2 0.01( )
= 0.5

 

 The original damping ratio was 0.01, so the value of c is 

  
  
c = 2!m" = 2 0.01( ) 100( )

1.4 #107

100
= 784.33 kg/s  

 So, the new mass should be, with ζ = 0.5, 
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748.33 = 2 0.5( )m
k

m
= km = 1.4 !107 m

                                  " m = 0.04 kg

 

 This is not practical. 
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5.76 Determine the effect of the rotor system's damping ratio on the design of the whirl 
amplitude at critical speed for the system of Example 5.7.1 by plotting X at r = 1 for ζ 
between 0 < ζ < 1. 

 
 Solution: 
 
 From Example 5.7.1, with r = 1 and α = 0.001 m, 
 

  
  
X =

0.001

2!
=

0.0005

!
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5.77 The flywheel of an automobile engine has a mass of about 50 kg and an eccentricity of 
about 1 cm.  The operating speed ranges from 1200 rpm (idle) to 5000 rpm (red line).  
Choose the remaining parameters so that whirling amplitude is never more than 1 mm. 

 
 Solution: 
 
 From Equation (5.81), 
 

  

  

X = 0.001 =
0.01r 2

1! r 2
( )

2
+ 2"r( )

2
 

 
 Choosing ζ = 0.1, the physical solution is 
 
    r = 0.3018  
 
 By observing Figure 5.34, r = 0.3018 is the maximum value of r.  So at 

  
!

r( )
max

 = 500 

rpm, the stiffness must be 
 

  

  

r = 0.3018 =

5000
2!
60

"
#$

%
&'

k / 50

k = 1.505(108  N/m

 

 



5- 84 

5.78 Consider the design of the compressor rotor system of Example 5.7.1.  The amplitude of 
the whirling motion depends on the parameters α, ζ, m, k and the driving frequency.  
Which parameter has the greatest effect on the amplitude?  Discuss your results. 

 
 Solution: 
 
 From Example 5.7.1, α = 0.001 m, ζ = 0.05, m = 55 kg, ωr = 6000 rpm, and k = 1.4 × 107 

N/m.  To find out what effect each parameter has on this system, each value will be 
varied by 10%. 

 
 The original system has r = 1.2454 and X = 0.002746 m. 
 

  

  

0.9a = 0.009m ! r = 1.2454 ! X = 0.002471 m (-10.0%)

1.1a = 0.0011 m ! r = 1.2454 ! X = 0.003020 m +10.0%( )

1.9" = 0.045 ! r = 1.2454 ! X = 0.002759 m +0.465%( )

1.1" = 0.055 ! r = 1.2454 ! X = 0.002732 m -0.507%( )

0.9m = 49.5 kg ! r = 1.1815 ! X = 0.003379 m +23.1%( )

1.1m = 60.5 kg ! r = 1.3062 ! X = 0.002376 m -13.5%( )

0.9k = 1.26 #107  N/m ! r = 1.3127 ! X = 0.002344 m -14.6%( )

1.1k = 1.54 #107  N/m ! r = 1.1874 ! X = 0.003304 m +20.3%( )

 

 
 The mass and stiffness values have the greatest effect on the amplitude, while the 

damping ratio has the smallest effect. 
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5.79 At critical speed the amplitude is determined entirely by the damping ratio and the 
eccentricity.  If a rotor has an eccentricity of 1 cm, what value of damping ratio is 
required to limit the deflection to 1 cm? 

 
 Solution: 
 
 Since X = 0.01 m, a = 0.01 m, and at critical speed r = 1, then from Equation (5.81), 
 

  

  

X = 0.01 m =
a

2!
=

0.01

2!

! = 0.5

 

 
  
 
 
 
5.80 A rotor system has damping limited by ζ < 0.05.  What is the maximum value of 

eccentricity allowable in the rotor design if the maximum amplitude at critical speed must 
be less than 1 cm? 

 
 Solution: 
 
 Since X = 0.01 m, ζ < 0.05, and at critical speed r = 1, then from Equation (5.81), 
 

  

  

X = 0.01 m =
a

2!
=

a

2 0.05( )

a = 0.001 m =  1 mm
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Problems and Solutions Section 5.8 (5.81 through 5.85) 
 
5.81 Recall the definitions of settling time, time to peak, and overshoot given in Example 3.2.1 

and illustrated in Figure 3.6.  Consider a single-degree-of-freedom system with mass m = 
2 kg, damping coefficient c = 0.8 N⋅s/m, and stiffness 8 N/m.  Design a PD controller 
such that the settling time of the closed-loop system is less than 10 s. 

 
 Solution: The settling time is 

  
  
t
s

=
3

!"
 

 Since ts = 10 s, 
   !" = 0.3 
 
 The equation of motion with a PD controller is 
 

  
   
m!!x + c + g

2( ) !x + k + g
1( )x = 0  

 
 So, 
 

  

  

! =
k + g

1

m
=

8 + g
1

2

" =
c + g

2

2m!
=

0.8 + g
2

2 2( )!

 

 
 Therefore, 
 

  

  

!" =
0.8 + g

2

4"
#

$%
&

'(
" = 0.3

g
2

= 0.4 N ) s/m

 

 
 The gain g1 can take on any value (including 0). 
 
 
5.82 Redesign the control system given in Example 5.8.1 if the available internal damping is 

reduced to 50 N⋅s/m. 
 
 Solution:  If the value of c is limited to 50 N⋅s/m, then g2 becomes 
 
    g2

= 180 ! c = 180 ! 50 = 130 N " s/m  
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5.83 Consider the compressor rotor-shaft system discussed in Problem 5.74.  Modern 
designers have considered using electromagnetic bearings in such rotor systems to 
improve their design.  Use a derivative feedback control law on the design of this 
compressor to increase the effective damping ratio to ζ = 0.5.  Calculate the required 
gain.  How does this affect the answer to parts (a) and (b) of Problem 5.74? 

 
 Solution: From Problem 5.74, m = 100 kg, k = 1.4 × 107 N/m, a = 0.01, ζold = 0.01.  The 

value of c is 

  
  
c = 2!

old
km = 2 0.01( ) 1.4 "107

( ) 100( ) = 748.3 kg/s  

 With derivative feedback, the coefficient of   !x  in the equation of motion is c + g2.  For ζ 
= 0.5, 

  

  

c + g
2

= 748.3+ g
2

= 2 0.5( ) 1.4 !107
( ) 100( ) = 37,416.6

g
2

= 36,668.2 kg/s
 

 (a)  The rotor's critical speed remains the same because it is only dependent upon the 
mass stiffness. 

 (b)  The whirl amplitude becomes 

  

  

X =
a

2!
=

0.01

2 0.5( )
= 0.01 m  

 It is reduced by 80% because of the increased damping. 
 
 
5.84 Calculate the magnitude of the force required of the actuator used in the feedback control 

system of Example 5.8.1.  See if you can find a device that provides this much force. 
 
 Solution: The magnitude of the actuator force would be 
 

  
   
F = g

2
!x = g

2
!

n
X  

 
 where X is, from Equation (2.26), at steady-state, 
 

  

  

X =
F

0
/ m

!
n
2 "! 2

( )
2

+ 2#!
n
!( )

2
 

 
 A large value of X would occur at resonance, for example, where ω = ωdr = 10 rad/s, so 
 

  

  

F = 80( ) 10( )
F

0
/ 10

2 0.9( ) 10( ) 10( )
= 0.444F

0
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5.85 In some cases the force actuator used in a control system also introduces dynamics.  In 
this case a system of the form given in Equation (5.27) may result where ma, ca and ka are 
values associated with the actuator (rather than an absorber).  In this case the absorber 
system indicated in Figure 5.18 can be considered as the control system and the motion of 
the mass m is the object of the control system.  Let m = 10 kg, k = 100 N/m, and c = 0.  
Choose the feedback control law to be 

 
  

   u = !g
1
x ! g

2
!x  

 
 and assume that ca = 20 N⋅s/m, ka = 100 N/m and ma = 1 kg.  Calculate g1 and g2 so that x 

is as small as possible for a driving frequency of 5 rad/s.  [Hint:  Replace k with k + g, 
and c with c + g in Equation (5.27)] 

 
 Solution: 
 
 Let the control law be called position feedback, applied to the mass m.  The equation of 

motion then becomes Equation (5.27) with k replaced by k + g1.  Then the amplitude X 
can be expressed as Equation (5.35) with k replaced by k + g1 and given values of m, ma, 
ka and ca.  This yields 

 

  

  

X 2

F
0
2

=
100 ! 25( )

2
+ 25( ) 400( )

100 + g
1
! 10( ) 25( )"

#
$
% 100 ! 25"# $% ! 2500{ }

2

+ 100 ! 11( ) 25( )"
#

$
%

2
25( ) 400( )

X 2

F
0
2

=
2.78

g
1
2 ! 366.7g

1
+ 88,055.6

 

 
 Clearly X is a minimum if   g1

2  -366.7g1 + 88,055.6 is a minimum.  Thus consider the 

derivatives of the quadratic form with respect to g1 to find the max value per the 
discussion on the top of page 265. 

 

  
  

d

dg
1

g
1
! 366.7g

1
+ 88,055.6( ) = 2g

1
! 366.7 = 0  

 
 so that   g1

= 183.35  

 
 Note that   d

2 / dg
1
2

= 2 > 0  so that this is a maximum and X is a minimum for this gain. 
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Problems Section 5.9 (5.86 through 5.88) 
 
5.86 Reconsider Example 5.2.1, which describes the design of a vibration isolator to 

protect an electronic module.  Recalculate the solution to this example using 
equation (5.92). 

 
Solution:  If data sheets are not available use G’ω =G’/2.  One of many possible 
designs is given. From the example we have T.R. = 0.5, m = 3 kg and ω = 35 rad/s 
= 5.57 Hz.  From equation (5.92): 

T.R. =
1 +!2

1" r2 # G 

# G $

% 

& 

' 
( 

) 

* 

2

+ !2

 = 0.5 

From Table 5.2 for 75°F and frequency of 10 Hz (the closest value listed), the 
value of E and η are: 

E = 2.068 x 107 N/m2  and η = 0.21 
Thus G’ = E/3 = 6.89 x 109 N/m2 using the approximation suggested after 
equation (5.86).   They dynamic shear modulus is estimated from plots such as 
Figure 5.38 to be G’ω =G’/2.  Thus equation 5.92 becomes 

0.52
=

1 + (0.21)2

1 ! r 2 " G 
" G 
2

# 

$ 

% 

& 

' 

( 

2

+ (0.21)2

 

 This is solved numerically in the following Mathcad session: 
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From the plot, any value of r greater then about 2.5 will do the trick.  Choosing r 

=  2.5 yields !n =
!

3.5
=

35

3.5
"

k

m
=10 " k =100(3) = 300 N/m
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5.87 A machine part is driven at 40 Hz at room temperature.  The machine has a mass 

of 100 kg.  Use Figure 5.42 to determine an appropriate isolator so that the 
transmissibility is less than 1. 

 
Solution: Given f = 40 Hz, m = 100 kg or about 220 lbs. and T.R. <1.  The 

maximum static load per mount is 3 lbs.  Therefore the system would require a 

minimum of 73 mounts.  Assume then that 75 mounts are used.  Thus 

220#

75
= 2.9#  per mount  

For the isolator, fn <0.5 f = 0.5(40) = 20 Hz.  Therefore the fn of the isolator must 

be less then 20 Hz.  Referring to the performance characteristics of the table in 

Figure 5.42 yields 4 possible isolator choices: 

AM 001-2,3,17,18 

 

5.88 Make a comparison between the transmissibility ratio of Window 5.1 and that of 
equation (5.92). 

 
Solution: Comparing equation (5.92) with Window 5.1 yields: 
 

Window 5.1:  T.R. =
1+ (2!r)2

(1 " r2 )2
+ (2!r)2

 

Equation (5.92): T.R. =
1 +!2

1" r2 # G 

# G $

% 

& 

' 
( 

) 

* 

2

+!2

 

Comparing the two equations yields 

! = 2"r   and    
# G 

# G $
%1 
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Chapter 6 
 
Problems and Solutions Section 6.2 (6.1 through 6.7) 
 
6.1 Prove the orthogonality condition of equation (6.28). 
 
 Solution: 
 
 Calculate the integrals directly.  For n = n, let u = nx/l so that du = (n/l)dx and 

the integral becomes 
 

  

  

l

n
sin2 udu 

l

n
1

2
u 

1

4
sin2u






0

n


0

n

      
l

n
1

2
n 

1

4
sin4n






 0 

l

2

 

 
 where the first step used a table of integrals.  For n  m let u = x/l so that du = 

(/l)dx and  
 

  
  

sin
nx

l
sin

mx

l
dx 

l


sin mu sin nudu

0

l

0

l

  

 
 which upon consulting a table of integrals is 
 

  
  

l


sin(m  n)

2(m  n)


sin(n  m)
2(n  m)








 0 . 
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6.2 Calculate the orthogonality of the modes in Example 6.2.3. 
 
 Solution: 

 One needs to show that
  

X
n
(x) X

m
(x)dx  0 for m  n,  where X

m
(t)  a

n
sin

n
x.

0

1

   

But each mode Xn(x) must satisfy equation (6.14), i.e. 
 

    X
n
 

n
2 X

n
       (1) 

 
 Likewise 
 

    X
m
 

m
2 X

m
       (2) 

 
 Multiply (1) by Xm and integrate from 0 to l.  Then multiply (2) by Xn(x) and 

integrate from 0 to l.  This yields 
 

  

  

X
n
X

m
dx  

n
2 X

n
X

m
dx

0

l

0

l


X
m

X
n
dx  

m
2 X

m
X

n
dx

0

l

0

l


 

 
 Subtracting these two equations yields 
 

  
  

X
n
X

m
 X

m
X

n dx  
n
2  

m
2  X

n
(x)X

m
(x)dx

0

l

0

l

  

 
 Integrate by parts on the left side to get 
 

  

  

X
n

X
m
dx  X

m
X
n
dx  X

n0

l

0

l

 X
m 0

l
 X

m
X
n 0

l

       X
m

(l)kX
n
(l)  X

n
(l)kX

m
(l)  0

 

 
 from the boundary condition given by eq. (6.50).  Thus 
 

  
  


n
2  

m
2  X

n
X

m
dx  0.

0

l

  

 
 But from fig. 6.4,    n

 
m

 for m  n so that 

 

  
  

X
n
X

m
dx  a

n
2 sin

n
xsin

m
xdx  0

0

l

0

l

  

 
 and the modes are orthogonal. 
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6.3. Plot the first four modes of Example 6.2.3, for the case l = 1 m, k = 800 N/m and 
= 800 N/m. 

 
 Solution: 
 
 The mode shapes are given as sinnx where n satisfies eq. (6.51).  To solve this 

numerically values of l, k and  must be given.  For example chose l = 1 m, k = 
800 N/m, and  = 800 N/m the equation (6.51) becomes 

 
  tan  = - 
 
 Solving using MATLAB for the first 4 values yields 
 
   = 2.029,  = 4.913,  = 7.979,  = 11.0855 
 
 So that the mode shapes are sin(2.029)x, sin(4.913)x, sin(7.979)x and 

sin(11.0855)x.  These are plotted below using Mathcad. 
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6.4 Consider a cable that has one end fixed and one end free.  The free end cannot 
support a transverse force, so that wx(l,t) = 0.  Calculate the natural frequencies 
and mode shapes. 

 
 Solution: 
 
 The cable equation results in (6.17).  The boundary conditions are 
 
    w(x,t)  X (x)T (t)  0 at x = 0 (fixed end) 
 
 so that X(0) = 0 and 
 
    wx

(x,t)  X (x)T (t)  0 at x = l (free end) 

 
 so that X(l) = 0.  Applying these to equation (6.17) yields 
 
    0  a

1
sin(0)  a

2
cos(0) so that a2 = 0 

  0= a1cos(l) 
 

 so that cos l = 0 or l = n for odd n and the natural frequency
  


n


n
2l

, n = 1, 3, 

5… or
  


n


2n 1
2l

, n = 1, 2, 3…Since a2 = 0, and a1 is arbitrary the mode 

shapes are 
 

  

  

a
n
sin

2n 1  x

2l









 ,   n  1,2,3...  

 
 the natural frequencies are from (6.15) and (6.24): 
 

  
  


n
 

n

2c2  c
n


(2n 1)c

2l


(2n 1)
2l

 /   
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6.5 Calculate the coefficients cn and dn of equation (6.27) for the system of a 
clamped-clamped string to the initial displacement given in Figure P6.5 and an 
initial velocity of wt(x,0) = 0. 

 
 Solution: 
 
 For the clamped-clamped string the solution is given by eq. (6.27) as 
 

  
  
w(x,t)  (c

n
sin

n
x sin

n
ct  d

n
sin

n
x cos

n
ct)

i1



  

 
 Series wt(x,0) = 0, equation (6.33) yields that cn = 0 for all n.  The coefficients dn 

are given by eq. (6.31) as 
 

  
  
d

n


2

l


0
(x)sin

mx

l
dx   m  1,2,...

0

l

  

 

 From fig. 6.16 
  
0(x) 

    2x / l            0  x  l / 2

2(l  x) / l       l / 2  x  l





 cm. Calculation yields 

 

  

  

d
n


2

l

2x

l
sin

nx

l
dx 

2

l
(l  x)sin

nx

l
dx

l / 2

l

0

l / 2










      
8

 2n2
sin

n
2

    n  1,3,5...

 

 
 and dn is zero for even values of n. 
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6.6 Plot the response of the string in Problem 6.5 for the piano string of Example 
6.2.2 (l = 1.4 m, m = 110 g,  =11.1x104 N) at x = l/4 and x = l/2, using 3, 5, and 
10 terms in the solution. 

 
 Solution: 
 
 For the piano string of example 6.22, l = 1.4m and c = 11.89.  From problem 6.5 

the solution has the form 
 

  
  
w(x,t) 

8

 2

1

m2
sin

m
2

sin
m x

l
cos

mc

l
t

m,odd1















 

 
 For 3 terms at x = l/4 = 3.5, this series becomes 
 

 
  
w3(3.5,t)  0.81 0.24cos26.68t  0.07858cos80.04t  0.02828cos133.40t  

 
 for 5 terms this becomes 
 
   w5

(3.5,t)  w
3
 0.01442cos182t  0.00873cos240.13t  

 
 The next terms have coefficients 0.00584, 0.00418, 0.00314, 0.00244 and 0.00195 

respectively.  Any of the codes can be used to easily plot these.  Plot of w3 and w5 
at l/4 are given below in Mathcad: 
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6.7 Consider the clamped string of Problem 6.5.  Calculate the response of the string 
to the initial condition 

 

  
w(x,0)  sin

3x

l
   w

t
(x,0)  0  

 
 Plot the response at x = l/2 and x = l/4, for the parameters of Example 6.2.2. 
 
 Solution: 
 
 Since wt = 0 each if the coefficients cn is zero in equation (6.33).  Thus the 

solution is of the form 
 

  
  
w(x,t)  d

n
sin

nx

l
cos

nc

l
t

i1



  

 
 as given in problem 6.5.  Equation (6.31) for the initial position yields 
 

  
  
d

n


2

l
sin

3 x

l
sin

m x

l
dx    m  1,2,...

0

l

  

 
 Because of the orthogonality all the dn = 0 except d3 and from the above integral 

d3 = 1.  Hence the solution collapses to the single term 
 

  
  
w(x,t)  sin

3x

l
sin

3c

l
t  

 
 At x = l/2 this becomes 
 

  
3 3 3

, sin cos cos
2 2

l c c
w t t t

l l

       
 

 

 
 At x = l/4 
 

  
  
w

l

4
,t






 sin

3
4

cos
3c

l
t  0.707cos

3c

l
t  

 
 Using the values for the piano string (l = 1.4, c = 1188 m/s) w(l/4,t) is simply a 

cosine of frequency 8000 rad/s and amplitude 0.707. 
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Problems and Solutions Section 6.3 (6.8 through 6.29) 
 
6.8 Calculate the natural frequencies and mode shapes for a free-free bar.  Calculate 

the temporal solution of the first mode. 
 
 Solution: 
 
 Following example 6.31 (with different B.C.’s), the spatial response of the bar 

will be 
 
  X(x)  a sinx  b cosx  
 
 The boundary conditions are .0)()0(  lXX   The expression for 

xbxaxXX  sincos)( is   so at 0: 
 
  0  a a  0 
 
 at l 
 
  0  bsinl,   b  0  
 
 so that l = n or  = n/l where n starts a zero. Hence the mode shapes are of the 

form 
 

  
X

n
(x)  b

n
cos

nx

l
 for n = 1, 2, 3, … and for n = 0, 

  
X0(x)  b0 cos

0
l

x





 b0

 a constant. 

