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INTRODUCTION AND
BASIC CONCEPTS

n this introductory chapter, we present the basic concepts commonly

used in the analysis of fluid flow. We start this chapter with a discussion

of the phases of matter and the numerous ways of classification of fluid
flow, such as viscous versus inviscid regions of flow, internal versus external
flow, compressible versus incompressible flow, laminar versus turbulent
flow, natural versus forced flow, and steady versus unsteady flow. We also
discuss the no-slip condition at solid—fluid interfaces and present a brief his-
tory of the development of fluid mechanics.

After presenting the concepts of system and control volume, we review
the unit systems that will be used. We then discuss how mathematical mod-
els for engineering problems are prepared and how to interpret the results
obtained from the analysis of such models. This is followed by a presenta-
tion of an intuitive systematic problem-solving technique that can be used as
a model in solving engineering problems. Finally, we discuss accuracy, pre-
cision, and significant digits in engineering measurements and calculations.
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CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

Understand the basic concepts
of fluid mechanics and recognize
the various types of fluid flow
problems encountered in
practice

Model engineering problems and
solve them in a systematic
manner

Have a working knowledge of
accuracy, precision, and
significant digits, and recognize
the importance of dimensional
homogeneity in engineering

calculations
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FLUID MECHANICS

FIGURE 1-1

Fluid mechanics deals with liquids and
gases in motion or at rest.

© Vol. 16/Photo Disc.

Contact area, Shear stress
A T=F/A Force, F
@ —_—
Deformed
rubber

Shear
strain,

FIGURE 1-2

Deformation of a rubber eraser placed
between two parallel plates under the
influence of a shear force.

1-1 = INTRODUCTION

Mechanics is the oldest physical science that deals with both stationary and
moving bodies under the influence of forces. The branch of mechanics that
deals with bodies at rest is called statics, while the branch that deals with
bodies in motion is called dynamics. The subcategory fluid mechanics is
defined as the science that deals with the behavior of fluids at rest (fluid sta-
tics) or in motion (fluid dynamics), and the interaction of fluids with solids
or other fluids at the boundaries. Fluid mechanics is also referred to as fluid
dynamics by considering fluids at rest as a special case of motion with zero
velocity (Fig. 1-1).

Fluid mechanics itself is also divided into several categories. The study of
the motion of fluids that are practically incompressible (such as liquids,
especially water, and gases at low speeds) is usually referred to as hydrody-
namics. A subcategory of hydrodynamics is hydraulics, which deals with lig-
uid flows in pipes and open channels. Gas dynamics deals with the flow of
fluids that undergo significant density changes, such as the flow of gases
through nozzles at high speeds. The category aerodynamics deals with the
flow of gases (especially air) over bodies such as aircraft, rockets, and automo-
biles at high or low speeds. Some other specialized categories such as meteo-
rology, oceanography, and hydrology deal with naturally occurring flows.

What Is a Fluid?

You will recall from physics that a substance exists in three primary phases:
solid, liquid, and gas. (At very high temperatures, it also exists as plasma.)
A substance in the liquid or gas phase is referred to as a fluid. Distinction
between a solid and a fluid is made on the basis of the substance’s ability to
resist an applied shear (or tangential) stress that tends to change its shape. A
solid can resist an applied shear stress by deforming, whereas a fluid
deforms continuously under the influence of shear stress, no matter how
small. In solids stress is proportional to strain, but in fluids stress is propor-
tional to strain rate. When a constant shear force is applied, a solid eventu-
ally stops deforming, at some fixed strain angle, whereas a fluid never stops
deforming and approaches a certain rate of strain.

Consider a rectangular rubber block tightly placed between two plates. As
the upper plate is pulled with a force F while the lower plate is held fixed,
the rubber block deforms, as shown in Fig. 1-2. The angle of deformation «
(called the shear strain or angular displacement) increases in proportion to
the applied force F. Assuming there is no slip between the rubber and the
plates, the upper surface of the rubber is displaced by an amount equal to
the displacement of the upper plate while the lower surface remains station-
ary. In equilibrium, the net force acting on the plate in the horizontal direc-
tion must be zero, and thus a force equal and opposite to F' must be acting
on the plate. This opposing force that develops at the plate—rubber interface
due to friction is expressed as F' = TA, where 7 is the shear stress and A is
the contact area between the upper plate and the rubber. When the force is
removed, the rubber returns to its original position. This phenomenon would
also be observed with other solids such as a steel block provided that the
applied force does not exceed the elastic range. If this experiment were
repeated with a fluid (with two large parallel plates placed in a large body
of water, for example), the fluid layer in contact with the upper plate would
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move with the plate continuously at the velocity of the plate no matter how
small the force F is. The fluid velocity decreases with depth because of fric-
tion between fluid layers, reaching zero at the lower plate.

You will recall from statics that stress is defined as force per unit area
and is determined by dividing the force by the area upon which it acts. The
normal component of the force acting on a surface per unit area is called the
normal stress, and the tangential component of a force acting on a surface
per unit area is called shear stress (Fig. 1-3). In a fluid at rest, the normal
stress is called pressure. The supporting walls of a fluid eliminate shear
stress, and thus a fluid at rest is at a state of zero shear stress. When the
walls are removed or a liquid container is tilted, a shear develops and the
liquid splashes or moves to attain a horizontal free surface.

In a liquid, chunks of molecules can move relative to each other, but the
volume remains relatively constant because of the strong cohesive forces
between the molecules. As a result, a liquid takes the shape of the container
it is in, and it forms a free surface in a larger container in a gravitational
field. A gas, on the other hand, expands until it encounters the walls of the
container and fills the entire available space. This is because the gas mole-
cules are widely spaced, and the cohesive forces between them are very
small. Unlike liquids, gases cannot form a free surface (Fig. 1-4).

Although solids and fluids are easily distinguished in most cases, this dis-
tinction is not so clear in some borderline cases. For example, asphalt appears
and behaves as a solid since it resists shear stress for short periods of time.
But it deforms slowly and behaves like a fluid when these forces are exerted
for extended periods of time. Some plastics, lead, and slurry mixtures exhibit
similar behavior. Such borderline cases are beyond the scope of this text. The
fluids we will deal with in this text will be clearly recognizable as fluids.

Intermolecular bonds are strongest in solids and weakest in gases. One
reason is that molecules in solids are closely packed together, whereas in
gases they are separated by relatively large distances (Fig. 1-5).

The molecules in a solid are arranged in a pattern that is repeated through-
out. Because of the small distances between molecules in a solid, the attrac-
tive forces of molecules on each other are large and keep the molecules at
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Normal
to surface

Force acting

Tangent
to surface

Normal stress: o = ——
dA

t

Shear stress: T = A
FIGURE 1-3
The normal stress and shear stress at
the surface of a fluid element. For
fluids at rest, the shear stress is zero
and pressure is the only normal stress.

Free surface

Liquid

FIGURE 14

Unlike a liquid, a gas does not form a
free surface, and it expands to fill the
entire available space.

(a)

FIGURE 1-5

The arrangement of atoms in different phases: (a) molecules are at relatively fixed positions
in a solid, (b) groups of molecules move about each other in the liquid phase, and
(¢) molecules move about at random in the gas phase.
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e

Pressure

FIGURE 1-6

On a microscopic scale, pressure is
determined by the interaction of
individual gas molecules. However,
we can measure the pressure on a
macroscopic scale with a pressure

gage.

fixed positions. The molecular spacing in the liquid phase is not much differ-
ent from that of the solid phase, except the molecules are no longer at fixed
positions relative to each other and they can rotate and translate freely. In a
liquid, the intermolecular forces are weaker relative to solids, but still strong
compared with gases. The distances between molecules generally increase
slightly as a solid turns liquid, with water being a notable exception.

In the gas phase, the molecules are far apart from each other, and a mole-
cular order is nonexistent. Gas molecules move about at random, continu-
ally colliding with each other and the walls of the container in which they
are contained. Particularly at low densities, the intermolecular forces are
very small, and collisions are the only mode of interaction between the mol-
ecules. Molecules in the gas phase are at a considerably higher energy level
than they are in the liquid or solid phase. Therefore, the gas must release a
large amount of its energy before it can condense or freeze.

Gas and vapor are often used as synonymous words. The vapor phase of a
substance is customarily called a gas when it is above the critical tempera-
ture. Vapor usually implies a gas that is not far from a state of condensation.

Any practical fluid system consists of a large number of molecules, and
the properties of the system naturally depend on the behavior of these mole-
cules. For example, the pressure of a gas in a container is the result of
momentum transfer between the molecules and the walls of the container.
However, one does not need to know the behavior of the gas molecules to
determine the pressure in the container. It would be sufficient to attach a
pressure gage to the container (Fig. 1-6). This macroscopic or classical
approach does not require a knowledge of the behavior of individual mole-
cules and provides a direct and easy way to the solution of engineering
problems. The more elaborate microscopic or statistical approach, based on
the average behavior of large groups of individual molecules, is rather
involved and is used in this text only in the supporting role.