 The temporal solution is given by eq. (6.15) to be 
 

  2

2 )(

)(


tTc

tT

n

n


 

 
 so that the temporal solution of the first mode: 

           
  

&&T
0
(t)  0c2T

0
(t)  0  &&T

0
(t) T

0
(t)  b ct  
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6.9 Calculate the natural frequencies and mode shapes of a clamped-clamped bar. 
 
 Solution: The calculation of the natural frequencies and mode shapes of a 

clamped-clamped bar is identical to that of the fixed-fixed string since the 
equations of motion are mathematically the same.  The solution of this problem is 
thus given at the beginning of section 6.2, but is repeated here: Applying 
separation of variable to eq. (6.56) yields that the spatial variable must satisfy eq. 
(6.59) of example 6.3.1, i.e., xbxaxX  cossin)(   where a and b are 
constants to be determined.  The clamped boundary conditions require that X(0) = 
X(l) =  or 

  0 = b  or  X = asinx 
  0 = asinl  or   = n/l 
 Hence the mode shapes will be of the form 
  Xn = ansinnx 
 Where  = n/l.  The frequencies are determined from the temporal solution and 

become 

  n   nc 
n
l

E


,   n 1,2,3,... 

 
6.10 It is desired to design a 4.5 m, clamped-free bar such that the first natural 

frequency is 1878 Hz.  Of what material should it be made? 
 

Solution:  First change the frequency into radians: 
1878 Hz =1878x2 rad/s=11800 rad/s 

The first natural frequency is given computed in Example 6.3.1, Equation (6.63) 
as 

  


1


2
l

E




E




1
2 4l 2

 2
 (11800)2 4l 2

 2

                                    
E


 7.143107

 

in Nm/kg.  Examining the ratios from Table 2.1 for the values given yields that 
for Steel: 

  

E




2  1011

2.8 103
 7.143107  Nm/kg  

Thus a steel bar with a length 4.5 meters will have a first natural frequency of 
1878 Hz.  This is something like a truck chassis.  
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6.11 Compare the natural frequencies of a clamped-free 1-m aluminum bar to that of a 
1-m bar made of steel, a carbon composite, and a piece of wood. 

 
 Solution: 
 
 For a clamped-free bar the natural frequencies are given by eq. (6.6.3) as 
 

  
  


n


(2n  1)
2l

E


 

 
 Referring to values of r and E from table 1.2 yields (for 1): 
 Steel 
 

  
 


(2)(1)

2.0 1011

7.8 103
 7,954  rad/s (1266Hz) 

 
 Aluminum 
 

  
 


(2)(1)

7.11010

2.7  103
 8,055  rad/s (1282 Hz) 

 
 Wood 
 

  
 


(2)(1)

5.4 109

6.0  102
 4,712  rad/s (750 Hz) 

 
 Carbon composite (student must hunt for E/ and guess a little) from Vinson and 

Sierakowski’s book on composites /E  = 3118 and 

 

  4897)3118(
2




 rad/s (780 Hz) 

 
 
6.12 Derive the boundary conditions for a clamped-free bar with a solid lumped mass, 

of mass M attached to free end. 
 
 Solution: At the clamped end, x = 0, the boundary condition is w(0,t) = 0 or X(x) 

= 0.  At the end x = l the tensile force in the bar must be equal to the inertia force 
of the attached mass.  For an attached mass of value M, this becomes 

 

  EA
w(x, t)

x x l

 M
 2w(x, t)

t2

x l
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6.13 Calculate the mode shapes and natural frequencies of the bar of Problem 6.12.  
State how the lumped mass affects the natural frequencies and the mode shapes. 

 
 Solution: Via separation of variables [i.e., w(x,t) = X(x)T(t)], the spatial equation 

becomes (following example 6.3.1 for instance) 
  X(x) = asinx+bcosx 
 Applying the boundary condition at x = 0 yields 
    X (0)  0  asin(0)  bcos(0)  b  0 0 = b 

 so the spatial solution reduces to X(x) = asinx.  Now the second boundary 
condition (see 6.12) involves time deviates so that w(x,t) = X(x)T(t) substituted 
into the boundary condition EAWx = -Mwtt(l,t) becomes: 

 

    EA X (l)T (t)  MX (l) &&T (t) 
EA X (l)

MX(l)
 

Ý Ý T (t)

T (t)
 

 From equation (6.15) Ý Ý T / T   2c2 , so this boundary condition becomes 

  
EA

M


X (l)

X(l)
  2c2     (1) 

 Substitution of X(x) = asinx and X (x)  a cosx  into (1) yields 

  
EA

M

a cosl

asinl
  2c2  

 or 

  cotl 
c2M

EA
 

 
 which describes multiple values of  = n, n = 1, 2, 3,…  The frequency of 

oscillation is related to n by n = nc, where c  E /  .  Let Al = m be the 

mass of the beam and rewrite cot(l) as  

cotl  cot
 nl

c






 E /  M

EA
  

 nl / c 
Al

M 
 nl

c

M

m
.   

This can be rewritten as  
 
   cot  = 
 
 where  = m/M and  = nl/c.  As the mass ratio  increases (tip mass increases) 

the frequency increases.  The mode shapes are proportional to sin nx, where n is 
calculated numerically from cot (l) = (M/m)l, similar to the calculation 
showing in Figure 6.4.  This is illustrated in the following Mathcad session. 
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6.14 Calculate and plot the first three mode shapes of a clamed-free bar. 
 
 Solution: The second entry of Table 6.1 yields the solution  


Xn (x)  sin

(2n  1)

2
x   

which is calculated following the procedures out lined in Example 6.3.1. The plot 
is given in Mathcad for the case  = 1m. 
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6.15 Calculate and plot the first three mode shapes of a clamed-clamped bar and 
compare them to the plots of Problem 6.14. 

 
 Solution: As in problem 6.14 the solution is given in table 6.1.  The important 

item here is to notice the difference between mode shapes from the plots of 

sin x
l

n

2

)12( 
 and sin (nx/l).  In particular notice the difference at the free end. 

 
6.16 Calculate and compare the eigenvalues of the free-free, clamped-free, and the 

clamped-clamed bar.  Are the related?  What does this state about the system’s 
natural frequencies? 

 
 Solution: 
 
 Students can calculate these or just use the results listed in table 6.1.  Note for l = 

1 
 
  free-free 0, c, 2c… 

  clamped-free ...
2

5
,

2

3
,

2

ccc 
 

  clamped-clamped c, 2c, 3c… 
 

so that the free-free and clamped-clamped values are a  shift from one another 
with the clamped-free values falling in between: as the number of constraints 
increases, the frequency increases. 
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6.17 Consider the nonuniform bar of Figure P6.17, which changes cross-sectional area 
as indicated in the figure.  In the figure A1, E1, 1, and l1 are the cross-sectional 
area, modulus, density and length of the first segment, respectively, and A2, E2, 2, 
and l2 are the corresponding physical parameters of the second segment. 
Determine the characteristic equation. 

 
Solution: Let the subscript 1 denote the first part of the beam and 2 the second 
part of the beam.  The bar equation must be satisfied in each part so that equation 
of motion is in two parts: 



E1

 2w1(x, t)

x 2
 1

2 w1(x,t)

t2
  0  x  1

E2

 2w2 (x, t)

x2  2

 2w2 (x,t)

t2   1  x  1  2  
 

The boundary conditions are the two from the clamped-free configuration then 
there are two more conditions expressing force and displacement continuity at the 
point where the two beams join (x = 1). Follow the procedure of separation of 
variables but this time keep the constant c in the spatial equation so that we may 
write: w1(x,t) = X1(x)T(t) and w2(x,t) = X2(x)T(t) where the function of time is 
common to both beams.   Then denoting 2 as the separation constant and 
substituting the separated forms into the equation of motion yields: 

  

c
1
2 X

1
(x)

X
1
(x)


&&T (t)

T (t)
  2   0  x  l

1
  and c

1


E
1


1

  (1)

c2
2 X 2(x)

X2 (x)


&&T (t)

T (t)
  2   l

1
 x  l   and c

2


E2

2

  (2)

 

In this way the temporal equation for both parts is the same ( does not depend on 
which part of the beam and will show up in the characteristic equation).  Solving 
the two spatial equations yields: 



(1) X1  a1 sin

c1

x  a2 cos

c1

x   0  x  1

(2)  X2  a3 sin

c2

x  a4 cos

c2

x   1  x  
 

 There are now 4 boundary conditions (one at each end and two in the middle) 
which will yield 4 equations in the 4 coefficients ai.  This set of equations must be 
singular yielding the characteristic equation for . 

 From the clamped end:  
X1(0)  0  a1 sin(0)  a2 cos(0)  0     (3) 

From the free end: 


X 2 ()  0 


c2

a3 cos

c2



c2

a4 sin

c2

 0    (4) 

 From the middle and enforcing displacement continuity at x = 1: 

 

a1 sin


c1

1  a2 cos

c1

1  a3 sin

c2

1  a4 cos

c2

1    (5) 
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From the middle and enforcing force, equation (6.54) continuity at x = 1: 



E1A1 X 1(1)  E2 A2 X (1)

 E1A1


c1

(a1 cos
1

c1

 a2 sin
1

c1

)  E2 A2


c2

(a3 cos
1

c2



c2

a4 sin
1

c2

)
 (6) 

Equations (3) through (6) are 4 equations in the 4 unknowns ai.  Writing these in 
matrix form as a homogeneous algebraic equation yields: 

  

0 1 0 0

0 0 cos
 l
c

2

 sin
 l
c

2

sin

c1

l
1

cos

c1

l
1

sin

c2

l
1

cos

c2

l
1

E
1
A

1

c
1

cos
 l

1

c
1


E

1
A

1

c
1

sin
 l

1

c
1


E

2
A

2

c
2

cos
 l

1

c
2

E
2
A

2

c
2

sin
 l

1

c
2





























a
1

a2

a3

a
4























0

0

0

0



















 

In order for the vector a to be nonzero, the determinant of the matrix coefficient 
must be zero (recall chapter 4). This yields the characteristic equation (computed 
using Mathcad): 



E2A2c1 sin
 l 1

c1

sin
 l
c2

cos
 l 1

c2

 sin
 l 1

c2

cos
 l
c2











             =E1A1c2 cos
 l 1

c1

sin
 l 1

c2

sin
 l
c2

 cos
 l 1

c2

cos
 l
c2













  (7) 



E2A2c1

E1A1c2

tan
 l 1

c1

sin
 l
c2

cos
 l 1

c2

 cos
 l
c2

sin
 l 1

c2











                                          sin
 l
c2

sin
 l 1

c2

 cos
 l
c2

cos
 l 1

c2

 (8) 

 
Further simplifying yields 

  

E
2
A

2
c

1

E
1
A

1
c

2

tan
 l

1

c
1

sin
 (l  l

1
)

c
2

 cos
 (l  l

1
)

c
2

                                      
E

2
A

2
c

1

E
1
A

1
c

2

tan
 l

1

c
1

tan
 (l  l

1
)

c
2

 1

 

 
 

Given the parameter values, equation (9) must be solved numerically for , 
yielding the natural frequencies. 
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6.18 Show that the solution obtained to Problem 6.17 is consistent with that of a 
uniform bar. 

 
 Solution: 
 
 If the bar is the same, then E1 = E2 = E, 1 = 2 =  etc. and the characteristic 

equation from (1) in the solution to Problem 6.17 becomes (l = l1) 
 



sin

c

sin

c

cos

c
 sin


c

cos

c






 cos


c

sin

c

sin

c
 cos


c

cos

c







 sin

c

0   cos

c

sin 2 
c
 cos2 

c






 0  cos

c

(1)

c


2n1

2


 

 

 so that n = n = 
(2n 1)

2l

E


 which according to table 6.1 entry 2 is the 

frequency of a clamped-free bar of length l . 
 
 
 
 
 
6.19 Calculate the first three natural frequencies for the cable and spring system of 

Example 6.2.3 for l = 1, k = 100,  = 100 (SI units). 
 
 Solution: 
 
 For l = 1, k = 100 and  = 100 the frequency equation (6.51) becomes 
 
  tan  = -
 
 Using MATLAB the first 3 solutions are 
 
  1 = 0, 2 =2.029, 3 = 4.913.  But zero is not allowed because of the 

boundary conditions. 
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6.20 Calculate the first three natural frequencies of a clamped-free cable with a mass of 
value m attached to the free end.  Compare these to the frequencies obtained in 
Problem 6.17. 

 
 Solution: 
 
 Recall example 6.1.1.  The force balance at the boundary x = l yields 
 
  wx (x, t)

x l
 mwtt (l,t)  

 
 The boundary condition at x = 3 remains w(0,t) = 0.  The equation of motion is 

(6.8) or 
 
  c2wxx (x, t)  wtt(x,t)  
 
 Again, separation of variable w(x,t) = X(x)T(t) yields eq. (6.12) or 
 

  
X (x)

X(x)


Ý Ý T (t)

c2T( t)
  2  

 
 The spatial equation is 
 
  X   2 X(x)  0  
 
 which has solution X(x) = a1 sin x +a2 cos x.  Applying the boundary 

conditions yields X(0) = 0 or a2 = 0.  Substitution of X(x) = a1 sin 2x into the 
boundary condition at x = l yields 

 
  [a1 cost]T (t)  mÝ Ý T (t)a1 sinl  
 
 But Ý Ý T (t)/ T(t)   2c2  so this becomes 
 
   cosl  m 2c2  
 
 or that 
 

  tanl 


mc2    (or cotl 
n


)  

 
is the characteristic equation (see also table 6.1) with mode shape sin nx.  A plot 

of their characteristic equation cos(l) 
mc2

lr
l 

m

lp
(l)  yields the value of the 

frequencies relative to those of problem 6.16. 
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6.21 Calculate the boundary conditions of a bar fixed at x = 0 and connected to ground 
through a mass and a spring as illustrated in Figure P6.21. 

 
 Solution: 
 
 A free body diagram of the boundary is shown in Figure 1. 
 

 
Figure 1 

 
Consider first the end of the rod, the force is related to the axial extension of the 
rod though 

 

   
lx

lx x

txw
EAtlF


 




,
,   

 
On the other hand, applying Newton’s second law to the mass yields 

 

     
lx

lx t

txw
mtxkwtlF


 




2

,
,,  

 
Hence, this yields the following boundary condition 

 
     

lx
lxlx

txkw
x

txw
EA

t

txw
m













,
,,

2
 

 
 
 
6.22 Calculate the natural frequency equation for the system of Problem 6.21. 
 
 Solution: 
 
 The boundary condition at x = 0 is just w(x,t)|x=0 = 0.  Again from separation of 

variables 
 
  Ý Ý T (t)/ T(t)  c2 2 ,   X(x)  asinx  b cosx  
 
 Applying the boundary condition at 0 yields X(0) = 0 =  b, so the spatial solution 

will be of the form X(x) = a sin x.  Substitution of the separated form w(x,t) = 
X(x)T(t) into the boundary condition at l yields (from problem 6.21) 
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    mX (l) &&T (t)  kX (l)T (t)  EA X (l)T (t)  
 
 Dividing by T(t), and substitution of Ý Ý T / T   2c2  and X = a sin l yields 
 

  -  EA cos l  (m 2c2  k)sin l   or  
  
tan l  

EA
k  m 2c2

 is the 

frequency or characteristic equation.  Note that this reduces to the values given in 
Table 6.1 for the special case m = 0  and for the case k = 0. 
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6.23 Estimate the natural frequencies of an automobile frame for vibration in its 
longitudinal direction (i.e., along the length of the car) by modeling the frame as a 
(one-dimensional) steel bar. 

 
 Solution: 
 
 Note: The fundamental frequency of an automobile is of primary importance in 

assuming the quality of an automobile.  While an automobile certainly has 
numerous modes, its fundamental frequency apparently has a large correlation 
with the occupants perception of quality.  The fundamental frequency of a 
Mercedes 300 series is 25 Hz.  Infinity and Lexus have frequencies in the low 
twenties.  This problem has no straightforward answer.  Students should think 
about their own cars or that of their family.  For steel  = 7.8  103 kg/m2, E = 2.0 
 1011 N/m.  For a Ford Taurus l = 4.5 m and assume the width to be 1 meter.  
The frequency equation in Hertz of a free-free beam is (excluding the rigid body 
mode) 

 

  fn 
n

2

l

E


562 Hz, 1125Hz… 

 
where n = 1,2,… The frequency measured by auto engineers is from a 3 
dimensional finite element model and modal test data.  The frequency most felt is 
probably a transverse frequency. 
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6.24 Consider the first natural frequency of the bar of Problem 6.21 with k = 0 and 

Table 6.2, which is fixed at one end and has a lumped-mass, M, attached at the 
free end.  Compare this to the natural frequency of the same system modeled as a 
single-degree-of-freedom spring-mass system given in Figure 1.21.  What 
happens to the comparison as M becomes small and goes to zero? 

 
 Solution: 
 
 From figure 1.21, k = EA/l is the stiffness of a cantilevered bar.  Hence the 

frequency is 

  
  


n
 k / m 

EA

lm
 

 for the bar with tip mass m modeled as a single degree of freedom system.  Now 
consider the first natural frequency of the distributed mass model of the same 
structure given in the last entry of table 6.1. 

 

  
  


1

1c

l

1

l

E


 

 

 where  satisfies cot 1 
m

Al



 


1 .  This last expression can be written as 

1 tan1

cl

m




 since 1 = 1l/c, 

 

  
1l

c
tan

1l

c




 

Al

m
 

 

 Now for small, or negligible beam mass, c becomes very large 
  
c  E /   and 

1l/c becomes small so that tan  can be approximated as .  Then this last 
expression becomes 

 

  
1l

c






2


Al

m
, or 1 

EA

lm
 

 
 in agreement with the single degree of freedom values of figure 1.21.  As the tip 

mass goes to zero, the equation for figure 1.21 does not appear to make sense.  
The equation for 1 however reduces to that of a cantilevered beam, i.e., 1 = 
c/2l since the frequency equation returns to 1(l/c) = 0. 
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6.25 Following the line of thought suggested in Problem 6.24, model the system of 
Problem 6.21 as a lumped-mass single-degree-of-freedom system and compare 
this frequency to the first natural frequency obtained in Problem 6.22. 

 
 Solution: Note that the system of figure P6.21 is a mass connected to two springs 

in parallel if the bar is modeled as spring.  The stiffness of a bar is given in 
Chapter 1 to be 


kbar 

EA


 

 The equivalent stiffness is just the sum, so that the equation of motion is 


mÝ Ý x 

EA


 k





x  0 

 Thus the natural frequency of the bar and spring of figure P6.21 modeled 
as a single degree of freedom system is just 


n 

EA

m


k

m
 

The first natural frequency of the system treated as a distributed mass systems is 
given by the characteristic equation given in the solution to problem 6.22.  To 
make a comparison, chose some specific values.  For a 4 m aluminum beam 
connected to 1000 kg mass through a 100,000 N/m spring the value is given in the 
following Mathcad session:  

 

 
  

Note for the 
parameter 
values chose 
the frequency 
of the lumped 
mass model is a 
little less then 
the actual value. 
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6.26 Calculate the response of a clamped-free bar to an initial displacement 1 cm at the 
free end and a zero initial velocity.  Assume that  = 7.   kg/m3, A = 0.001 
m2, E=1010 N/m2, and l = 0.5 m.  Plot the response at x = l and x = l/2 using the 
first three modes. 

 
 Solution: 
 
 The initial conditions are w(x,t) = 0.01(x-l) and wt(x,0) = 0 and the boundary 

conditions are w(0,t) = 0 and wx(l,t) = 0.  From example 6.3.1 the mode shapes are 

sin
2n 1

2l




x  and the natural frequencies are 

 

  n 
2n 1

2l






E


 (2n1)(1132.38)  

 
 The solution is given in example 6.3.2 as 
 

  w(x, t)  (cn sinnt  dn cos nt )sin
2n1

2l




x  

 
 so that the velocity is 
 

  wt (x, t)  (ncn cosnt  dnn sin nt)sin
2n1

2l




x

n 1



  

 
 Using wt(x,0) = 0 then yields cn = 0 for n = 1, 2, …, so that 
 

  0.01(x  l)  dn cosntsin
2n 1

2l
x  

 

 Multiplying by sin x
l

m


2

12 
 and integrating from 0 to l yields 

 

  0.01 (x  l)sin
2m  1

2l




xdx  cm sin 2 2m  1

2l




0

l

0

l

 xdx  

 
 using the orthogonality of sin nx.. 
 

  0.01sin
2m 1

2
  cm

l

2
, m  1,2,3...  

 
 so that 11 )1)(004(./)1)(02(.   mm

m lc  and the solution is 
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  w(x, t)  (.004)(1)n1 sin[(2n 1)(1132.28)t]sin(2n1)x
n1



  

 
 For n = 3 and x = 0.5, 
 
  ]33968sin028.1132)[sin004(.),5.0( tttw   
 
 For n = 3 and x = l/2 = 0.25 
 
  w(.25,t)  (.004)[.707sin1132.28  sin2264.56t  .707sin 339684t]  
 
 These are plotted below using Mathcad: 
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6.27 Repeat the plots of Problem 6.26 for 5 modes, 10 modes, 15 modes, and so on, to 
answer the question of how many modes are needed in the summation of equation 
(6.27) in order to yield an accurate plot of the response for this system. 

 
 Solution: The following plots in Mathcad illustrate that it takes 10 modes to 

capture the behavior of this series, by plotting the formula of 6.26. 
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6.28 A moving bar is traveling along the x axis with constant velocity and is suddenly 
stopped at the end at x = 0, so that the initial conditions are (x,0) = 0 and w(x,0) = 
v.  Calculate the vibration response. 

 
 Solution: 
 
 Model the bar as a free-free bar.  Then from Table 6.2 the natural frequencies are 

nc/l and the mode shapes are cos(nx/l).  Thus the solution is of the form 
 

  w(x, t)  (An sinnt  Bn
n1



 cosnt)cos(nx / l)  

 
 Using the initial condition w(x,t) = 0 yields that Bn = 0 for n = 1, 2, 3,…, i.e. 
 
  w(x,0)  0  Bn cos(nx / l)  

 
 which is multiplied by cos(nx/l) and integrated over (0,l) using orthogonality to 

get Bn = 0.  Next differentiate 
 
  w(x, t)  An sinnt cosnx / l  

 
 to get wz(x,t), then set t = 0 to use the second initial condition. 
 
  wt (x,0)  Ann cos(0) cos(nx / l)  

 
 Modeling the initial velocity as v(x), multiplying by cos mx/l and integrating 

yields 
 

  (x)v cos(nx / l)dx  n

l

2




An0

l

 ,    or   An 
V
ln

 

 
 so that 
 

  w(x, t) 
2v

c

1

n



sin

nct

l




sin

nx

l






n 1



  

 
Note that Thomson uses a form of this problem as example 3 of section 5.3, but 
he models the moving beam as having a clamped free rather than free-free 
boundary.   What do you think? 
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6.29 Calculate the response of the clamped-clamped string of Section 6.2 to a zero 
initial velocity and an initial displacement of w0(x) = sin(2x/l).  Plot the response 
at x = l/2. 

 
 Solution: 
 
 The clamped-clamped string has eigenfunction sin nx/l and solution given by 

equation (6.27) where the unknown coefficients cn and dn are given by equation 
(6.31) and (6.33) respectively.  Since 00 w , equation 6.33 yields cn = 0, n = 

1,2,3.. with w0 = sin(2x/l), 
 

  dn 
2

l
sin(2x / l)sin( nx / l)dx

0

l

  

 
 which is zero for each n except n =2, in which case dn = 1.  Hence 
 
  )/2sin()/2sin(),( lxlcttxw   
 
 For x = l/2 
 
  )/2sin(),2/( lcttlw   
 

which has a well known plot given in the following Mathcad session using the 
values for a piano wire. 
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Problems and Solutions Section 6.4 (6.30 through 6.39) 
 
6.30 Calculate the first three natural frequencies of torsional vibration of a shaft of 

Figure 6.7 clamped at x = 0, if a disk of inertia J0 = 10 kg m2/rad is attached to the 
end of the shaft at x = l.  Assume that l = 0.5 m, J = 5 m4, G = 2.5  109 Pa,  = 
2700 kg/m3. 

Solution:The equation of motion is
 

&& 
G


 .  Assume separation of variables: 

    ( X )q(t) to get 
  
&&q 

G


 q or 


G

&&q
q





  2  so that 

  
&&q 

G


 2q  0 and    2  0  

where 
  
 2 

G


 2.   The clamped-inertia boundary condition is (0,t) = 0, and   

  GJ  (l,t)  J
0
&&(l,t).   This yields that (0) = 0 and 

  
  
GJ  (l)q(t)  J0(l)&&q(t)  J0(l)

G


 2q(t)  

 or 
  
J  (l)  J0

 2


(l)  

 The solution of the spatial equation is of the form 
 
    (x)  Asin x  Bcos x  
 
 but the clamped boundary condition yields B = 0.  The inertia boundary condition 

yields  

  

JA cos l  J0

 2


Asin l

tan l 
J

J
0

l

 l


1

 l

5 m4

10kg m2







      (2700kg/m3)(0.5m)

 

 So the frequency equation is 

  
  
tan l 

675

 l
 

 Using the MATLAB function fsolve; this has the solutions 

  

  


1
l  1.5685

 2l  4.7054

 3l  7.8424









  or  


1
 3.1369

 2  9.4108

 3  15.6847









 

 Thus  1 = 3018.5 rad/s   f1 = 480.4 Hz 
   2 =9055.6 rad/s   f2 = 1441.2 Hz 
   3 = 15092.6 rad/s   f3 = 2402.1 Hz 
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6.31 Compare the frequencies calculated in the previous problem to the frequencies of 
the lumped-mass single-degree-of-freedom approximation of the same system. 

 
 Solution: 
 
 First calculate the equivalent torsional stiffness of the rod. 
 

  

  

k 
GJ

l


(2.5109 )(5)

0.5
 2.5 1010

J0
&&  k

J
0
&&  k  0

10&&  2.51010  0  or  &&  2.5109  0

 

 
 so that 2 = 2.5  109,  = 5  105 rad/s or about 80,000 Hz, far from the 482 Hz 

of problem 6.30. 
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6.32 Calculate the natural frequencies and mode shapes of a shaft in torsion of shear 
modulus G, length l, polar inertia J, and density  that is free at x = 0 and 
connected to a disk of inertia J0 at x = l. 

 
 Solution: 
 
 Assume zero initial conditions, i.e. (x,0) =   

&(x,0) = 0.  From equation 6.66 
 

  
  

2(x,t)

t2


G







2(x,t)

x2
      (1) 

 
 The boundary condition at x = l and at x = 0 is 
 

  
  
GJ

(l,t)

x
 J0

2(l,t)

t2
         

(0,t)

x
 0  

 
 Using separation of variable in (1) of form (x,t) = (x)T(t) yields: 
 

  
  

 (x)

(x)


1

c2

&&T (t)

T (t)
  2       (2) 

 

 where 
  
c2 

G


 and  2  is a separation constant.  (2) can now be rewritten as 2 

equations 
 

  

  

 (x)  2(x)  0

&&T (t)  c2 2T (t)  0     
G



 

 
 from the boundary condition at x = l 
 

  

  

GJ  (l)T (t)  J0(l) &&T (t)


GJ

J0

 (l)

(l)


&&T (t)

T (t)
 c2 2

 (l) 
J

0

GJ

G


 2 

J
0
 2

J
(l)

 

 
 The boundary condition at x = 0 yields simply   (0)  0.   The general solution is 

of the form 
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 x  a1 sin x  a2 cos x   so that   x  a1 cos x  a2 sin x  

 
 The boundary conditions applied to these solutions yield: 
 

  

  

 l  a
1
 cos l  a

2
 sin l 

J0
2

J
[a

1
sin l  a

2
cos l]

a1 cos l 
J

0
 2

J
sin l












 a2 sin l 

J
0


J
cos l











 0  a1  0 a1  0

a
2

sin l 
J

0


J
cos l









  0

 

 
 For the non-trivial solution of this last expression, the coefficients of a2 must 

vanish, which yields 
 

  
  
tan l  

J
0

J
  

 
 This must be solved numerically for  (except for the rigid body case of  = 0) 

and the frequency is calculated from
 
  

G


.  The mode shapes are (x) = a2 

cos x.  Note the solution for  is illustrated in figure 6.4 page 479 of the text. 
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6.33 Consider the lumped-mass model of Figure 4.21 and the corresponding three-
degree-of-freedom model of Example 4.8.1.  Let J1 = k1 = 0 in this model and 
collapse it to a two-degree-of-freedom model.  Comparing this to Example 6.4.1, 
it is seen that they are a lumped-mass model and a distributed mass model of the 
same physical device.  Referring to Chapter 1 for the effects of lumped stiffness 
on a rod in torsion (k2), compare the frequencies of the lumped-mass two-degree-
of-freedom model with those of Example 6.4.1. 

 
 Solution: From Mathcad: 
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6.34 The modulus and density of a 1-m aluminum rod are E = 7.1  1010 N/m2, G = 2.7 
 1010 N/m2, and  = 2.7  103 kg/m2.  Compare the torsional natural frequencies 
with the longitudinal natural frequencies for a free-clamped rod. 

 
 Solution: 
 
 The appropriate boundary conditions are:    (0,t)  0 and (l,t)  0 for the rod and 

  w (0,t)  0  w(l,t)  for the bar.  The separated equations are 
 

  

  

&& 
G








  and &&q 
G








 q

&&q 
G








 2q  0 and   2  0

 

 
 Solutions are 
 
    qn

 A
n
sin

n
t  B

n
cos

n
t   and  

n
 C

n
sin

n
x  D

n
cos

n
x  

 

 where 
  


n
2 

G




n
2.   But   (0)  0  so that Cn = 0.  The other boundary condition 

yields n(l) = Dncos nl = 0 so that 
 

  
  


n
l 

(2n 1)
2

,     n  1,2,...  

 
 Thus the torsional frequencies are 
 

  
 


n


G




n
 

 
 and the longitudinal frequencies are 

  
 


n


E




n
 

 where 

  
  


n


(2n 1)
2l

 

 From the values given 
 

G


= 3162 m/s and 

 

E


= 5128 m/s.  Thus the natural 

frequencies of the longitudinal vibration are 1.6 times larger than the torsional 
vibrations. 
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6.35 Consider the aluminum shaft of Problem 6.32.  Add a disk of inertia J0 to the free 
end of the shaft.  Plot the torsional natural frequencies versus increasing the tip 
inertia J0 of a single-degree-of-freedom model and for the first natural frequency 
of the distributed-parameter model in the same plot.  Are there any values of J0 
for which the single-degree–of-freedom model gives the same frequency as the 
full distributed model? 

 
 Solution: 
 
 Refer to problem 6.32 of the rod clamped at x = 0 with inertia J0 at x = l.  The sdof 

model of the frequency is given in example 1.5.1 as 
 

  

  

 
GJ

lJ0

 

 
 where G = torsional rigidity, J = polar moment of inertia of the rod of length l and 

J0 is the disc inertia.  The first natural frequency according to distributed 
parameter theory is given in problem 6.30 as the solution of 

 

  
  
tan / 2  


 J

0

,      
G


 

 
 which will have a solution for a given value of J0 equivalent to that of the sdof 

system. 
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6.36 Calculate the mode shapes and natural frequencies of a bar with circular cross 
section in torsional vibration with free-free boundary conditions.  Express your 
answer in terms of G, l, and . 

 
 Solution: 
 

 The separated equations are 
  
&&q 

G


 2





q  0 and   2  0  

where
 


n


G




n
.  Thus 

 
    qn

 A
n
sin

n
t  B

n
cos

n
t   and  

n
 C

n
sin

n
x  D

n
cos

n
x  

 
 The boundary conditions are 
 

  
  


n
(0)  0


n
(l)  0

 

 
 But   n

 C
n


n
cos

n
x  D

n


n
sin

n
x  so that   n

(0)  0 C
n
 0  and the 

frequency equation becomes   n
(l)  0  D

n


n
sin

n
0.   This has the solution 

  


n
l  n   or  

n


n
l

.   Hence 

 

  
 


n


G


n
l

   and 
  


n
(x)  cos

nx

l
. 
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6.37 Calculate the mode shapes and natural frequencies of a bar with circular cross 
section in torsional vibration with fixed boundary conditions.  Express you answer 
in terms of G, l, and , 

 
 Solution: From equation 6.66 

  
  

2(x,t)

t2


G







2(x,t)

x2
 

 Assume a solution of the form (x,t) = (x)T(t) so that 

  
  
(x) &&T (t) 

G


 (x)T (t)  

 Separate where 2 is the separation constant and 
  
c2 

G


 

 

  
  

 (x)

(x)


1

c2

&&T (t)

T (t)
  2  

 

 or 
  
 (x)  2(x)  0  and  &&T (t)   2c2T (t)  0  where   

G


 .  The 

boundary conditions for a fixed-fixed rod are (0) = 0 and (l) = 0 from the 
solution of the spatial equations 

 

  

  

 0  a
2
 0

 l  a
1
sin l  0.  

.

 

 
 For the non-trivial solution 
 

  

  

sin l  0

 
n
l

,    n  0,1,2,..
 

 
 natural frequency 
 

  
  
 

G


n
l

,    n  1,2,...  

 
 mode shape 
 

  
  
 x  a

1
sin

n
l

x,    n  0,1,2,...  
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6.38 Calculate the eigenfunctions of Example 6.4.1. 
 
 Solution: 
 
 From example 6.4.1 the eigenfunctions are 
 

  
  


n
(x)  a

1
sin

n
x  a

2
cos

n
x   or 

n
(x)   A

n

 J1

J
sin

n
x  cos

n
x







 

 
 where n are determined by equation 6.8.4. 
 
 
 
 
 
6.39 Show that the eigenfunctions of Problem 6.38 are orthogonal. 
 
 Solution: 
 

 Orthogonality requires 
  


n
(x)

m
(x)dx  0,    m  n.

0

l

   From direct calculation 

 

  

  


 J1

J
sin

n
x  cos

n
x






0

l

 
 J1

J
sin

m
x  cos

m
x







dx

        
 J1

J








2

sin
m

x sin
n
xdx

0

l



        
 J1

J
sin

n
x sin

m
xdx

0

l

 
 J1

J
sin

m
x sin

n
xdx

0

l



         cos
n
xcos

m
xdx

0

l



 

 
 where each integral vanishes.  Also one can use the same calculation as problem 

6.3 since the natural frequencies have distinct values. 
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Problems and Solutions Section 6.5 (6.40 through 6.47) 
 
6.40 Calculate the natural frequencies and mode shapes of a clamped-free beam.  

Express your solution in terms of E, I, , and l.  This is called the cantilevered 
beam problem. 

 
 Solution: 
 
 Clamped-free boundary conditions are 
 
    w(0,t)  w

x
(0,t)  0  and  w

xx
(l,t)  w

xxx
(l,t)  0  

 
 assume E, I, , l constant.  The equation of motion is 
 

  
  

2w

t2


EI

A






4w

x4
 0  

 
 assume separation of variables   w(x,t)  (x)q(t) to get 
 

  
  

EI

A










 
&&q
q
 2  

 
 The spatial equation becomes 
 

  
  
 

A

EI






 2  0  

 

 define 
  
 4 

A 2

EI
  so that     4  0  which has the solution: 

  
      C

1
sinx C

2
cosx C

3
sinhx  C

4
coshx  

 
 Applying the boundary conditions 

  w(0,t)  w
x
(0,t)  0  and  w

xx
(l,t)  w

xxx
(l,t)  0   

    (0)   (0)  0  and   (l)   (l)  0  

 Substitution of the expression for  into these yields: 
  C2 +C4 = 0 
  C1 + C3 = 0 

 
  

C
1
sinl  C

2
cosl  C

3
sinhl C

4
coshl  0

C
1
cosl C

2
sinl  C

3
coshl  C

4
sinhl  0

 

 Writing these four equations in four unknowns in matrix form yields: 
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0 1 0 1

1 0 1 0

sinl cosl sinhl coshl

cosl sinl coshl sinhl



















c1

c
2

c
3

c
4





















 0  

 
 
 For a nonzero solution, the determinant must be zero to that (after expansion) 
 

 

  

sinl  sinhl cosl  cosh
cosl  cosh sinl  sinh



                   ( sinl  sinhl)(sinl  sinhl) 
                                                          (cosl  coshl)(cosl  coshl)  0

 

 

 Thus the frequency equation is cos l cosh l = -1 or 
  
cos

n
l  

1

cosh
n
l

 and 

frequencies are
  


n



n

4 EI

A
.  The mode shapes are 

 
    n

 C
1n

sin
n
x C

2n
cos

n
x  C

3n
sinh

n
x  C

4n
cosh

n
x  

 
 Using the boundary condition information that   C4

 C
2
  and  C

3
 C

1
 yields 

 

  
  

C
1
sinl  C

2
cosl  C

1
sinhl C

2
coshl

C
1
(sinl  sinhl)  C

2
(cosl  coshl)

 

 
 so that 
 

  
  
C1  C2

cosl  coshl

sinl  sinhl







 

 
 and the mode shapes can be expressed as: 
 

  

  


n
 C

2n


cos
n
l  cosh

n
l

sin
n
l  sinh

n
l







sin

n
x  cos

n
x







                  

 

                              

  

            
cos

n
l  cosh

n
l

sin
n
l  sinh

n
l







sinh

n
x  cosh

n
x
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6.41 Plot the first three mode shapes calculated in Problem 6.40.  Next calculate the 
strain mode shape [i.e.,  X (x) ], and plot these next to the displacement mode 
shapes X(x).  Where is the strain the largest? 

 
 Solution: The following Mathcad session yields the plots using the values of  

taken from Table 6.4. 

 
 The strain is largest at the free end. 
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6.42 Derive the general solution to a fourth-order ordinary differential equation with 
constant coefficients of equation (6.100) given by equation (6.102). 

 
 Solution: 
 
 From equation (6.100) with  

4  A 2 / EI , the problem is to solve 

  X   4 X  0.   Following the procedure for the second order equations 

suggested in example 6.2.1 let X(x) = Aet which yields 
 

  
  
4   4 Aex  0  or   4   4  

 
 This characteristic equation in  has 4 roots 
 
      ,, j,  and  j  
 
 each of which corresponds to a solution, namely A1e

-x, A2e
x, A3e

-jx and A4e
jx.  

The most general solution is the sum of each of these or 
 

    X (x)  A
1
ex  A

2
ex  A

3
e jx  A

4
e jx     (a) 

 

 Now recall equation (A.19), i.e.,   e
 x  cosx  j sinx , and add equations (A.21) 

to yield   e
 jx  sinhx  coshx.  Substitution of these two expressions into (a) 

yields 
 
    X (x)  Asinx  Bcosx  C sinhx  Dcoshx  
 
 where A, B, C, and D are combinations of the constants A1, A2, A3 and A4 and may 

be complex valued. 
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6.43 Derive the natural frequencies and mode shapes of a pinned-pinned beam in 
transverse vibration.  Calculate the solution for w0(x) = sin 2x/l min and 

  &w0
(x)  0. 

 
 Solution: Use w(x,t) = (x)q(t) in equation (6.29) with   &w(x,0)  0 or &q(0)  0.   

Then the temporal solution q = A sin t + B cos t with   &q(0)  0 yields A = 0.  

The spatial solution is  = C1 sin x + C2 cos x + C3 sinh x + C4 cosh x where 

  
 4 

A 2

EI
.  The boundary conditions become 

    (0)   (0)  (l)   (l)  0  

 Applied to (x) these yield the matrix equation 
 

  

  

0 1 0 1

0 1 0 1

sinl cosl sinhl coshl

sinl cosl sinhl coshl



















C1

C
2

C
3

C
4





















 0  

 
 But   C2

C
4
 0 and -C

2
C

4
 0 so C

2
 C

4
 0and this reduces to 

 

  

  

sinl sinh
sin sinh










C
1

C
3












 0  

 
 or sin l sinh l + sin l sinh l = 0, 

  
C3  

C
1
sinl

sinhl
,  and   C

1
sinl  C

1
sinl  0  so that the frequency equation 

becomes sin l = 0 and thus nl = n, n = 1,2,3,… and n =
 

n
l

, n = 1,2,3,…so 

that C3 = 0 and the frequencies are 
  


n


n
l







2
EI

A
 with mode shapes n(x) = 

C1n sin nx.  The total solution is the series 
  
w(x,t)  

n
cos

n
t sin

n
x .

n1

  

Applying the second initial condition yields 
  
w(x,0)  sin

2x

l
 

n
sin

nx

ln1

  

and therefore 
 

  

  

B
n


0   n  1

    n  3,4,...

1   n  2
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 so that 

  
w(x,t)  cos

2
t sin

2 x

l
 



6- 43

6.44 Derive the natural frequencies and mode shapes of a fixed-fixed beam in 
transverse vibration. 

 
 Solution: Follow example 6.5.1 to get the solution in the 5th entry of table 6.4.  