Application Areas of Fluid Mechanics

Fluid mechanics is widely used both in everyday activities and in the design
of modern engineering systems from vacuum cleaners to supersonic aircraft.
Therefore, it is important to develop a good understanding of the basic prin-
ciples of fluid mechanics.

To begin with, fluid mechanics plays a vital role in the human body. The
heart is constantly pumping blood to all parts of the human body through
the arteries and veins, and the lungs are the sites of airflow in alternating
directions. Needless to say, all artificial hearts, breathing machines, and
dialysis systems are designed using fluid dynamics.

An ordinary house is, in some respects, an exhibition hall filled with appli-
cations of fluid mechanics. The piping systems for cold water, natural gas,
and sewage for an individual house and the entire city are designed primarily
on the basis of fluid mechanics. The same is also true for the piping and duct-
ing network of heating and air-conditioning systems. A refrigerator involves
tubes through which the refrigerant flows, a compressor that pressurizes the
refrigerant, and two heat exchangers where the refrigerant absorbs and rejects
heat. Fluid mechanics plays a major role in the design of all these compo-
nents. Even the operation of ordinary faucets is based on fluid mechanics.

We can also see numerous applications of fluid mechanics in an automo-
bile. All components associated with the transportation of the fuel from the

V\/WW.EHQ[HOOH% %BOOKS Pdf.com



cen72367_ch0l.gxd 10/29/04 2:31 PM Page 5 - e
Primted from PDF by LPS

5
CHAPTER 1

fuel tank to the cylinders—the fuel line, fuel pump, fuel injectors, or carbu-
retors—as well as the mixing of the fuel and the air in the cylinders and the
purging of combustion gases in exhaust pipes are analyzed using fluid
mechanics. Fluid mechanics is also used in the design of the heating and
air-conditioning system, the hydraulic brakes, the power steering, automatic
transmission, and lubrication systems, the cooling system of the engine
block including the radiator and the water pump, and even the tires. The
sleek streamlined shape of recent model cars is the result of efforts to mini-
mize drag by using extensive analysis of flow over surfaces.

On a broader scale, fluid mechanics plays a major part in the design and
analysis of aircraft, boats, submarines, rockets, jet engines, wind turbines,
biomedical devices, the cooling of electronic components, and the trans-
portation of water, crude oil, and natural gas. It is also considered in the
design of buildings, bridges, and even billboards to make sure that the struc-
tures can withstand wind loading. Numerous natural phenomena such as the
rain cycle, weather patterns, the rise of ground water to the top of trees,
winds, ocean waves, and currents in large water bodies are also governed by
the principles of fluid mechanics (Fig. 1-7).

Natural flows and weather Boats Aircraft and spacecraft
© Vol. 16/Photo Disc. © Vol. 5/Photo Disc. © Vol. 1/Photo Disc.

Power plants Human body Cars
© Vol. 57/Photo Disc. © Vol. 110/Photo Disc. Photo by John M. Cimbala.

Wind turbines Piping and plumbing systems Industrial applications
© Vol. 17/Photo Disc. Photo by John M. Cimbala. Courtesy UMDE Engineering, Contracting,
and Trading. Used by permission.

FIGURE 1-7
Some application areas of fluid mechanics.
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FIGURE 1-8

The development of a velocity profile
due to the no-slip condition as a fluid
flows over a blunt nose.

“Hunter Rouse: Laminar and Turbulent Flow Film.”
Copyright IIHR-Hydroscience & Engineering,
The University of lowa. Used by permission.

- Relative
Uniform velocities
approach of fluid layers
velocity, V
_—
— Zero
—_— velocity
—_— E—— at the
— surface
Plate
FIGURE 1-9

A fluid flowing over a stationary
surface comes to a complete stop at
the surface because of the no-slip
condition.

1-2 = THE NO-SLIP CONDITION

Fluid flow is often confined by solid surfaces, and it is important to under-
stand how the presence of solid surfaces affects fluid flow. We know that
water in a river cannot flow through large rocks, and goes around them.
That is, the water velocity normal to the rock surface must be zero, and
water approaching the surface normally comes to a complete stop at the sur-
face. What is not so obvious is that water approaching the rock at any angle
also comes to a complete stop at the rock surface, and thus the tangential
velocity of water at the surface is also zero.

Consider the flow of a fluid in a stationary pipe or over a solid surface
that is nonporous (i.e., impermeable to the fluid). All experimental observa-
tions indicate that a fluid in motion comes to a complete stop at the surface
and assumes a zero velocity relative to the surface. That is, a fluid in direct
contact with a solid “sticks” to the surface due to viscous effects, and there
is no slip. This is known as the no-slip condition.