The spatial equation for the transverse vibration of a beam has solution of the 
form (6.102) 

    X (x)  a
1
sinx  a

2
cosx  a

3
sinhx  a

4
coshx  

 where  
4  A 2 / EI .  The clamped boundary conditions are given by equation 

(6.94) as   X (0)  X (0)  X (l)  X (l)  0.   Applying these boundary conditions 
to the solution yields 

    X (0)  0  a
1
(0)  a

2
(1)  a

3
(0)  a

4
(1)     (1) 

    X (0)  0  a
1
(1)  a

2
(0)  a

3
(1)  a

4
(0)    (2) 

    X (l)  0  a
1
sinl  a

2
cosl  a

3
sinhl  a

4
coshl   (3) 

    X (l)  0  a
1
cosl  a

2
sinl  a

3
coshl  a

4
sinhl  

 (4) 
 dividing (2) and (3) by    0  and writing in matrix form yields 

  

  

0 1 0 1

1 0 1 0

sinl cosl sinhl coshl

cosl sinl coshl sinhl



















a1

a
2

a
3

a
4























0

0

0

0



















 

 The coefficient matrix must have zero determinant for a nonzero solution for the 
an.  Taking the determinant yields (expanding by minors across the top row). 

  
  

sinh2 l  cosh2 l  sinl sinhl  cosl coshl 

                      coslcoshl sinl sinhl  sin2 l  cos2 l  0
 

 which reduces to 
    1 2cosl coshl 1 0  or  cosl coshl  1  

 since sinh2 l – cosh2 l = -1 and sin2 x + cos2 x = 1.  The solutions of this 
characteristic equation are given in table 6.4.  Next from equation (1) a2 = -a4 and 
from equation (2) a1 = -a3 so equation (3) can be written as 

    a
3
sinl  a

4
cosl  a

3
sinhl  a

4
coshl  4  

 Solving this for a3 yields 

  
  
a3  a4

cosl  coshl

sinhl  sinl







 

 Recall also that a1 = -a3.  Substitution into the solution X(x) and factoring out a4 
yields 

  
  
X (x)  a4 coshx  coshx 

cosl  coshl

sinl  sinhl







sinhx  sinx  
in agreement with table 6.4.  Note that a4 is arbitrary as it should be. 
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6.45 Show that the eigenfunctions or mode shapes of Example 6.5.1 are 
orthogonal.  Make them normal. 

 
 Solution: 
 
 The easiest way to show the orthogonality is to use the fact that the eigenvalues 

are not repeated and follow the solution to problem 6.2.  The eigenfunctions are 
(table 6.4 or example 6.5). 

 

  
  
X

n
(x)  a

n
cosh

n
x  cos

n
x 

n
sinh

n
x  sin

n
x   

 
 Note that the constant an is arbitrary (a constant times a mode shape is still a mode 

shape) and normalizing involves choosing the constant an so that 
  

X
n
X

n
dx  1. 

Calculating this integral yields: 
 

  
  
a

n
2 cosh2 

n
x  2cos

n
xcosh

n
x  cos2 

n
x

0

l

  

  
  
         2

n
sinh

n
x  sin

n
x  cosh

n
x  cos

n
x  

  
  
        

n
2 sinh2 

n
x  2sin

n
x sinh

n
x  sin2 

n
x dx  

 
 so 
 

  

  

1 a
n
2 1


n

sinh2
n
l  sin 2

n
l

4







 

n
l













       
1


n

sinh
n
l sin

n
l  cos

n
l cosh

n
l   n


n

cos2 
n
l  cosh 2

n
l

      sinh
n
l sin

n
l  cos

n
l  cosh

n
l cos

n
 sin

n
l 

      


n
2


n

sinh2 
n
l  sin2

n
l

4
1 sin

n
l sinh

n
l  cosh

n
l cos

n
l













 

 

 So denoting the term in [ ] as n and solving for an = 1/
 


n
 yields the 

normalization constant. 
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6.46 Derive equation (6.109) from equations (6.107) and (6.108). 
 
 Solution: 
 
 Using subscript notation for the partial derivatives, equation (6.108) with f = 0 

yields an expression for   x
 i.e. 

 

     x
 ( AGW

xx
 Aw

tt
) / 2 AG      (a) 

 
 Equation (6.107) can be differentiated once with respect to x to yield a middle 

term identical to the first term of equation (6.108).  Substitution yields 
 
   EI

xx
 Aw

tt
 I

xtt
      (b) 

 
 Equation (a) can be differentiated twice with respect to time to get an expression 

for  I
xx

 in terms of w(x,t) which when substituted into (b) yields 

 

  
  
EI

xxx
 Aw

tt
 Iw

xxtt
 2I / 2G wtttt

 

 
 The first term  EI

xxx
 can be eliminated by differentiating (a) twice with respect 

to x to yield 
 

  
  
EI  2 AGw

xxxx
 Aw

ttxx  Aw
tt
  2 AGw

xxtt
 AEIw

tttt
 

 
 when substituted into (c).  This is an expression in w(x,t) only.  Rearranging terms 

and dividing by 2AG yields equation (6.109). 
 

 
6.47 Show that if shear deformation and rotary inertia are neglected, the Timoshenko 

equation reduces to the Euler-Bernoulli equation and the boundary conditions for 
each model become the same. 

 
 Solution: 
 
 This is a bit of a discussion problem.  Since I is the inertia of the beam in 

rotation about   the term Iwxxxtt represents rotary inertia.  The term 

(IE/2G)wtttt is the shear distortion and the term (2I/2G)wxxtt is a combination 
of shear distortion and rotary inertia.  Removing these terms from equation 
(6.109) results in equation (6.92). 
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Problems and Solutions Section 6.6 (6.48 through 6.52) 
 
6.48 Calculate the natural frequencies of the membrane of Example 6.6.1 for the case 

that one edge x = 1 is free. 
 
 Solution: 
 
 The equation for a square membrane is 
 

  
 
w

tt
 w

yy





w
tt







 

 
 with boundary condition given by w(0,y) = 0, wx(l,y) = 0, w(x,0) = 0, w(x,l) = 0.  

Assume separation of variables w = X(x)Y(y)q(t) which yields 
 

  
  

X

X


Y

Y


1

c2

&&q
q
  2   where  c   /   

 
 Then 
 

    &&q  c2 2q  0  
 
 is the temporal equation and 
 

  
  

X

X
  2 

Y

Y
  2  

 
 yields 
 

  
  

X  2 X  0

Y   2Y  0
 

 
 as the spatial equation where 2 = 2 – 2 and 2 = 2 + 2.  The separated 

boundary conditions are X(0) = 0,   X (l)  0 and Y(0) = Y(l) = 0.  These yield 
 

  

  

X  Asinx  Bcosx

B  0

Acosl  0


n
l 

(2n 1)
2


n


(2n  1)
2l

 



6- 46

 
 Next Y = C sin y + D cos y with boundary conditions which yield D = 0 and C 

sin l = 0.  Thus 
 
    m

 m l  

 

 and for l = 1 we get an = 
  

(2n 1)
2

,  for m = m n,m = 1, 2, 3,… 

 

  

  


nm
2  

n
2  

m
2 

(2n 1)2 2

4
 m2 2 

(2n  1)2  4m2

4











2

c2
nm
2  c2 (2n 1)2  4m2

4











2

 

 
 So that 
 

  
  


nm
 (2n 1)2  4m2 c

2
 

 
 are the natural frequencies. 
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6.49 Repeat Example 6.6.1 for a rectangular membrane of size a by b.  What is the 
effect of a and b on the natural frequencies? 

 
 Solution: 
 
 The solution of the rectangular membrane of size a  b is the same as given in 

example 6.6.1 for a unit membrane until equation 6.13.1.  The boundary condition 
along x = a becomes 

 
    A1

sina sin y  A
2
sinacos y  0  

 
 or 
 
    sina( A

1
 sin y  A

2
cos y)  0  

 
 Thus sin a = 0 and a = n or = n/a, n = 1, 2,… Similarly, the boundary 

conditions along y = b yields that 
 

  
  
 

n
b

   n=1,2,3,... 

 
 Thus the natural frequency becomes 
 

     nm
  a2n2  b2m2    n,m  1,2,3,...  

 
 Note that nm are no longer repeated, i.e.,  12


21

, etc. 
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6.50 Plot the first three mode shapes of Example 6.6.1. 
 
 Solution: A three mesh routine from any of the programs can be used.  Mathcad 

results follow for the 11, 12, 21 and 31 modes: 
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6.51 The lateral vibrations of a circular membrane are given by 

  
  

 2(r,,t)

r 2


1

r

(r,,t)

r


1

r 2

 2(r,,t)

r



 2(r,,t)

t2
 

 where r is the distance form the center point of the membrane along a radius and 
 is the angle around the center.  Calculate the natural frequencies if the 
membrane is clamped around its boundary at r = R. 

 
 Solution: 
 
 This is a tough problem.  Assign it only if you want to introduce Bessel functions.  

The differential equation of a circular membrane is: 
 

  

  

 2W (r,)

r 2


1

r

W (r,)

r


1

r 2

 2W (r,)

2
  2W (r,)  0

 2 

c







2

   c 
T



 

 
 Assume: 
 
    W (r,)  F(r)G()  
 
 The differential equation separates into: 
 

  

  

d 2G

d2
 m2G  0

d 2F

dr 2


1

r

dF1

dr
  2 

m2

r 2







F  0

 

 
 Since the solution in  must be continuous, m must be an integer.  Therefore 
 
    Gm

()  B
1m

sin m  B
2m

cos m  

 
 The equation in r is a Bessel equation and has the solution 
 
    Fm

(r)  B
3m

J
m

(r)  B
4m

Y
m

(r)  

 
 Where Jm(r) + Ym(r) are the mth order Bessel functions of the first and second 

kind, respectively.  Writing the general solution F(r)G() as 
 

  
  

W
m
(r,)  A

1m
J

m
(r)sin m  A

2m
J

m
(r)cos m

              A
3m

Y
m
(r)sin m  A

4m
Y

m
(r)cos m
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 Enforcing the boundary condition 
 
    Wm

(R,)  0   m  0,1,2,...  

 
 Since every interior point must be finite and Ym(r) tends to infinity as r   0, A3m 

= A4m = 0.  At r = R 
 
    Wm

(R,)  A
1m

J
m

(R)sin m  A
2m

J
m

(R)cos m  0  

 
 This can only be satisfied if 
 
    Jm

(R)  0   m  1,2,...  

 
 For each m, Jm(R) = 0 has an infinite number of solutions.  Denote mn as the nth 

root of the mth order Bessel function of the first kind, normalized by R.  Then the 
natural frequencies are: 

 
   mn

 c
mn

 

 
 
6.52 Discuss the orthogonality condition for Example 6.6.1. 
 
 Solution: 
 
 The eigenfuncitons of example 6.6.1 are given as 
 
    X n

(x)Y
n
( y)  A

nm
sin m x sin n y  

 
 Orthogonality in this case is generalized to two dimensions and becomes 
 

  
  

A
nm

A
pq

sin m xsin n ysin p ysin q ydxdy  0
0

1

0

1

    mn  pq  

 
 Integrating yields 
 
 

 

  

A
nm

A
pq

sin nx sin pxdx sin mg sin gydy
0

1

0

1


       A

nm
A

pq

sin(n  p)x

2(n  p)


sin(n  p)x

2(m  p)











sin(m 1)x

2(m q)


sin(m p) x

2(m  p)
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 Evaluating at x = 0 and x = 1 this expression is zero.  The expression is also zero 
provided n = p and n   q illustrating that the modes are in fact orthogonal. 
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Problems and Solutions Section 6.7 (6.53 through 6.63) 
 
6.53 Calculate the response of Example 6.7.1 for l = 1 m, E = 2.6  1010 N/m2 and  = 

8.5  103 kg/m3.  Plot the response using the first three modes at x = l/2, l/4, and 
3l/4.  How many modes are needed to represent accurately the response at the 
point x = l/2? 

 
 Solution: 
 

  

  

w(x,t) 
0.02

l2
n
2

(1)n1








 e0.01n t cos

2n
t sin

n
x

n1



  

 
 Where 
 

  

  


n


(2n  1)
2l


n
 

n

E




dn
 0.9999

n

  

 
 For l = 1 m 
 

  
  

E  2.6 1010  N/m2

  8.5103  kg/m3
 

 

 Response using first three modes at 
  
x 

l

2
,
l

4
,
3l

4
 plotted below. 

 

 Three modes accurately represents the response at
  
x 

l

2
.  The error between a 

three and higher mode approximation is less than 0.2%. 
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6.54 Repeat Example 6.7.1 for a modal damping ratio of n = 0.01. 
 

Solution:  Using n = 0.01 and the frequency given in the example 

  


dn


n
1 

n
2  0.995

n
,   

n


2n  1

2l
E


 

n

E


 

The time response is then   Tn
(t)  A

n
e0.1n t sin(

dn
t 

n
)  and the total solution is: 

  
w(x,t)  A

n
e0.1n t sin(

dn
t 

n
)

n1



 sin
(2n  1)

2l
x  

The initial conditions are: 

  
w(x,0)  0.01

x

l
 m  and  w

t
(x,0)  0  

Therefore: 

  
0.01

x

l
 A

n
sin

n
sin

n
x  

Multiply by sinmx and integrate over the length of the bar to get 

  
0.01

(1)m1

l 
m
2

 A
m

sin
m

l
2

   m  1,2,3,... 

From the velocity initial condition 

  
w

t
(x,0)  0  A

n
0.1

n
sin

n


dn
cos

n
 

n1



 sin
n
x  

Again, multiply by sinmx and integrate over the length of the bar to get 

  
A

m
(0.1

n
sin

n


dn
cos

n
)

l
2
 0  

Since Am is not zero this yields: 

  
tan

n


sin
n

cos
n


1

n
3

0.1
 9.9499 

n
 1.4706 rad  84.3  

Substitution into the equation from the displacement initial condition yields: 

  
A

m


0.01

l 2
m
2

(1)m1 1

sin
n


0.0201

l 2
m
2

(1)m1  

The solution is then 

  
w(x,t) 

0.01

l 2
m
2

(1)m1e0.1n t sin(
dn

t  
n
)

n1



 sin
(2n 1)

2l
 x  
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6.55 Repeat Problem 6.53 for the case of Problem 6.54.  Does it take more or fewer 
modes to accurately represent the response at l/2? 

 
 Solution: Use the result given in 6.54 and 
 

  

l  1 m

E  2.6 1010  N/m2

  8.5 103  kg/m3

 

 

 The response is plotted below at
  
x 

l

4
,
l

2
,
3l

4
.  An accurate representation of the 

response is obtained with three modes.  The error between a three mode and a 
higher mode representation is always less than 0.2%.  The results here are from 
Mathcad: 
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6.56 Calculate the form of modal damping ratios for the clamped string of equation 
(6.151) and the clamped membrane of equation (6.152). 

 
 Solution: 
 
 (a) For the string: 
 

  

  

w
tt
  w

t
 w

xx
 0

&&q  &q    q  0




&&q
q




&q
q





  2

&&q 









&q 








 2q  0

 

 

    2  0 which has the solution    Asin x  Bcos x .  The boundary 

conditions   (0)  (l)  0 yield 
  


n


n
l

,   n  1,2,3,...  

 

  

  


n
2 











n
2 




n
l







2

2
n


n





n



2




n
l








n




2 

n
l







 

 
 (b) For the membrane 
 

  

  




w
tt




w
t
 w

xx
 w

yy










XY&&q 









XY&q  X Yq  X Y q










&&q
q











&q
q


X

X


Y

Y
  2

&&q 









&q 








 2q  0
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X

X
 

Y

Y
  2   2 .The boundary conditions are X(0) = X(l) = 0 and Y(0) = 

Y(l) = 0.  The two spatial solutions become 
 

  

  

        X  2  0

X  Asinx  Bcosx

            B  0

  
n


n
l

  n  1,2,3,...

 

  

       Y   2Y  0

Y  C sin x  Dcos x

            D  0


m


n
l

  m  1,2,3,...

 

 
 Thus 
 

  

  


mn
2  n2  m2  

l








2


mn
2 




n2  m2  
l







2

2
m
n

m
n 





mn



2

mn



2

1




n2  m2 
l




mn


 l

2  n2  m2 

 

 
 
6.57 Calculate the units on  and  in equation (6.153). 
 
 Solution:  The units are found from 
 

  

 

mg

m3
m2 m

s2
 

m

s
kg

s2

s

m
 

 
kg

m  s

 

 



6- 59

6.58 Assume that E, I, and  are constant in equations (6.153) and (6.154) and 
calculate the form of the modal damping ratio n. 

 
 Solution: 
 
 If E, I, and  are constant in equation 6.153 and 6.154.  Then separation of 

variables works and the mode shapes become those given in table 6.4, which can 

be normalized so that
  

X
n
X

m
dx  

nm0

l

 .  Substitution of w(x,t) = an(t)Xn(x) into 

equation (6.153) multiplying by Xm(x) and integrating over x yield the mth modal 
equation: 

 

  

  

A&&a
n
(t)   &a

n
(t)   I


n
2

c2









 &a

n
(t)  EI


n
2

c2
a

n
(t)  0  

 

 where equation (6.93) has been used to evaluate  X  and  c
2  EI / A .  Dividing 

by A yields 
 

  
  
&&a

n
(t) 


A



E


n
2





&a
n
(t) 

n
2a

n
(t)  0  

 
 which is the sdof form of windows 6.4.  Thus the coefficients of   must be   

and hence 
 

  
  
2

n


n



A



E


n
2  

 
 and 
 

  

  


n
 

n
2 EI

A


n



2A

n



E


n

 

 
 where n are given in table 6.4. 
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6.59 Calculate the form of the solution w(x,t) for the system of Problem 6.58. 
 
 Solution: 
 
 The form of the solution of the m time equation is just 
 

  
  
A

n
enn t sin 

dn
t  

n  
 

 where n and n are as given in problem 6.58, 
  


dn


n
1 

n

2 , and An and n are 

constants determined by initial conditions.  The total solution is of the form 
 

  
  
w(x,t)  A

n
enn t sin 

dn
t  

n 
n1



 X
n
(x)  

 
 where Xn(t) are the eigenfunctions given in table 6.4. 
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6.60 For a given cantilevered composite beam, the following values have been 
measured for bending vibration: 

 
   E = 2.71x1010 N/m2   = 1710 kg/m3 
   A = 0.597x10-3 m2  l = 1 m 
   I = 1.64x10-9 m4   = 1.75 N s/m2 
    = 20,500 Ns/m2 

 
 Calculate the solution for the beam to an initial displacement of wt(x,0) = 0 and 

w(x,0) = 3sin x. 
 
 Solution: 
 
 Using the values given and the formulas for an(t) from problem 6.58 the temporal 

equation becomes 
 

  
  
&&a

n
 1.714  .00000075G

n
2 &an


n
2a

n
 0  

 
 from problem 6.59, 
 

  
  
w

t
(x,t)

t0
 0  A

n


n


n sin
n


dn
cos

n
  X

n
(x)  

 
 and 
 

  
  
w(x,0)  3sin x  A

n
sin

n
X

n
(x)  

 
 Multiplying by Xn(x) and integrating yields that 
 

  
  


n


n
sin

n


dn
cos

n
  or  tan

n



dn


n


n

 

 

 and 
  
3 sinxX

n
(x)dx  A

n
sin

n0

l

 so that 

  
A

n


3 sin xX
n
(x)dx

0

l


sin

n   


3

1
n
2

sin xX
n
(x)dx

0

l

   

where Xn(x) is given in table 6.4. 
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6.61 Plot the solution of Example 6.7.2 for the case wt(x,0) = 0, w(x,0)=sin(nx/), =10 
Ns/m2, =104 N, =1 m and  =0.01 kg/m3. 

 
Solution: From equation (6.156) and the values given, 1 =0.159/n or nn = 500 

and   dn
 1 0.1592 , so that: 

  
w(x,t)  A

n
e500t

n1



 sin(
dn

t 
n
)sin nx  

Applying the initial conditions yields 

  
sin n xsin mx

0

l

 dx  A
n

n1



 sin(
n
) sin m x

0

l

 sin n xdx  

So that Ansinn =0 for all n except n = 1, and A1sin1 = 1. So either n =0 or An = 0 

for n not zero. The other initial condition yields that 
  


n
 tan1(

 1
n
2


n

)  so that 

An = 0 for n not zero. Thus the system is only  excited in the first mode.  Then  

  

w(x,t)  A
1
e500t sin(

1
1 

n
2 t  

n
)sinx

            1.001e500t sin(3137.7t 1.50)sinx
 

This is plotted in Mathcad below: 

 

 



6- 63

6.62 Calculate the orthogonality condition for the system of Example 6.7.2.  Then 
calculate the form of the temporal solution. 

 
 Solution: Problem is to fill in the details of example 6.7.2 by checking the 

coefficients.  Equation (6.155) by performing the integration. 
 
6.63 Calculate the form of modal damping for the longitudinal vibration of the beam of 

Figure 6.14 with boundary conditions specified by equation (6.157). 
 
 Solution: This is a discussion problem.  The boundary condition given in 

equation (6.157) 

  

  

AEw
x
(0,t)  kw(0,t)  c

w(0,t)

t

AEw
x
(l,t)  kw(l,t)  c

w(l,t)

t
 

 Do not conform readily to separation of variables and lead to time dependent 
boundary conditions.  However one approach is to treat the damper as applied 
forces of the bar cwt(0,t) and –cwt(l,t).  Following this approach the boundary 
conditions become 

    AE X (0)  kX (0) and AE X (l)  kX (l)  
 The general solution of the spatial equation of a bar has the form 
    X (x)  asin( x  b)  

 Where  is the usual separation constant and a and b are constants.  The first 

boundary condition yields that    tan1( AE / k) .  The second boundary condition 
yields the characteristic equation 

    ( AE / k)
n
 tan(

n
l  )  

 Which can be solved for n numerically.  Note that n are distinct so that from 
problem 6.39 the eigenfunctions are orthogonal, i.e. an can be calculated such that 

    X n
(x)  a

n
sin(

n
x )  

 Are orthonormal.  Following the procedure of example 6.8.11, the temporal 
solution for the forced response is 

  

  

&&T
n
(t) 

n
2  cw

t
(0,t)  cw(l,t)  X

r
(x)dx

0

l


                cX

n
(0)  cX

n
(l)  X

n
(x)dx

0

l

 &T
n
(t)

 

 Bring the  
&T
n
 term to the left side and comparing its coefficient to   2n


n
yields 

  
  
2

n


n
 c X

n
(l)  X

n
(0)  X

n
(x)

0

l

 dx  

 The form of the modal damping ratio is thus 

  
  


n


ca
n
2

2
n


n

cos 
n
l   cos   
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Where   an
2  is the normalization factor, n are the eigenvalues    n

2  c2
n
2  

and  tan1( AE / k) . 
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Problems and Solutions Section 6.8 (6.64 through 6.68) 
 
6.64 Calculate the response of the damped string of Example 6.8.1 to a disturbance 

force of f(x,t) = (sin x/l) sin10t. 
 
 Solution: 
 

 
  
f (x,t)  sin

 x

l







sin10t.Assume a solution of the form: 

 
    wn

(x,t)  T
n
(t)X

n
(x)  

 
 where 
 

  
  
X

n
(x)  sin

n x

l
 

 
 Substitute into (6.158) 
 

  

  

&&T
n
  &T

n
  

n
l







2










T

n












sin

n x

l
 sin

x

l







sin10t  

 

 Multiply by 
  
sin

nx

l
 and integrate over the length of the string: 

 

  

  

&&T
n
  &T

n
 

n
l







2

T
n













l

2


  0     for n =1

   sin10t     for n  1





 

 
 Only the particular solution is of interest since we are looking for the response to 

the disturbance force.  Therefore, dropping the subscripts: 
 

  

  

&&T   &T  

l








2

T  sin10t

&&T 









&T 
c
l







2

T 
sin10t


 where c 




 

 
 Solution is 
 
    T  Asin(20t )  
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 where 

  

  

A 
1


c2 2

l2
100








2

 100
 2

2


l2

2 c2 2 100l2 2 100 2l4

  tan1

10



c2 2

l2
 100



















 tan1 10 l2

c2 2 100l2











w(x,t)  Asin(10t )sin
 x

l

 

 
 where A and  are given above. 
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6.65 Consider the clamped-free bar of Example 6.3.2.  The bar can be used to model a 
truck bed frame.  If the truck hits an object (at the free end) causing an impulsive 
force of 100 N, calculate the resulting vibration of the frame.  Note here that the 
truck cab is so massive compared to the bed frame that the end with the cab is 
modeled as clamped.  This is illustrated in Figure P6.65. 

 
 Solution: Assume constant area and constant material properties.  Equation of 

motion: 
    Aw

tt
 EAw

xx
 f (x,t)  100 (x  l) (t)  

 Mode shapes (eigenvalues) of a fixed-free bar are (Table 6.1) 

  
  
X

n
(x)  sin

(2n 1)x

2l
 

 Assume a solution of the form:  wn
(x,t)  X

n
(x)T

n
(t) .  Substitute into the equation 

of motion: 

  

  

&&T
n
 

(2n  1)
2l







2











c2T
n












sin

(2n 1) x

2l
 

100

A
 (x  l) (t)dx

&&T
n


n
2T

n sin
(2n 1) x

2l
 

100

A
 (x  l) (t)

 

 where
  
c2 

E


 and 

n


(2n  1)c

2l
.  Multiply by 

  
sin

(2n 1)x

2l
 and integrate 

over the length of the rod: 

  

  

&&T
n


n

2T
n
 

2

l

100

A
sin

(2n  1)x

2l






 (x  l

0

l

 ) (t)

                
200

Al
sin

(2n 1)
2







 (t)

 

 which has the solution: 

  
  
T

n
(t)  

200

Al
n

sin
(2n 1)

2







sin
n
t  

 The total solution is: 

  

  

w
n
(x,t)  

400

A(2n 1)c









sin

(2n  1)
2











n1



  

  

  

                                           sin
(2n  1)ct

2l







sin
(2n  1)x

2l
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6.66 A rotating machine sits on the second floor of a building just above a support 
column as indicated in Figure P6.66.  Calculate the response of the column in 
terms of E, A, and  of the column modeled as a bar. 

 
 Solution: Referring to equation (6.55) for the equation of a bar and summing 

forces to get the effect of the applied force yields 

  Aw
tt
 EAw

xx
  (x  l)F

0
sint  

 subject to the boundary conditions   w(0,t)  w
x
(0,t)  0 .  Following the method of 

example 6.8.1, use separation of variables where the spatial function is the 
clamped-free mode shapes used in example 6.3.1: 

  
w(x,t)  X

n
(x)T

n
(t)  (a

n
sin

n
x)T

n
(t),    

n


2n 1

2l
  

 Substitution into the equation of motion yields 

  
  
A &&T

n
(t)  EA

n
2T

n
(t) an

sin
n
x   (x  l)F0 sint  

 (the minus sign in front of EA goes away because of the second derivative of sine 
being negative). Next, let an = 1 (recalling that eigenvectors have arbitrary 
magnitude) and multiply by sin nx and integrate over the length of the beam to 
get: 

  
A &&T

n
(t)  EA

n
2T

n
(t) l

2
 F

0
sint  (x  l)

0

l

 sin
n
xdx  

 The integral on the right is a bit tricky as the delta function acts at the end of the 
interval. The details are below, however integrating yields 

  
A &&T

n
(t)  EA

n

2T
n
(t) l

2


1

2
F

0
sint

sin
n
l

2
 (1)n1 F

0

2
sint  

 Dividing by the appropriate constants this simplifies to  

  

&&T
n
(t) 

E




n
2T

n
(t) 

(1)n1 F
0

A
sint  

 
 This has particular solution 

  

  

T
np

(t) 
(1)n1

A

F0


n
2  2









 sint   where 

n


E


(2n  1)

2l
 

 Combined with the homogenous solution, the total temporal solution is 

  

T
n
(t)  C

1n
sin

n
t C

2n
cos

n
t 

(1)n1

A

F0


n
2  2









 sint  

 So the total solution is 
 
 

 

  

w(x,t)  C
1n

sin
n
t C

2n
cos

n
t 

(1)n1

A

F0


n
2  2









 sint











n1



 sin
(2n 1)x

2l
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The following it the evaluation of the Dirac integral used about (courtesy of Jamil 
Renno) 
Start with the integral at hand 

 

  

 x  l sin 
m

x dx
0

l

  lim
0

d x  l sin 
m
x dx

0

l














 

 

where 

  

d x  l 
1

2
l    x  l  

0 x  l   or x  l  






 is the pulse over the 

interval
  

l   , l    . 

 
Hence, the integral can be subdivided over two intervals 

 

  

 x  l sin 
m
x dx

0

l

  lim
0

d x  l sin 
m
x dx

0

l

  d x  l sin 
m

x dx
l

l














 lim
0

0sin 
m
x dx

0

l

 
1

2
sin 

m
x dx

l

l













 lim

0

1

2
sin 

m
x dx

l

l














 lim
0

1

2
1


m

cos 
m
x  l

l







  lim

0

cos 
m

l      cos 
m
l 

2
m


L'Hopital's Rule

lim
0

d

d
cos 

m
l      cos 

m
l  

d

d
2

m 

 lim
0

1


m







sin 

m
l     

2
m


sin 

m
l 

2
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6.67 Recall Example 6.8.2, which models the vibration of a building due to a 
rotating machine imbalance on the second floor.  Suppose that the floor is 
constructed so that the beam is clamped at one end and pinned at the other, and 
recalculate the response (recall Example 6.5.1).  Compare your solution and that 
of Example 6.8.2, and discuss the difference. 

 
 Solution: 
 
 Clamped-pinned beam conditions yield mode shapes (eigenfunctions) of the form: 
 

  
  
X

n
(x)  a

n
cosh

n
x  cos

n
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 Normalize the mode shape as follows: 
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 From Mathematica 
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 The equation of motion for the system is: (constant properties) 
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 Using the mode shapes given above: 
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 The equation of motion reduces to: 
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 Multiply by Xn and integrate over the length of the beam: 
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 The solution is then: 
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 where an, n, and n are given above.  The free time response is stiffer for the 

clamped case as the frequencies are higher (See Table 6.4). 
 

The comparison of the solution between the two models (one with a pinned end 
and one with a fixed or clamped end) had two purposes: design and modeling.   
From the design point of view it is important to know how to construct the floor 
for a minimum value of response.  From the modeling point of view it is 
important to know how much the solution is effected by the choice of boundary 
conditions as part of the modeling. 

 
Here the comparison can be made by calculating the response and then evaluating 
it and plotting it using a truncated solution (say 3 modes, as given in Equation 
6.181) at a given point of interest (i.e. for a particular value of x).  This gives an 
accurate comparison. 

 
Next you can compare the differences in the details.  For instance the clamped-
pinned natural frequencies are lower then the clamped-clamped frequencies (just 
look at Table 6.4) because the clamped-clamped system is stiffer.  Next, one of 
these sets of frequencies is going to have a natural frequency that is closer to the 
driving frequency, and hence produce a larger response.  To make such 
comparisons, pick a value for the physical parameters (let omega = beta squared 
for instance) and check.  In this case the clamped-pinned frequency is about 3.9 
rad/s, which is much closer to the driving frequency of 3 rad/s then the clamped-
clamped first natural frequency of 4.7 rad/s.  Thus the first term in the series 
solution for the example will be larger then the corresponding term in the series 
solution for the clamped-clamped case. 
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6.68 Use the modal analysis procedure suggested at the end of Section 6.8 to calculate 
the response of a clamped free beam with a sinusoidal loading F0sint at its free 
end. 

 
 Solution: 
 
 The equation of motion is: 
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0
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 Assume a solution of the form   wn

(x,t)  X
n
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 The mode shapes are given in Table 6.4 for a fixed-free beam: 
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 From the unforced vibration problem: 
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 Substitute into the equation of motion and rearrange: 
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 Normalize the mode shapes as follows: 
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 Multiply the equation of motion Xn(x) and integrate over the length of the beam: 
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 Solving: 
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 The total solution is: 
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 Where n, wn are given above and cos nl cosh nl = -1. 



Problems and Solutions Section 7.2 (7.1-7.5) 
 
7.1 A low-frequency signal is to be measured by using an accelerometer.  The signal 

is physically a displacement of the form 5 sin (0.2t).  The noise floor of the 
accelerometer (i.e. the smallest magnitude signal it can detect) is 0.4 volt/g.  The 
accelerometer is calibrated at 1 volt/g.  Can the accelerometer measure this 
signal? 

 
Solution: 

 
From the problem statement: 

 
  x(t) = 0.5sin(0.2t) m 
  x (t) = 0.1cos(0.2t) m

s  

  x (t) = -0.02sin(0.2t) m
s2  

The peak acceleration is: 
 

  0.2 m
s2

1g

9.8 m
s2









 0.0204g  

 

Accelerometer calibration is g
V1 , therefore the peak output of the accelerometer 

is: 
 

  0.0204g
1V

g






 0.0204V  

 
Since the noise floor on the accelerometer is 0.4 V, then this acceleration cannot 
be measured. 

   



7.2 Referring to Chapter 2, calculate the response of a single-degree-of-freedom 
system to a unit impulse and then to a unit triangle input lasting T second.  
Compare the two responses.  The differences correspond to the differences 
between a "perfect" hammer hit and a more realistic hammer hit, as indicated in 
Figure 7.2.  Use   = 0.01 and   = 4 rad/s for your model. 

 
Solution: 

 
System: Ý Ý x  2n

Ý x n
2 x  f (t)   (Letting m = 1) 

 
(i) )()( ttf  , a unit impulse 

 x(t)  e nt sin(d t)   d n 1 2  
 

(ii) f (t) 
t

T
u(t) 

2

T
(t  T )u(t  T) 

1

T
( t  2T )u(t  2T)  

 u(t-a) = unit step at t = a. 

 x(t) 
1

T
r(t)  2r(t  T )  r(t  2T)  

 
From table of Laplace transforms: 

 

 r(t) 
1

n
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2
n


1

 d

e n t sin(dt )







u(t)  12cos 2    

 x(t) 
1

Tn
3 nt  2  en t sin(dt u(t)  

  2 n (t  T )  2  e n ( tT ) sin(d (t  T)) u(t  T )  

   n (t  2T )  2  en ( t 2T ) sin( d (t  2T )) u(t  2T )  

 since n d  and   /2   
 



7.3 Compare the Laplace transform of (t) with the Laplace transform of the triangle 
input of Figure 7.2 and Problem 7.2. 
 
Solution: 
 
(i) f(t) = (t), unit impulse 
F(s) = 1 
 

(ii) f(t) = 
t

T
u(t) 

2

T
(t  T )u(t  T) 

1

T
( t  2T )u(t  2T) , unit triangle with 

period T. 

F(s) = 
1

T
te stdt  2 (t  T)e stdt  (t  2T )e st dt

2T




T
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  F(s) = 
1

Ts2 1 esT  es2T  

 
 



7.4 Plot the error in measuring the natural frequency of a single-degree-of-freedom 
system of mass 10 kg and stiffness 350 N/m if the mass of the excitation device 
(shaker) is included and varies from 0.5 to 5 kg.   
 
Solution: 
 
m = 10 kg 
k = 350 N/m 
0.5  sm 5.0 kg 

Error = 

 

k

m  m
s


k

m
 

 

 



 
7.5 Calculate the Fourier transform of f(t) = 3 sin 2t – 2 sin t – cos t and plot the 

spectral coefficients. 
 
Solution: 
 
F(t) = 3 sin(2t) - 2sin(t) - cos(t) 

T = 1 rad/sec 

1a  = -1 1b = -2  2b = 3 

na  = 0, n = 2, 3, …. nb  = 0, n = 3, 4, 5, ….. 

 
 

 
 



Problems and Solutions Section 7.3 (7.6-7.9) 
 
7.6 Represent 5 sin 3t as a digital signal by sampling the signal at /3, /6 and /12 

seconds.  Compare these three digital representations. 
 
Solution: Four plots are shown.  The one at the top far right is the exact wave 
form.  The one on the top left is sampled at /3 seconds. 

 
 
 
 
 
The next plot is sampled at /6 seconds. 

 
 
 
 



 
The next plot is sampled at /12 seconds. 

 
None of the plots give the shape of a sine wave.  However if the s3 is 

connected by lines, the wave shape is close.



7.7 Compute the Fourier coefficient of the signal |1120 sin (120 t)|. 
 
Solution: 
 
f(t) = |120sin(120t)| (absolute value of the sine wave) 
 
To calculate the Fourier series: 
 
 T = 1/120 sec  T = 240  rad/sec 

ao  240 120sin(120t)dt
0

1
120

  

 


480oa  

 

an  240 120sin(120t)cos(240nt)dt
0

1
120

  

 

)41(

480
2n

an 



 

 

bn  240 120sin(120t )sin( 240nt)dt
0

1
120

  

 
0nb  

 

f (t) 
240


1

2

1 4n2 cos(240n)t
n1











 



7.8 Consider the periodic function 
 

    x(t) = 
5 0    t    
5     t    2





 

 
and x(t) = (t + 2).  Calculate the Fourier coefficients.  Next plot x(t): x(t) 
represented by the first term in the Fourier series, x(t) represented by the first two 
terms of the series, and x(t) represented by the first three terms of the series.  
Discuss your results.   
 
Solution: For the Fourier Series: T = 2  T  = 1 

00 a  

an 
2

2
5cos(nt)dt  5cos(nt)dt
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                   an  0  
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7.9 Consider a signal x(t) with maximum frequency of 500 Hz.  Discuss the choice of 
record length and sampling interval. 

 
Solution: 
 
For a signal with maximum frequency of 500 Hz, the sampling rate, sf , should be 

 
    sf  > 2(500) = 1000 Hz 

 
Due to Shannon’s sampling theorem.  A better choice would be 
 
    sf  = 2.5(500) = 1250 Hz 

 
Thus, the minimum sampling rate is 0.001 sec. and the suggested rate is 0.0008 
sec.   
Lower sampling rates will produce aliasing. 
 
The record length N is usually a power of 2, such as 512, 1024, 2048, etc. 
Windowing is performed to reduce leakage.  
 
 



Problems and Solutions for Section 7.4 (7.10-7.19) 
 
7.10 Consider the magnitude plot of Figure P7.10.  How many natural frequencies does 

this system have, and what are their approximate values? 

 
Solution: 

 
The system looks to have 8 modes with approximate natural frequencies of 2, 4, 
10, 15, 22, 29, 36, and 47 Hz. 



7.11 Consider the experimental transfer function plot of Figure P7.11.  Use the 
methods of Example 7.4.1 to determine i  and i . 

 
Solution: 

 
For each mode: 

   
i

aibi
i 




2


  

where bi  and ai  are the frequencies where the magnitude is 
2

1  of the 

resonant magnitude.  All values given in the following table are approximate.   
 
 

Mode 
 

 

i  (Hz) 
 

)( iH   
 

2

)( iH 
 

 

ai  (Hz) 
 

bi  (Hz) 
 

i  

1 4.80 0.089 0.063 4.56 5.04 0.049 
2 15.20 1.050 0.742 14.76 15.48 0.024 
3 30.95 1.800 1.270 30.47 31.19 0.012 
4 52.62 2.000 1.414 52.14 52.85 0.007 
5 80.00 2.100 1.480 79.05 80.48 0.009 

 
 

 



7.12 Consider a two-degree-of-freedom system with frequencies 1  = 10 rad/s, 2  = 

15 rad/s, and damping ratios 1 = 2  = 0.01.  With modal s = 
1

2

1 1

1 1






, 

calculate the transfer function of this system for an input at 1x  and a response 

measurement at 2x . 
 

Solution: 
 

Since the natural frequencies, damping ratios and mode shapes are given, the 
system can be expressed in modal coordinates as 
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This is the representation of the system in modal coordinates, if proportional 
damping is assumed.  The transfer function is: 

 

     Y (s) 
1

2
1 1 R(s)  

where 
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1
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Combining the previous two expressions yields 
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7.13 Plot the magnitude and phase of the transfer function of Problem 7.12 and see if 
you can reconstruct the modal data ( 1 , 2 , 1 , and 2 ) from your plot.   

 
Solution: 

 
For each mode: 

 

     
i

aibi
i 




2


  

 

where bi  and ai  are the frequencies where the magnitude is 
2

1  of the 

resonant magnitude.  All values in the following table are approximate.   
 
 

Mode 
 

 

i  (rad/s) 
 

)( iH   
 

2

)( iH 
 

 

ai  (rad/s) 
 

bi  (rad/s) 
 

i  

1 10 0.50 0.354 9.89 10.07 0.009 
2 15 0.22 0.156 14.83 15.16 0.011 

 

 
 



 



7.14 Consider equation (7.14) for determining the damping ratio of a single 
mode.  If the measurement in frequency varies by 1%, how much will the value of 
 change? 

 
Solution: 

 

    
d

ab





2


  

 
If )01.01(  dod   where do  is the measured natural frequency, then the 

damping ratio is  
 

     
b  a

2 do

1

1 0.01



 o

1

1  0.01



 

 
If d  is 0.99 do , then  = 1.01 o  

 
If d  is 1.01 do , then  = 0.99 o  

 
Thus, 1 percent changes in the measured natural frequency produce similar 
changes in the measured damping ratio. 

 
 
 
 
 
 
 
 

7.15 Discuss the problems of using equation (7.14) if the natural frequencies of the 
structure are very close together.  

 
Solution: 

 
Equation (7.14) assumes that the response at resonance is due to a single degree 
of freedom system.  If the natural frequencies are very close together, this 
assumption is not valid.  This will introduce error into the damping ratio 
calculation since the peak response at each resonant frequency will be due to a 
combination of responses from each of the closely spaced modes.  

 
 



7.16 Discuss the limitation of using equation (7.15) if  is very small.  What happens if 
 is very large? 

 
Solution:  When  is very small (<0.01), it is difficult to determine where R() is 
the largest since equation (7.15) is changing very rapidly in the vicinity of 
resonance.  When  is very large (>0.707), the frequency response near resonance 
is very flat, again making it difficult to determine the damped natural frequency.  
In either case, experimentally determined damping ratios will contain error since 
they depend on an accurate determination of the resonant frequency.  Problem 
7.18 contains plots that illustrate these ideas. 

 
 
7.17 Consider the two-degree-of-freedom system described by  
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and calculate the transfer function |X/F| as a function of the damping parameter c. 

 
Solution: 

 
The equations of motion for the system are: 
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Taking the Laplace transform yields 
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Inverting the matrix on the left hand side leads to an expression for X(s): 
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Performing the multiplication leads to  
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7.18 Plot the transfer function of Problem 7.17 for the four cases:  c = 0.01, c = 0.2, c = 
1, and c = 10.  Discuss the difficulty in using these plots to measure i  and i  for 

each value of c. 
 

Solution: 
 

For c = 0.01, the resonant peaks are very sharp, making an accurate determination 
of i  difficult.  In the case c = 0.2, i  and i  could be determined fairly easily 

using the techniques of section 7.4.  Increasing c to 1.0 makes the frequency 
response very flat, which again makes finding i  and i  difficult.  Finally, when 

c = 10, it almost looks as if there is one resonant peak, which would lead to a 
completely erroneous result. 

 
 



7.19 Use a numerical procedure to calculate the natural frequencies and damping ratios 
of the system of Problem 7.18.  Label these on your plots from Problem 7.18 and 
discuss the possibility of measuring these values using the methods of Section 7.4 

 
Solution: 

 
For the case where c = 0.01 

 
 

Mode 
 

 

i  (rad/s) 
 

)( iH   
 

2

)( iH 
 

 

ai  (rad/s) 
 

bi  (rad/s) 
 

i  

1 1.0 59 41.72 0.99 1.02 0.015 
2 1.7 48 33.94 1.71 1.69 0.006 

Actual values:  1  = 1.00 1  = 0.003 

    2  = 1.73 2  = 0.001 
 

The actual values are calculated directly from the equations. 
 

For the case where c = 0.2 
 
 

Mode 
 

 

i  (rad/s) 
 

)( iH   
 

2

)( iH 
 

 

ai  (rad/s) 
 

bi  (rad/s) 
 

i  

1 1.0 5.1 3.61 0.93 1.06 0.064 
2 1.7 2.9 2.05 1.69 1.79 0.030 

 
Actual values:  1  = 1.00 1  = 0.050 

    2  = 1.73 2  = 0.029 
 

For the case c = 0.01, there is more error in the measured parameters than for the 
case c = 0.2 due to the sharpness of the resonant peak.   

 



 
 
 



Problems and Solutions Section 7.5 (7.20-7.24) 
 
7.20 Using the definition of the mobility transfer function of Window 7.4, calculate the 

Re and Im parts of the frequency response function and hence verify equations 
(7.15) and (7.16). 

 
Solution: 

 
From Window 7.4: 

  

   
kcsms

s

sF

ssX




2)(

)(
 

   
cjmk

j







)(
)(

2
 

   () 
j (k m 2 )  jc 
(k m2 )2  (c)2  

   
222

22

)()(

)(
)(

cmk

mkjc








  

 
The previous expression can be separated into real and imaginary parts: 
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7.21 Using equations (7.15) and (7.16), verify that the Nyquist plot of the mobility 
frequency response function does in fact form a circle.   
 
Solution: 
 

Define  A 
 2c

(k 2 m)2  (c) 2 
1

2c
Re( ) 

1

2c
 

 

  B 
(k -2 m)

(k  2m) 2  (c)2  Im( )  

 
Show that 
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1
, Im() = 0. 
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Which is the equation of a circle.



7.22 Consider a single-degree-of-freedom system of mass 10 kg, stiffness 1000 
N/m, and damping ratio of 0.01.  Pick five values of  between 0 and 20 rad/s and 
plot five points of the Nyquist circle using equations (7.15) and (7.16).  Do these 
form a circle? 
 
Solution: 
 
SDOF oscillator: 
 
     0 kxxcxm   
 
    m = 10 kg  k = 1000 N/m   = 0.01 
 
 First, calculate the damping constant c. 

 1002 
m

k
n  

 c  2 nm  2(0.01)(10)(10)  2 Ns
m  

 

 Re   22

(1000 10 2 )2  (2) 2  

 

 Im   (100010 2 )

(1000 10 2 )2  (2) 2  

 
    

 Re() Im() 
9.90 0.2487 0.2500 
9.95 0.3996 0.2003 

10.00 0.5000 0.0000 
10.05 0.4004 -0.1997 
10.10 0.2512 0.2500 

 
The following plot displays the 5 points listed in the table, as well as the same 
plot with a fine discretization of the driving frequency . 
 



 
 





7.23 Derive equation (7.20) for the damping ratio from equations (7.18) and 
(7.19).  Then verify that equation (7.20) reduces to equation (7.21) at the half-
power points. 
 
Solution: Begin with equations (7.18) and (7.19) 
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Multiplying the right hand side of each expression by 
2
3

2
3




 yields 

  tan 
2  a

2 3
2

23a3

 

  tan 
2  3

2 b
2

23b3

 

 
After a suitable multiplication, these expressions are: 
 

  (23 a3 )tan 
2  a

2  3
2  

  (23 b3) tan 
2 3

2  b
2  

 
Adding the previous two equations results in: 
 

  23 ( a b ) tan 
2 a

2  b
2  

 
Which can be manipulated to yield equation (7.20) 
 

  3 
a

2 b
2

23 a tan 
2  b tan 

2   
 

At the half-power points,  = 90° and tan 
2 = 1, so (7.20) reduces to: 

 

  
3

3 2


 ba   

 



7.24 Consider the experimental curve fit Nyquist circle of Figure P7.24.  Determine the 
modal damping ratio for this mode 

 
Solution: 
 
From Figure 7.18, 
 
      45  
    3  9Hz 

    10b Hz 

    8a Hz 

 
Using (7.20) 

   3 
102  82

2(9) 8tan 45
2  10tan 45

2   
 
   27.03   

 
 



Chapter 8 
Problems and Solutions Section 8.1 (8.1 through 8.7) 
 
8.1 Consider the one-element model of a bar discussed in Section 8.1.  Calculate the 

finite element of the bar for the case that it is free at both ends rather than clamped. 
 

Solution: The finite element for a rod is derived in section 8.1.  Since u1 is not 
restrained equations (8.7) and (8.11) are the finite element matrices. 

 
8.2 Calculate the natural frequencies of the free-free bar of Problem 8.1.  To what 

does the first natural frequency correspond?  How do these values compare with 
the exact values obtained from methods of Chapter 6? 

 
Solution: 

 

 

K 
EA

l

1 1

1 1





        M 

Al

6

2 1

1 2






M1K 
6E

l2

1 1

1 1






 

 
 

 
1,2  0,

12E

l2  and the corresponding eigenvectors are

x1  1 1 T / 2 and x2  1 1 T / 2

 

 

 Therefore, 1  0,  2 
12E

l2  

 
 The first natural frequency corresponds to the rigid body mode, or pure 

translation. 
 
 From the solution to problem 6.8, 
 

 1  0,  2 
 2E

l 2  

 
 The first natural frequency is predicted exactly while the second is 10.2% high.  A 

point of interest is that, due to symmetry, the first mode of a clamped-free rod of 
length l/2 has the same natural frequency as the second mode of a free-free  rod of 
length l. 



8.3 Consider the system of Figure P8.3, consisting of a spring connected to a clamped-
free bar.  Calculate the finite element model and discuss the accuracy of the 
frequency prediction of this model by comparing it with the method of Chapter 6. 

 
Solution: 

 
 The finite element for the clamped-free rod is given by (8.14) as 
 

 
Al

3
Ý Ý u 2(t) 

EA

l
u2 (t)  0  

 
 The spring has the effect of adding stiffness K at u2.  Thus, 
 

 
Al

3
Ý Ý u 2(t) 

EA

l
K





u2(t)  0  

 
 From (1.16) 
 

  
3(Kl  EA)

Al
 

 
 Next consider the first natural frequency as predicted from the distributed 

parameter approach of chapter 6.  In particular Table 6.1 gives the frequency 
equation for this system as ncotn = -(Kl/EA) where n = nl/c, c2 = E/.  
Approximating cotx = 1/x - x/3 the frequency equation of Table 6.1 becomes 

 
 n (1/n-n/3) = -(kl/EA)  or for n=1   2l2/c2=3(1+kl/EA) 
 
 which upon solving for  is identical to the one element FEM frequency derived 

above. 



8.4 Consider a clamped-free bar with a force f(t) applied in the axial direction at the 
free end as illustrated in Figure P8.4.  Calculate the equations of motion using a 
single-element finite element model. 

 
Solution: 

 
 The finite element equation of motion for an unforced clamped-free bar is given by 

equation (8.14).  Using (8.13) it can be seen that the forced equation is 
 

 
Al

3
Ý Ý u 2(t) 

EA

l
u2 (t)  f (t)  



8.5 Compare the solution of a cantilevered bar modeled as a single finite element with 
that of the distributed-parameter method summarized in Figure 8.1 truncated at 
three modes by calculating (a) u(x,t) and (b) u(l/2,t) for a 1-m aluminum beam at t 
= 0.1, 1, and 10s using both methods.  Use the initial condition u(x,0) = 0.1x m 
and ut (x,0) = 0. 

 
Solution:  (8.5, 8.6) 

 
 For the finite element of the bar 
 
  = 2700 kg/m3,  E = 7 1010 N/m2 
 
 The unforced equation of motion is then 
 
 Ý Ý u 2(t)  7.78 107u2(t)  0 

 From window 8.2 
 
 u2(t)=.1cos(8.819103t) 
 
 Using the shape functions for the bar 
 
 u(x,t) = u2(t)x=.1xcos(8.819103t) 
 
 For the continuous model truncated at 3 modes, (see example6.3.1) 
 
 1,2,3 = 8000 rad/s, 24000 rad/s, 40000 rad/s and the mode shapes are 
 

 

X1(x)  sin

2

x
l





    ,  X4 (x)  sin

7
2

x
l







X2 (x)  sin
3
2

x

l




  ,  X5(x)  sin

9
2

x

l




 

X3 (x)  sin
5
2

x
l







 

 
 The solution is given by (6.27) as 
 

 u(x,t )  (cn sinn t  dn cosn t)Xn(x)
n1


  

 
 Since we are given Ý (x, t)  0,  cn  0  
 

 u(x,t )  an cos(n t)Xn(x)
n1


  



 
 Considering the initial condition u(x,0) = .1x 
 

 u(x,0)  an sin
(2n 1)

2

x

ln1



  .1x  

 

 Multiplying by sin
(2m 1)

2

x

l
 and integrating from x = 0 to x = l, 

 

 

.1x sin
(2m 1)

2

x

l






0

l

 dx  an sin
(2n 1)

2

x

l






0

l

 sin
(2m 1)

2

x

l




dx

.1x sin
(2m 1)

2

x

l






0

l

 dx  an

l2

2




 




an 
2

l2 .1x sin
(2n 1)

2

x

l






0

l

 dx

 

 
 a1=.08106, a2=-.009006, a3=.003242, a4=0.001654, a5=.001001 
 
 from (6.63) 
 

 

n 
(2n1)

2
E


,  1 

2

E

 7998rad/s,  2 

3
2

E

 23994rad/s,

3 
5
2

E


 39990rad/s,  4 

7
2

E


 55987rad/s

5 
9
2

E


 71982rad/s

 

 
 Substitution into 6.27 yields 
 

 

(x, t)  .08106 cos(7998t)sin

2

x

l




 .00901cos(23994t)sin

3
2

x

l






             + .00324cos(39990t)sin
5
2

x

l




 .00165cos(55987t)sin

7
2

x

l






             + .001001cos(71982t)sin
9
2

x
l







 

 
 Note that for problem 8.5 the last two terms are neglected. 
 
 
8.5 
 



 

u(x,t )
t .1

 .021205sin
x
2





 .00643sin

3x
2





 .00314

5x
2







u(x,t ) t 1  .07133sin
x

2




 .00077sin

3x

2




 .00255

5x

2






u(x,t )
t 10

 .01900sin
x

2




  .00587sin

3x

2




 .003

5x

2






u(x,t ) t .1, x.5  .01732

u(x,t ) t 1, x.5  .05169

u(x,t )
t 10, x.5

 .01546

 

 



8.6 Repeat Problem 8.5 using a five-mode model.  Can you draw any conclusions? 
 

Solution: 
 

 

u(x,t )
t .1

 .0212sin
x

2




 .00643sin

3x

2




 .00314

5x

2






                  .00153sin
7x

2




 .00069sin

9x

2






u(x,t )
t 1

 .07133sin
x

2




 .0077sin

3x

2




 .00255

5x

2






                  .00129sin
7x

2




 .00026sin

9x

2






u(x,t ) t 10  .01900sin
x

2




  .00587sin

3x

2




 .00300

5x

2






                  .00146sin
7x

2




 .00085sin

9x
2







u(x,t )
t .1, x.5

 .01672

u(x,t )
t 1, x.5

 .05060

u(x,t ) t 10, x.5  .01709

 

 
 For the finite element solution from (8.17) 
 

 

u(x,t )  .1x cos(8819.2t)

u(x,t ) t .1  .06445x          u(x, t) t .1, x .5  .03222     

u(x,t ) t1  .07515x           u(x, t) t1,x .5  .03758

u(x,t ) t10  .06047x            u(x,t) t 10,x .5  .03024

 

 
 Conclusion:  Not nearly enough elements were used to accurately determine the 1st  

natural frequency.  Since the 1st mode dominates the response (this can be seen by 
comparing the coefficients, an), it must be determined well in order to predict the 
rod’s response. 



8.7 Repeat Problem 8.5 using only the first mode in the series solution and the initial 
condition u(x,0) = 0.1sin(x/2l), ut(x,0) = 0.  For this initial condition, the first 
mode is exact.  Why? 

 
Solution: 

 
 Using the same procedure as in problem 8.5, the solution is 
 

 

u(x,t )  .1sin
x

2




cos(7998t)

u(x,t ) t.1  .02616sin
x
2





          u(x,t) t.1, x .5  .01850     

u(x,t ) t1  .08800sin
x

2




             u(x,t) t1,x .5  .06223

u(x,t ) t10  .02344sin
x
2





           u(x, t) t10,x .5  .01657

 

 
 The finite element solution is unchanged.  Again there is horrible agreement 

between the finite element model and the distributed parameter model. 
 
 The fist mode is exact because the initial condition is in the first mode.  All 

coefficients, an, for modes other than the first mode are zero. 
 



Problems and Solutions Section 8.2 (8.8 through 8.20) 
 
8.8 Consider the bar of Figure P8.3 and model the bar with two elements.  Calculate 

the frequencies and compare them with the solution obtained in Problem 8.3.  
Assume material properties of aluminum, a cross-sectional area of 1 m, and a 
spring stiffness of 1  106 N/m.  

 
Solution: The finite element model for the two-element bar is 

MÝ Ý u ( t) Ku(t)  0  

 where u(t)  u1 u2 T  

u1          u2

 
 

 M 
Al

12

4 1

1 2





   K 

2EA

l

2 1

1 1






 

 
 As in problem 8.3, the spring adds a stiffness K to degree of freedom 2.  The 

equation of motion is then 
 

 
Al

12

4 1

1 2





Ý Ý u (t) 

2EA

l

2 1

1 1
Kl

2EA









u(t)  0  

 
 The natural frequencies can be found by eigenanalysis.  Using the material 

properties of aluminum 
 
 = 2700kg/m3 , E = 7  1010Pa 
 
 1 = 129.0 rad/s 
 
 2 = 368.4 rad/s 
 
 The solution obtained in problem 8.4 is 1 = 149.1 rad/s. 



8.9 Repeat Problem 8.8 with a three-element model.  Calculate the frequencies and 
compare them with those of Problem 8.8. 

 
Solution: 

 
 The finite element model of the 3 element rod for equal length elements is (from 

equation (8.25)) 
 

 
Al

18

4 1 0

1 4 1

0 1 2














Ý Ý u 

3EA

l

2 1 0

1 2 1

0 1 1














u  0  

 
 With the spring stiffness included, the global stiffness becomes 
 

 K 
3EA

l

2 1 0

1 2 1

0 1 1 
Kl

3EA

















 

 
 Solving for the natural frequencies gives 1 = 125.85 rad/s, 2=333.1 rad/s, and 3 

= 591.7 rad/s 
 
 The natural frequencies predicted in 8.9 should be better than those predicted in 

8.8.  You can compare them to the results of 2 element model by using VTB8_2 
and loading the file p8_3_10.con. 

 



8.10 Consider Example 8.2.2.  Repeat this example with node 2 moved to /2 so that 
the mesh is uniform.  Calculate the natural frequencies and compare them to those 
obtained in the example.  What happens to the mass matrix? 

 
Solution: (8.10, 8.11) 

 
 The equation of motion can be shown to be 
 

 

Al

12

4 1

1 2





Ý Ý u 

2EA

l

2 1

1 1





u  0

1 
1.16114

l

E


 8204.8 rad/s

2 
5.6293

l

E


 28663 rad/s

 

 
 The first natural frequency is slightly improved (closer to the distributed parameter 

‘true’ value) while the second natural frequency has become worse. 
 
  

 Truth Example 8.22 Problem 8.10 Example 8.2.1 
1 

1.571
1

l

E


 1.643

1

l

E


 1.611

1

l

E


 1.579

1

l

E


 

2 
4.712

1

l

E


 5.196

1

l

E


 5.629

1

l

E


 5.167

1

l

E


 

 
 The natural frequencies found using the 3 element model are much better than the 

2 element model. 
 
 
8.11 Compare the frequencies obtained in Problem 8.10 with those obtained in Section 

8.2 using three elements. 
 

Solution: 
 
 See the solution for problem 8.10. 



8.12 As mentioned in the text, the usefulness of the finite element method rests in 
problems that cannot readily be solved in closed form.  To this end, consider a 
section of an air frame sketched in Figure P8.13 and calculate a two-element finite 
model of this structure (i.e., find M and K) for a bar with 

 
Solution: 

 

 A(x) 

4

h1
2 

h2  h1

l






2

x2  2h1
h2  h1

l




x







 

 
 Two methods exist for creating a finite element model for this wing.  The first is to 

assume each element has a constant cross section.  The second is to derive 
elements based on the variable cross section.  If enough elements are used, 
constant cross section elements can yield acceptable results.  However, since in 
this example only two elements are used, it is better to use a variable cross section 
element.  Both solutions are given. 

 
 A:  Variable cross section elements 
 
 Following the procedure of section 8.1, the shape function of the first element is 

given by 
 

 u(x,t )  1
2x

l




u1(t) 

2x

l
u2 (t)  

 
 The strain energy for element 1 is given by 
 

 

V1(t)  EA(x)
u1(x, t)
x





0

l / 2


2

dx

       
E
48l

[(7h1
2  4h1h2  h2

2 )u1
2(t)  (14h1

2  8h1h2  2h2
2 )u1(t)u2(t)

                                                (7h1
2  4h1h2  h2

2)u2
2 (t)]

 

 
 However, since u1(t) = 0, 
 

 V1(t) 
E
48l

(7h1
2  4h1h2  h2

2)u2
2 (t)  

 
 For element 2, the shape function is 
 

 u2(x,t)  2 1
x

l




u2 (t) 

2x

l
1





u3(t )  

 
 The strain energy for element 2 is then given by 



 

 
V2(t)  1

2
EA(x)

u2(x, t)
x





l / 2

l


2

dx

       
E
48l

h1
2  4h1h2  7h2

2 u2
2(t)  2u2(t)u3(t)  u3

2(t) 
 

 
 The total strain energy is then 
 

 V(t) 
E
48l

( f1  f2)u2
2 (t)  2 f2u2(t)u3(t)  f2u3

2(t)  
 
 where f1  7h1

2  4h1h2  h2
2   and  f2  h1

2  4h1h2  7h2
2  

 
 In matrix form this is 
 

 

V(t) 
1

2
u2 (t) u3(t) K u2 (t) u3(t) T

where

K  E
24l

f1  f2  f2
 f2 f2








 

 
 The kinetic energy of element 1 is given by 
 

 
T1( t)  A(x) u1(x,t)

x




0

l /2


2

dx

       
l

1920
(16h1

2 18h1h2  6h2
2) Ý u 2

2 (t)

 

 
 (since Ý u 1(t)  0 , terms including Ý u 1(t)  have been dropped) 
 
 Similarly, the kinetic energy of element 2 is 
 

 
T2(t)  A(x)

u2(x, t)

x




l / 2

l


2

dx 
l

1920
[(6h1

2 18h1h2 16h2
2) Ý u 2

2

        (3h1
2  8h1h2  31h2

2) Ý u 2 Ý u 3  (h1
2  8h1h2 31h2

2 )Ý u 3
2]

 

 
 The total kinetic energy can be written 
 



 

T (t) 
l

1920
[(22h1

2  36h1h2  22h2
2 )Ý u 2

2  (3h1
2 14h1h2  23h2

2 )Ý u 2 Ý u 3

        (h1
2  8h1h2  31h2

2) Ý u 3
2]  1

2
Ý u 2 Ý u 3 M Ý u 2 Ý u 3 T

where

M 
l

1920

44h1
2  72h1h2  44h2

2 3h1
2 14h1h2  23h2

2

3h1
2  14h1h2  23h2

2 2h1
2 16h1h2  62h2

2








 

 
 B:  Constant cross section elements 
 
 The average cross section area of element 1 is 
 

 A1 

48

(7h1
2  4h1h2  h2

2 )  

 
 and the average cross section area of element 2 is 
 

 A2 

48

(h1
2  4h1h2  7h2

2 )  

 
 Finding the potential energy again yields the same global stiffness matrix as for the 

variable cross section model. 
 
 The kinetic energy can then be found by 
 

 

T (t)  1
2

A1
u1(x,t)
x





0

l / 2


2

dx  1
2

A2
u2 (x, t)

x




l /2

l


2

dx

      
1

2
Ý u 2 Ý u 3 M Ý u 2 Ý u 3 T

where

M 
l

12

2(A1  A2) A2

A2 2A2








 

 
 which is not identical to the mass matrix derived using variable cross section 

elements. 



8.13 Let the bar in Figure P8.13 be made of aluminum 1 m in length with h1 = 20 cm 
and h2 = 10 cm.  Calculate the natural frequencies using the finite element model 
of Problem 8.12. 

 
Solution: 

 
 E = 7 1010Pa, = 2700 kg/m3 
 
 h1 = .2m, h2 = .1m, l = 1m 
 
 Using the variable cross section elements 
 

 

K  2.566 109 8.705 108

8.705 108 8.705108








and

M 
16.081 2.783

2.783 4.506







 

 
 The natural frequencies are then 1 = 7414 rad/s and 2 = 20368 rad/s 
 
 The constant cross sectional area mass matrix is 
 

 M 
16.493 2.798

2.798 5.596






 

 
 which give 1 = 7092 rad/s, 2 = 18636 rad/s 



8.14 Repeat Problems 8.12 and 8.13 using a three-element four-node finite element 
model. 

 
Solution: 

 
 The shape functions for 3 evenly spaced elements are 
 

 

u1(x,t)  1  3x
2l





u1(t) 

3x
l

u2 (t)

u2(x,t)  2 1 
3x

2l




u2(t) 

3x

l
1





u3(t)

u3(x,t)  3 1 
x

l




u3(t)  2

3x

2l
1





u4 (t)

 

 
 Integrating to find the strain energy, the strain energies in matrix notation are 
 

 

V1(t) 
1

2
u1 u2 K1 u1 u2 T

V2 (t) 
1

2
u2 u3 K2 u2 u3 T

V3( t) 
1

2
u3 u4 K3 u3 u4 T

where

K1 
E
36l

(19h1
2  7h1h2  h2

2 )
1 1

1 1






K2 
E
36l

(7h1
2 13h1h2  7h2

2 )
1 1

1 1






K3 
E
36l

(h1
2  7h1h2 19h2

2)
1 1

1 1






 

 
 Writing the total strain energy in matrix form, the global stiffness matrix is 
 

 

K 
E
36l

f1  f2  f2 0

 f2 f2  f3  f3
0  f3 f3















where

f1  19h1
2  7h1h2  h2

2 ,   f2  7h1
2 13h1h2  7h2

2   and  f3  h1
2  7h1h2 19h2

2

 

 
 The kinetic energy of each element in matrix form is 



 

 

T1(t) 
1

2
Ý u 1 Ý u 2 M1 Ý u 1 Ý u 2 T ,   T2 (t)  1

2
Ý u 2 Ý u 3 M2 Ý u 2 Ý u 3 T ,

            T3(t) 
1

2
Ý u 3 Ý u 4 M3

Ý u 3 Ý u 4 T

where

M1 
l
3240

76h1
2 13h1h2  h2

2 1

2
63h1

2  24h1h2  3h2
2 

1
2

63h1
2  24h1h2  3h2

2  51h1
2  33h1h2  6h2

2















M2 
l

3240

31h1
2  43h1h2 16h2

2 1

2
23h1

2  44h1h2  23h2
2 

1
2

23h1
2  44h1h2  23h2

2  16h1
2  43h1h2  31h2

2















M3 
l

3240

6h1
2  33h1h2  51h2

2 1
2

3h1
2  24h1h2  63h2

2 
1

2
3h1

2  24h1h2  63h2
2  h1

2 13h1h2  76h2
2















 

 
 Evaluating and assembling the mass and stiffness matrices gives: 
 

 

K 
9.285 3.726 0

3.729 5.987 2.2602

0 2.2602 2.2602














109

M 
13.1423 2.6573 0

2.6573 8.4299 1.6101

0 1.6101 2.7751















 

 
 1 = 10406 rad/s, 2 = 27309 rad/s, 3 = 47797 rad/s 
 
 Note that a ten element model yields 
 
 1 = 10316 rad/s, 2 = 25183 rad/s 



8.15 Consider the machine punch of Figure P8.15.  This punch is made of two materials 
and is subject to an impact in the axial direction.  Use the finite element method 
with two elements to model this system and estimate (calculate) the first two 
natural frequencies.  Assume E1 = 8  1010 Pa, E2 = 2.0  1011 Pa, 1 = 7200 
kg/m3, 2 = 7800 kg/m3, l = 0.2 m, A1 = 0.009 m2, and A2 = 0.0009 m2. 

 
Solution: The total strain energy of the system is 

 

 V(t) 
1

2
u1

2 2E1A1

l


2E1A1

l

u1

u2







T 1 1

1 1






u1

u2















 

u1

                   u2

 
 The vector of derivatives of the potential energy gives 

 

V
u1
V

u2


















2

l

E1A1  E2A2 E2A2

E2A2 E2A2







u1

u2







 

The stiffness matrix is then 
 

 K 
2

l

E1A1  E2 A2 E2 A2

E2 A2 E2A2







 

 
 In similar fashion, the total kinetic energy is 
 

 T (t) 
1

2
Ý u 1

2 1A1l

6


l

12

Ý u 1
Ý u 2







T 22A2 2A2

2 A2 22 A2







Ý u 1
Ý u 2















 

 



 The mass matrix is then 
 

 

M  l
12

2(2 A2  1A1 ) 2 A2

2 A2 22 A2








E1  8 1010Pa,  1  7200kg/m 3,  E2  2.01011Pa,  2  7800kg/m 3,

l  .2A1  .0009, A2  .0001

K 
9.2 2

2 2





108     M 

.242 .013

.013 .026






 

 
 1 = 47556.1 rad/s, 2 = 101975 rad/s 
 
 
 
 
 
 
8.16 Recalculate the frequencies of Problem 8.15 assuming that it is made entirely of 

one material and size (i.e., E1 = E2, 1 = 2, and A1 = A2), say steel, and compare 
your results to those of Problem 8.15. 

 
Solution: 

 
 Assume A1 = A2, E1 = E2, 1 = 2 
 

 K 
4 2

2 2





 108    M 

.052 .013

.013 .026






 

 
 1 = 40798.6 rad/s, 2 = 142525 rad/s 
 
 The first natural frequency decreased.  This example illustrates how a punch can be 

modified to raise the first natural frequency by changing the base material. 



8.17 A bridge support column is illustrated in Figure P8.17.  The column is made of 
concrete with a cross-sectioned area defined by A(x) = A0e

-x/l, where A0 is the area 
of the column at ground.  Consider this pillar to be cantilevered (i.e., fixed) at 
ground level and to be excited sinusoidally at its tip in the longitudinal direction 
due to traffic over the bridge.  Calculate a single-element finite element model of 
this system and compute its approximate natural frequency. 

 
Solution: 

 
 A(x) = A0e

-x/l 
 
 The potential energy is 
 

 

V(t)  E
2

A(x)
u(x, t)
x







2

dx
0

l



where u(x ,t)  1  x

l




u1(t)  x

l
u2 (t)

V(t) 
EA0

2l

e1

e
u1(t)  u2( t) 2

        EA
2l

e 1
e

u2
2( t)

 

 
 The stiffness is then 
 

 K 
EA

l

(e 1)

e
 

 
 Likewise, the kinetic energy is 
 

 T (t) 
1

2
A

u(x, t)

x






2

dx
0

l

 
Al
2e

(2e 5) Ý u 2
2(t)  

 
 The mass is then 
 



 M 
Al
e

(2e  5)  

 
 The first natural frequency is then approximately 
 

 1 
K

M


E(e 1)

(2e  5)l2


1.984

l

E


 



8.18 Redo Problem 8.17 using two elements.  What would happen if the “traffic” 
frequency corresponds with one of the natural frequencies of the support column? 

 
Solution: The shape functions for a 2 element model are 

 

 

u1(x,t)  1  2x
l





u1(t)  2x

l
u2(t)

u2(x,t)  2 1
x

l




u2 (t) 

2x

l
1





u3(t )

 

 The total stain energy in matrix form is 
 

 

V(t) 
1

2
u2 u3 K u2 u3 T

where

K 
4A e 1 E0

el

1 e 1

1 1








 

 Likewise the mass matrix can be found from the total potential energy to be 
 

M 
Al

e

8 e 1 e  10  6 e

10  6 e 813 e







 

 and the natural frequencies are then 

 1 
1.939

l

E


 rad/s,   2 

5.605

l

E


 rad/s  

 If the traffic frequency corresponds to a natural frequency of a pillar, the bridge 
might fail. 

 
8.19 Problems 8.17 and 8.18 represent approximations.  As pointed out in Problem 

8.18, it is important to know the natural frequencies of this column as precisely as 
possible.  Hence consider modeling this column as a uniform bar of average cross 
section, calculate the first few natural frequencies, and compare them to the results 
in Problem 8.17 and 8.18.  Which model do you think is closest to reality?  

 
Solution: 

 
 The natural frequencies of a rod with constant cross sectional area are independent 

of the area.  Therefore the first 2 natural frequencies are 
 

 1
1.571

l

E


 rad/s,   2 

4.712

l

E


 rad/s  

 
 It is doubtful that these results are better since we know from the finite element 

model that the varying cross sectional area does have an effect. 



8.20 Torsional vibration can also be modeled by finite elements.  Referring to Figure 
P8.20, calculate a single-element mass and stiffness matrix for the torsional 
vibration following the steps of Section 8.1. (Hint: (x,t) = c1(t) + c2(t),  

T(t) = 
1

2
I  t (x, t) 0

l
2
dx  and V(t) 

1

2
GI t (x, t) 0

l
2
dx .) 

 
Solution: 

 
 From equation (6.64), The static (time independent) displacement of the torsional 

rod element must satisfy 
 

 

x

 0  GJ
 2 (x,t)

x2  

 
 which has the same form as equation (8.1).  This can be integrated to yield 
 
 (x) = C1 + C2 
 
 At x = 0 
 
 (0) = 1(t) = C2 
 
 Likewise, at x = l 
 
 (l) = 2(t) = C1l + C2 
 

 C1 
2(t) C2

l

2(t)  1(t)

l
 

 
 Substituting the values of C1 and C2 into the shape function yields 
 

  (x, t)  1
x

l




1(t) 

x

l




2 (t)  

 
 Evaluating the strain energy yields 
 

 
V(t) 

GJ

2l
1

2  212  2
2 

       
1

2
1(t) 2 ( t) K 1(t) 2 (t) T

 

 



 where the stiffness matrix is defined by 
 

 K 
GJ

l

1 1

1 1






 

 
 Likewise, evaluating the kinetic energy yields 
 

 
T (t) 

1

2

Al

3
Ý 1
2  Ý 1Ý 2  Ý 2

2 

       
1

2
Ý 1(t) Ý 2 (t) M Ý 1(t) Ý 2 (t) T

 

 
 where the mass matrix is defined by  
 

 M 
Al

6

2 1

1 2






 

 



Problems and Solutions Section 8.3 (8.21 through 8.33) 
 
8.21 Use equations (8.47) and (8.46) to derive equation (8.48) and hence make sure 

that the author and reviewer have not cheated you. 
 

Solution: 
 
 u(x,t )  C1(t)x3  C2 (t)x2  C3(t)x  C4 (t)                      (8.46) 

u(0, t)  u1(t)                  ux (0, t) = u2 (t)

u(l,t)  u3(t)                   u x(l, t)  u4(t)
                           (8.47) 

 
 Substituting(8.46) into (8.47) 
 

 

u(0, t)  C4 (t)  u1 (t)

ux (0,t)  C3(t)  u2 (t)

u(l,t)  C1(t)l
3  C2(t)l

2 C3 (t)l  C4(t)  u3 (t)

ux (l, t)  3C1(t)l  2C2 (t)l C3(t)  u4(t)

This gives

C1 
1
l3 2(u1  u3)  l(u2  u4 ) 

C2 
1
l2

3(u3  u1)  l(u4  2u2 ) 
C3  u2

C4  u1

 

 
 
8.22 It is instructive, though tedious, to derive the beam element deflection given by 

equation (8.49).  Hence derive the beam shape functions. 
 

Solution: 
 
 Substituting (8.48) into (8.46) gives 
 

 

u(x,t )  13
x2

l2  2
x3

l3






u1(t)  l

x

l
 2

x2

l2 
x3

l3







u2(t)

          3
x2

l 2  2
x3

l3







u3(t)  l

x 2

l2  x3

l3







u4(t)

 



8.23 Using the shape functions of Problem 8.22, calculate the mass and stiffness 
matrices given by equations (8.53) and (8.56).  Although tedious, this involves 
only simple integration of polynomials in x. 

 
Solution: 

 

 

T (t)  1
2

A ut(x, t) 2
0

l

 dx

        1
2

Ý u T MÝ u 

where

u  u1( t) u2( t) u3(t) u4(t) T

 

 
 And M is given by equation (8.35). 
 
 Similarly 
 

 

V(t)  1
2

EI u xx(x, t) 2
0

l

 dx

        1
2

uTKu

 

 
 where K is given by (8.56) 
 



8.24 Calculate the natural frequencies of the cantilevered beam given in equation 
(8.69) using l = 1 m and compare your results with those listed in Table 6.1. 

 
Solution: 

 

 

M 
A

840

312 0 54 6.5

0 2 6.5 .75

54 6.5 156 11

6.5 .75 11 1



















                                                        K  8EI

24 0 12 3

0 2 3
1

2
12 3 12 3

3
1

2
3 1

























 

 
 Following the procedures of section 4.2 
 

 

1  3.5177
EI

A
,  2  22.2215

EI

A

3  75.1571
EI
A

,  4  218.138
EI
A

 

 
 From continuous theory, the natural frequencies of a cantilevered beam are 

  i  i

EI

A
 where 1  3.51601,  2  22.0345, 3  61.6972,  4 120.9019.  

 
 The predictions of the first two natural frequencies are quite accurate while the 

predictions of the third and fourth natural frequencies are terrible. 



8.25 Calculate the finite element model of a cantilevered beam one meter in length 
using three elements.  Calculate the natural frequencies and compare them to 
those obtained in Problem 8.23 and with the exact values listed in Table 6.4. 

 
Solution: Define ui using the following figure; 

u2              u4                     u6         u8

u1              u3                     u5         u6

2
 

 The equation for element one is 
 

 
Al

420

156 22 l

22l 4l 2






Ý Ý u 3
Ý Ý u 4








EI

l3

12 6l

6l 4l2






u3

u4






 0  

 
 The equation for element two is 
 

 
Al

420

156 22l 54 13l

22l 4l 2 13l 3l2

54 13l 156 22l

13l 3l 2 22l 4l2

















Ý Ý u 3
Ý Ý u 4
Ý Ý u 5
Ý Ý u 6


















EI

l3

12 6 l 12 6l

6l 4l2 6l 2l2

12 6l 12 6l

6l 2l2 6l 4l2

















u3

u4

u5

u6

















 0  

 
 The equation for element 3 is the same as for element 2 but with the vector 
 
 [u3 u4 u5 u6]

T replaced with [u5 u6 u7 u8]
T. 

 
 Combining the elemental equation using the superposition of the like coordinates 

yields 
 



 

Al
420

312 0 54 13l 0 0

0 8l2 13l 3l2 0 0

54 13l 312 0 54 13l

13l 3l 2 0 8l 2 13l 3l 2

0 0 54 13l 156 22l

0 0 13l 3l2 22l 4l2





















Ý Ý u 3
Ý Ý u 4
Ý Ý u 5
Ý Ý u 6
Ý Ý u 7
Ý Ý u 8






















EI

l3

24 0 12 6l 0 0

0 8l2 6l 2l2 0 0

12 6l 24 0 12 6l

6l 2l2 0 8l2 6l 2l2

0 0 12 6l 12 6l

0 0 6l 2l2 6l 4l2





















u3

u4

u5

u6

u7

u8





















 0

 

 
 which can also be written in the form 
 

 

Al
420

312 0 54 13 0 0

0 8 13 3 0 0

54 13 312 0 54 13

13 3 0 8 13 3

0 0 54 13 156 22

0 0 13 3 22 4





















Ý Ý u 3
lÝ Ý u 4
Ý Ý u 5
lÝ Ý u 6
Ý Ý u 7
lÝ Ý u 8






















EI

l3

24 0 12 6 0 0

0 8 6 2 0 0

12 6 24 0 12 6

6 2 0 8 6 2

0 0 12 6 12 6

0 0 6 2 6 4





















u3

lu4

u5

lu6

u7

lu8





















 0

 

 
 Following the procedure of example 8.3.3 
 

 

1  .3907
1
l2

EI
A

 , 2  2.456
1
l2

EI
A

3  6.941
1

l2
EI

A
 ,  4  15.63

1

l 2
EI

A

5  29.42
1

l2

EI

A
 , 6  58.64

1

l2

EI

A

 



8.26 Consider the cantilevered beam of Figure P8.26 attached to a lumped spring-mass 
system.  Model this system using a single finite element and calculate the natural 
frequencies.  Assume m = (Al)/420. 

 
Solution: Define ui using the following figure: 

    u1                                          u3

u2                            u4

  u5

 
 The model for the spring mass system is 
 

 

0 0

0 m






Ý Ý u 3
Ý Ý u 5







 EI

l3

1 1

1 1






u3

u5







 0

The single element model for the beam is

Al

420

156 22 l

22l 4l 2






Ý Ý u 3
Ý Ý u 4








EI

l3

12 6l

6l 4l2






u3

u4






 0

Superimposing like coordinates yields

Al

420

156 22 l 0

22l 4l 2 0

0 0 1















Ý Ý u 3
Ý Ý u 4
Ý Ý u 5
















EI

l3

13 6l 1

6l 4l2 0

1 0 1















u3

u4

u5














 0

The equation of motion may also be written 

Al4

420EI

156 22 0

22 4 0

0 0 1















Ý Ý u 3
lÝ Ý u 4
Ý Ý u 5
















13 6 1

6 4 0

1 0 1















u3

lu4

u5














 0

 

 
 The eigenvalue/eigenvector problem is then 
 
 (A-I)v=0 
 



 where 
 

 

A  M 1K
Al 4

420EI
,    Al 4

420EI
 2

A 
.5714 .4571 .0286

4.6429 3.5143 .1571

1 0 0















1  .0294, 2 1, 3  2.9134

 

 

1  3.52
1
l2

EI
A

2  20.49
1

l2

EI

A

3  34.98
1

l2

EI

A

 



8.27 Repeat Problem 8.26 using two finite elements for the beam and compare the 
frequencies. 

 
Solution: 

 
 A two element model of a cantilevered beam has been created in example 8.3.3. 
 
 Superimposing like coordinates for this example with the spring mass model 

yields 
 

Al

840

312 0 54 6.5l 0

0 2l2 6.5l .75l2 0

54 6.5l 156 11l 0

6.5l .75l2 11l l2 0

0 0 0 0 2



















Ý Ý u 3
Ý Ý u 4
Ý Ý u 5
Ý Ý u 6
Ý Ý u 7




















8EI

l3

24 0 12 3l 0

0 2l2 3l
1

2
l2 0

12 3l 12
1

8
3l 

1

8

3l
1

2
l2 3l l2 0

0 0  1
8

0
1
8























u3

u4

u5

u6

u7



















 0

 

 
 Note that the coordinate vector for the spring mass system has changed from [u3 

u5]
T to [u5 u6]

T. 
 
 As in (8.26), the equations may be written in the form 
 



  

Al4

6720EI

312 0 54 6.5 0

0 2 6.5 .75 0

54 6.5 156 11 0

6.5 .75 11 1 0

0 0 0 0 2



















Ý Ý u 3
lÝ Ý u 4
Ý Ý u 5
lÝ Ý u 6
Ý Ý u 7




















8EI

l3

24 0 12 3 0

0 2 3
1

2
0

12 3 12
1

8
3 

1

8

3
1

2
3 1 0

0 0  1
8

0
1
8























u3

lu4

u5

lu6

u7



















 0

 

 
 The eigenvalue/eigenvector problem is then 
 

  

(A  I)v  0

where

A  M 1K
Al4

6720EI
,   Al4

6720EI
2

A 

.2878 .0640 .2907 .0868 .0004

3.6700 2.1247 5.9000 1.5919 .0062

.9274 .2094 1.0368 .3516 .0041

17.8241 4.8163 20.7187 6.6253 .0519

0 0 .0625 0 .0625



















1  .0427, 2  .2455, 3  .2772,  4  .9173,  5  2.6614

1 
3.50

l2
EI

A
,  2 

20.12

l2
EI

A
, 3 

22.73

l2
EI

A

 

 
 The one element (3 DOF) model predicted the first 2 natural frequencies well.  

The prediction of the third natural frequency was extremely poor using only one 
element. 



8.28 Calculate the natural frequencies of a clamped-clamped beam for the physical 
parameters l = 1m, E = 21011 N/m2,  = 7800 kg/m3, I = 10-6 m4, and A = 10-2 
m2, using the beam theory of Chapter 6 and a four-element finite element model 
of the beam. 

 
Solution: 

 
 Using VTB8_1 
 

  

M 

14.49 0 2.5071 .151 0 0

0 .0232 .0151 .0087 0 0

2.507 .151 14.49 0 2.507 .151

.151 .0087 0 .0232 .151 .0087

0 0 2.5071 .151 14.49 0

0 0 .151 .0087 0 .0232





















and

K  1105

3072 0 1536 192 0 0

0 64 192 16 0 0

1536 192 3072 0 1536 192

192 16 0 64 192 16

0 0 1536 192 3072 0

0 0 192 16 0 64





















 

 
 Remember to zero the x translations since we are not interested in the extensional 

deformations.  The natural frequencies are then found to be 
 
 1= 1134 rad/s, 2 = 3152 rad/s, 3 = 6253 rad/s, 4 = 11830 rad/s, 5 = 19565 

rad/s, 6 = 31524 rad/s 
 
 From distributed theory 
 
 1= 1132.9 rad/s, 2 = 3122.9 rad/s, 3 = 6122.2 rad/s, 4 = 10120 rad/s, 5 = 

15118 rad/s, 6 = 21115 rad/s 
 



8.29 Repeat Problem 8.28 with two elements and compare the frequencies with the 
four-element model.  Calculate the frequencies of a clamped-clamped beam using 
one element.  Any comment? 

 
Solution: 

 
 Since only two of the six degrees of freedom are free, the mass and stiffness 

matrices are simply 
 

 

M 
2A

l

2
420

156 0

0 4
l

2





2










and

K  2EI

l

2






3

12 0

0 4
l

2





2










 

 
 where l = 1 m.  The natural frequencies are then 
 

 

1 

192EI

l3

156Al

420

 22.736
1

l2
EI

A
1151 rad/s

2 

16EI
l3

Al

420

 81.96
1

l2

EI

A
 4151 rad/s

 

 
 If you are only interested in the first natural frequency, a two degree of freedom 

model is adequate.  However, the six degree of freedom model is much more 
accurate and can better predict the second mode.  (In general, a finite element 
model must have twice as many degrees of freedom as the number of modes you 
want to predict). 



8.30 Estimate the first natural frequency of a clamped-simply supported beam.  Use a 
single finite element. 

 
Solution: Since we are using only one element, we need only take the finite 
element matrix for a single element and strike out the rows and columns 
corresponding to the fixed degrees of freedom to get the global matrices.  This 
yields 

M 
4l3A

420
,   K 

4l2EI

l3  

 
 Since there is only a single degree of freedom 
 

  


n


K

M
 420

1

l2

EI

A
 20.49

1

l2

EI

A
  rad/s  

 
 Distributed theory yields 

n 15.42
1

l2
EI

A
 

 One degree of freedom is not enough to predict the first natural frequency. 
 
 
 
 
8.31 Consider the stepped beam of Figure P8.31 clamped at each end.  Both pieces are 

made of aluminum.  Use two elements, one for each step, and calculate the natural 
frequencies. 

 
Solution: Only a single degree of freedom is free.  The mass and stiffness 
matrices are therefore scalars. 

 

K 
E1A1

l1


E2A2

l2
 809375000 N/m

M 
1

3

1A1

l1

2 A2

l2




 


 10.41 kg

  K
M

 8819.2 rad/s

 



8.32 Use a two-element model of nonuniform length to estimate the first few natural 
frequencies of a clamped-clamped beam.  Use the spacing indicated in Figure 
P8.32.  Compare the result to the actual frequencies and to those of Problem 8.28 
and 8.29. 

 
 
Solution: Since it has been shown in example 8.3.3 that the variable l can be 
factored outside of the mass and stiffness matrices, we can substitute the 
percentage of total length of each element into the mass and stiffness matrices and 
get the correct natural frequencies. 

 

 

M  A(.25l)
420

156 22  .25

22  .25 4  .252





 A(.75l)

420

156 22  .75

22  .75 4  .752






      Al
420

156 11

11 1.75






Similarly,

K  EI

(.25l)3

12 6 .25

6  .25 4 .252





 EI

(.75l)3

12 6  .75

6  .75 4  .752






     
EI

l3

796.4 85.3

85.3 21.33






  eig ˜ M 1 ˜ K  1
l2

EI
A

 

 where ˜ M  and ˜ K  represent the mass and stiffness matrices with the variables E, I, 
l,  and A factored out. 

1  25.31
1

l2
EI

A
,  2  132.6

1

l2
EI

A
 

 
 This is not nearly as good as the two element model where 1 was found to be 
 

1  22.74
1

l2
EI

A
 

 
 as opposed to the “actual” (from distributed parameter theory) value of 
 

1  22.37
1

l2
EI

A
 



8.33 Calculate the first natural frequency of a clamped-pinned beam using first one, 
then two elements. 

 
Solution: 

 
  From problem 8.30, using one element yields 
 

 1  20.49
1

l2
EI

A
 

 
 Using the vibration toolbox and the method described in 8.3.3 (also in the 

README.8 file) the two element model yields 
 

 

1  15.56
1
l2

EI
A

2  58.41
1

l2
EI

A

3  155.6
1

l2

EI

A

 

 
 
 



Problems and Solutions Section 8.4 (8.34 through 8.43) 
 
8.34 Refer to the tapered bar of Figure P8.13.  Calculate a lumped-mass matrix for this 

system and compare it to the solution of Problem 8.13.  Since the beam is tapered, 
be careful how you divide up the mass. 

 
Solution: The lumped mass at node 2 should be the total mass between x = .25 
and x = .75. Therefore 

 

 
M2  2700


4.25

.75

 h1
2 

h2  h1

l






2

x2  2h1
h2  h1

l




x







dx

     26.5

 

 likewise for node 3 

 
M3  2700


4.75

1

 h1
2 

h2  h1

l






2

x2  2h1
h2  h1

l




x







dx

     7.289

 

 The mass matrix is then 
 

M 
26.5 0

0 7.289






 

 and the natural frequencies are 
 
 1 = 6670 rad/s and 2 = 13106 rad/s. 
 
 For the distributed mass system 
 

1 = 7414 rad/s and 2 = 20368 rad/s. 
 
 The first natural frequency found by the distributed mass model is slightly better 

than the lumped mass model when compared to the three element distributed mass 
model derived in problem 13. 

 
8.35 Calculate and compare the natural frequencies obtained for a tapered bar by using 

first, the consistent-mass matrix (Problem 8.12), and second, the lumped-mass 
matrix (Problem 8.34). 

 
Solution: 

 
 See solution for Problem 8.34. 



8.36 Consider again the machine punch of Problem 8.16 and Figure P8.15.  Calculate 
the natural frequencies of this system using a lumped-mass matrix and compare 
the results to those obtained with the consistent-mass matrix. 

 
Solution: 

 
 The lumped mass matrix is 
 

 

M 

1A1l1
2


2A2l2

2
0

0
2A2l2

2















     rl
A1  A2 0

0 A2







    
.078 0

0 .039






 

 
 The natural frequencies are 
 
 1 = 38756 rad/s and 2 = 93565 rad/s. 
 
 The results for the consistent mass matrix were 
 
 1 = 40798.6 rad/s and 2 = 142525 rad/s. 
 
 The first natural frequency is within 5% for both predictions.  For this case, the 

inconsistent mass matrix is adequate for the 1st mode. 
 



8.37 Consider again the bridge support of Figure P8.17 discussed in connection with 
Problem 8.17.  Develop a four-element finite element model of this structure 
using a lumped-mass approximation and calculate the natural frequencies.  Use 
constant area elements. 

 
Solution: 

 
 We will use elements which each have constant cross section by finding the 

average area for each element.  Elements are numbered from one to four from 
bottom to top. 

 

 

A1 
1

.25l
A(x)dx

0

.25l

  A0

.25l
le


x

l










0

.25l

     4A0 e.25 1  .8848A0

likewise

A2  .6891A0 ,  A3  .5367A0 ,  A4  .4179A0

 

 
 Assembling the stiffness matrix yields 
 

 K 
EA0

.25l

1.5739 .6891 0 0

.6891 1.2258 .5367 0

0 .5367 .9546 .4179

0 0 .4179 .4179

















 

 
 To find the mass matrix, we will assume again that the elements have constant 

cross section.  This yields 
 

 M 
A0 l

8

1.5739 0 0 0

0 1.2258 0 0

0 0 .9546 0

0 0 0 .4179

















 

 
 The natural frequencies are then 
 

 1  1.86
1

l

E


,  2  4.50

1

l

E


,  3  6.62

1

l

E


,  4  7.78

1

l

E


,  



8.38 Consider the torsional vibration problem illustrated in Figure P8.20 and discussed 
in Problem 8.20.  Calculate a lumped-mass matrix for the single element. 

 
Solution: 

 
 The total mass moment of inertia would be divided between the two degrees of 

freedom. 
 
 Therefore 
 

 M 
1

2

Ip 0

0 Ip







 

 
 
8.39 Estimate the first three natural frequencies of a clamped-free bar of length l in 

torsional vibration by using a lumped-mass model and four elements. 
 

Solution: 
 
 The stiffness matrix is 
 

 K 
4G

l

2 1 0 0

1 2 2 0

0 2 2 1

0 0 1 1

















 

 
 The mass matrix is 
 

 M 
Jl

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
1

2

















 

 
The natural frequencies are then 

 

 1  1.56
1

l

G
J

, 2  4.445
1

l

G
J

, 3  6.65
1

l

G
J

, 4  7.8463
1

l

G
J

 

 
 From table 6.3, it can be seen that the first two natural frequencies predicted by 

the finite element model are good approximations. 



8.40 Calculate the natural frequencies of a pinned-pinned beam of length l using one 
element and the consistent-mass matrix of equation (8.73). 

 
Solution: 

 
 The mass matrix is 
 

 M 
Al3

48

1 0

0 1






 

 
 and the stiffness matrix is 
 

 K 
EI

l

4 2

2 4






 

 
 Finding the natural frequencies gives 
 

 1  9.798
1

l2
EI

A
,  2  16.971

1

l2
EI

A
 

 
 The first natural frequency from distributed theory is 
 

 n  9.869
1

l 2
EI

A
 

 
 
8.41 Calculate the natural frequencies of a pinned-pinned beam of length l using one 

element and the lumped-mass matrix of equation (8.73).  Compare your results to 
those obtained with at consistent-mass matrix of Problem 8.40. 

 
Solution: 

 
 The consistent mass matrix is 
 

 

M 
Al3

420

4 3

3 4







which gives

1  10.96
1

l2
EI

A
,  2  50.20

1

l2
EI

A

 

 
 which is worse than the inconsistent mass matrix results.  (See solution 8.40) 
 
 



8.42 Calculate a three-element finite element model of a cantilevered beam (see 
Problem 8.25) using a lumped mass that includes rotational inertia.  Also calculate 
the system’s natural frequencies and compare them with those obtained with a 
consistent-mass matrix of Problem 8.25 and with the values obtained by the 
methods of Chapter 6. 

 
Solution: 

 

 The mass matrix is M  Al diag 1,
1

24
,1,

1

24
,
1

2
,

1

48




 using the [u1 lu2] convention 

for the displacement vector. 
 
 The natural frequencies are then 
 

 
 i  ai

1

l2

EI

A

ai  .368, 2.00,  4.98,  10.7,  14.5,  17.1

 

 
 This is not as good as the consistent mass matrix results.  From distributed 

parameter theory a1 = .3911. 
 
 
 
8.43 Repeat Problem 8.42 using a lumped-mass matrix that neglects the rotational 

degree of freedom.  Discuss any problems you encounter when trying to solve the 
related eigenvalue problem. 

 
Solution: 

 

 M  Al diag 1,0,1,0,
1

2
,0





 

 
The singularity of the mass matrix does not allow a solution to be found. 

 



Problems and Solutions Section 8.5 (8.44 through 8.49) 
 
8.44 Derive a consistent-mass matrix for the system of Figure 8.9.  Compare the 

natural frequencies of this system with those calculated with the lumped-mass 
matrix computed in Section 8.5. 

 
Solution: Using the vibration toolbox 

M  Al
.6857 0

0 .7238






 

The natural frequencies are then 

1  .8311
1

l

E


 and 1 1.479

1

l

E


 

 These are higher than those predicted with the inconsistent mass matrix 
 
8.45 Consider the two beam system of Figure P8.45.  Use VTB8_1 to create a two-

element, rod/beam element model and compute the first three natural frequencies.  
Use A = 0.0004 m2, I = 1.33 10-8 m4, and the properties of aluminum.  Assume 
that nodes 1 and 3 are clamped. 

 
Solution: 

 %scipt file for problem 8.45 
 node=[0 0;1 .5;2 1;1  1.5;0 2]; 
 ncon=[1 2 69e10 .004 1.33e-8 0 2700; 
   2 3 69e10 .004 1.33e-8 0 2700; 
   3 4 69e10 .004 1.33e-8 0 2700; 
   4 5 69e10 .004 1.33e-8 0 2700]; 
 zero=[1 1; 
   1 2; 
   1 3; 
    5 1; 
   5 2; 
   5 3]; 
 conm=[]; 
 force=[]; 
 save VTB8_45.con 
 
 Running this yields that the first three natural frequencies are given as 377.5, 

8763.7 and 10951.2 rad/s. 



8.46 Follow the procedure of Problem 8.45 using two elements for each beam.  
Compare the natural frequencies and mode shapes of the four element model 
produced here to those of the two-element model of Problem 8.45.  State which 
model is better and why. 

 
Solution: Use the script file from 8.45 ending in VTB8_46.con 

 The first five natural frequencies are 286.8, 419.1, 1074.5, 1510.8, and 2838.9 
rad/s.  The result from the four element model is probably better because the 
additional elements allow the first few modes to be found in more detail.  Notice 
the difference in the result for the first mode.  The first mode is primarily a 
rotation of the joint between the two beams.  The two element model shows this 
to be the only significant motion (load the .out data file to observe the mode shape 
vector).  The four element model shows that the middle of each beam displaces 
and rotates as well.  

 
 The eight element model predicts the first five natural frequencies to be 284.3, 

413.0 ,925.6, 1147.3, and 1959.7 rad/s, the first four of which agree well with the 
four element model results. 

 
8.47 Determine a finite element model of the three-bar truss of Figure P8.47 using a 

lumped-mass matrix. 

 
Solution: 

 
 Using VTB8_1 
 

 K 
EA

l

1.89 .48

.48 .36






 

 
 The inconsistent mass matrix is 
 

 M  Al
.9 0

0 .9






 



8.48 Determine a finite element model for the three-bar truss of Figure P8.47 using a 
consistent-mass matrix. 

 
Solution: 

 
 Using VTB8_1 the consistent mass matrix is  
 

 M  Al
.6137 .0183

.0183 .6549






 

 
 However, this mass matrix is created using beam/rod elements.  Using simple rod 

elements gives a consistent mass matrix 
 

 M  Al
.48 .16

.16 .12






 

 
 
 
8.49 Compare the frequencies obtained for the system of Problem 8.48 with those of 

Figure P8.47. 
 

Solution: 
 
 The natural frequencies using the consistent mass matrix are 
 
 1 = 1.7321    2 = 2.1651 
 
 The natural frequencies using the inconsistent mass matrix are 
 
 1 =.4966    2 = 1.5012 
 
 These results are terribly inconclusive, but since we have seen in previous 

examples that the consistent mass matrix generally yields the better results, one 
would expect the same to be true in this case. 

 



Problems and Solutions Section 8.6 (8.50 through 8.54) 
 
8.50 Consider the machine punch of Figure P8.15.  Recalculate the fundamental 

natural frequency by reducing the model obtained in Problem 8.16 to a single 
degree of freedom using Guyan reduction. 

 
Solution: 

 
 From the results of 8.16 
 

 

K 
4 2

2 2





 108,   M 

.052 .013

.013 .026






From (8.104)

QT MQ  .052  .013 .013 .026  .104

From (8.105)

QT KQ  (4  2) 108  2 108

  2 108

.104
 43852.9 rad/s

 

 
 which is a poor prediction of the first natural frequency.  If we reorder K and M 

(reducing to coordinate 2) we get  
 

 

QT MQ  .026  .013 .013  .052

QT KQ  (2 1) 10 8  1 108

  43852.9 rad/s

 

 
 which is the same result as reducing to coordinate 1. 



8.51 Compute a reduced-order model of the three-element model of a cantilevered bar 
given in Example 8.3.2 by eliminating u2 and u3 using Guyan reduction.  Compare 
the frequencies of each model to those of the distributed model given in Window 
8.1. 

 
Solution: 

 

 

M  Al
18

4 1 0

1 4 1

0 1 2















K 
3EI

l

2 1 0

1 2 1

0 1 1















 

 
 Let ˜ M  and ˜ K  be the matrices with the coefficients factored out. 
 

 

˜ M 11  4,  ˜ M 21 
1

0




 ˜ M 12

T ,  M22 
4 1

1 2






˜ K 11  2,  ˜ K 21 
1

0





 ˜ K 11

T ,  K22 
2 1

1 1






 

 
 Using equations (8.104) and (8.105) 
 

 

˜ M r  QT MQ  14

˜ K r  QT KQ  1

and

n 

3EA
l

14Al

18

1.964
1

l

E



 

 
 as compared to the distributed model value of 
 

 1  1.57
1

l

E


 

 



8.52 Consider the system defined by the matrices 

   M 

2 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0

















        K 

20 1 0 0

1 20 3 0

0 3 20 17

0 0 17 17

















 

 
Use mass condensation to reduce this to a two-degree-of-freedom system with a 
nonsingular mass matrix. 

 
Solution: 

 
 Following the same procedure as example 8.6.1 
 

 Mr 
2 0

0 2





 and Kr 

19.95 .15

.15 36.55






 

 
 
8.53 Recall the punch press problem modeled in Figure 4.28 and treated in Example 

4.8.3.  The mass and stiffness matrices are given by 

M 
0.4 103 0 0

0 2.0 103 0

0 0 8.010 3














   K 

30 104 3010 4 0

30 104 3810 4 8104

0 8 104 88 104















 

Recalling that the only external force acting on the machine is at the x1(t) 
coordinate, reduce this to a single-degree-of-freedom system using Guyan 
reduction to remove x2 and x3.  Compare this single frequency with those of 
Example 4.8.3. 

 
Solution: 

 
 Following the same procedure as example 8.6.1 
 
 Mr  1.7385 103 , Kr  5.8537 104  and the natural frequency is 
 

 n 
Kr

Mr

 5.803rad/s 

 
 Example 4.8.3 gave the first natural frequency as1 = 5.387 rad/s which is within 

10% of the Guyan reduced prediction. 
 
 
 
 
 



8.54. Consider the beam example given in Example 7.6.2.  Using the values given there 
(An aluminum beam: 0.5128 m x 25.5 mm x 3.2 mm, E = 6.9×1010 N/m2 ,  = 
2715 kg/m3, A = 8.16 m2 and I = 6.96×10-11 m4), compute the first 4 natural 
frequencies as accurately as possible and compare them to both the analytical 
values and the measured values. 
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