The photo in Fig. 1-8 obtained from a video clip clearly shows the evolu-
tion of a velocity gradient as a result of the fluid sticking to the surface of a
blunt nose. The layer that sticks to the surface slows the adjacent fluid layer
because of viscous forces between the fluid layers, which slows the next
layer, and so on. Therefore, the no-slip condition is responsible for the
development of the velocity profile. The flow region adjacent to the wall in
which the viscous effects (and thus the velocity gradients) are significant is
called the boundary layer. The fluid property responsible for the no-slip
condition and the development of the boundary layer is viscosity and is dis-
cussed in Chap. 2.

A fluid layer adjacent to a moving surface has the same velocity as the
surface. A consequence of the no-slip condition is that all velocity profiles
must have zero values with respect to the surface at the points of contact
between a fluid and a solid surface (Fig. 1-9). Another consequence of the
no-slip condition is the surface drag, which is the force a fluid exerts on a
surface in the flow direction.

When a fluid is forced to flow over a curved surface, such as the back
side of a cylinder at sufficiently high velocity, the boundary layer can no
longer remain attached to the surface, and at some point it separates from
the surface—a process called flow separation (Fig. 1-10). We emphasize
that the no-slip condition applies everywhere along the surface, even down-
stream of the separation point. Flow separation is discussed in greater detail
in Chap. 10.

Separation point

FIGURE 1-10
Flow separation during flow over a curved surface.

From G. M. Homsy et al, “Multi-Media Fluid Mechanics,” Cambridge Univ.
Press (2001). ISBN 0-521-78748-3. Reprinted by permission.
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A similar phenomenon occurs for temperature. When two bodies at differ-
ent temperatures are brought into contact, heat transfer occurs until both
bodies assume the same temperature at the points of contact. Therefore, a
fluid and a solid surface have the same temperature at the points of contact.
This is known as no-temperature-jump condition.

1-3 = A BRIEF HISTORY OF FLUID MECHANICS'

One of the first engineering problems humankind faced as cities were devel-
oped was the supply of water for domestic use and irrigation of crops. Our
urban lifestyles can be retained only with abundant water, and it is clear
from archeology that every successful civilization of prehistory invested in
the construction and maintenance of water systems. The Roman aqueducts,
some of which are still in use, are the best known examples. However, per-
haps the most impressive engineering from a technical viewpoint was done
at the Hellenistic city of Pergamon in present-day Turkey. There, from 283
to 133 Bc, they built a series of pressurized lead and clay pipelines (Fig.

1-11), up to 45 km long that operated at pressures exceeding 1.7 MPa (180 FIGURE 1-11
m of head). Unfortunately, the names of almost all these early builders are Segment of Pergamon pipeline.
lost to history. The earliest recognized contribution to fluid mechanics the- Each clay pipe section was
ory was made by the Greek mathematician Archimedes (285-212 BC). He 13 to 18 cm in diameter.
formulated and applied the buoyancy principle in history’s first nondestruc- Courtesy Gunther Garbrecht.

tive test to determine the gold content of the crown of King Hiero 1. The Used by permission.

Romans built great aqueducts and educated many conquered people on the
benefits of clean water, but overall had a poor understanding of fluids the-
ory. (Perhaps they shouldn’t have killed Archimedes when they sacked
Syracuse.)

During the Middle Ages the application of fluid machinery slowly but
steadily expanded. Elegant piston pumps were developed for dewatering
mines, and the watermill and windmill were perfected to grind grain, forge
metal, and for other tasks. For the first time in recorded human history sig-
nificant work was being done without the power of a muscle supplied by a
person or animal, and these inventions are generally credited with enabling
the later industrial revolution. Again the creators of most of the progress are
unknown, but the devices themselves were well documented by several
technical writers such as Georgius Agricola (Fig. 1-12).

The Renaissance brought continued development of fluid systems and
machines, but more importantly, the scientific method was perfected and
adopted throughout Europe. Simon Stevin (1548-1617), Galileo Galilei
(1564-1642), Edme Mariotte (1620-1684), and Evangelista Torricelli
(1608-1647) were among the first to apply the method to fluids as they
investigated hydrostatic pressure distributions and vacuums. That work was
integrated and refined by the brilliant mathematician, Blaise Pascal (1623—
1662). The Italian monk, Benedetto Castelli (1577-1644) was the first per-
son to publish a statement of the continuity principle for fluids. Besides for-
mulating his equations of motion for solids, Sir Isaac Newton (1643—1727)
applied his laws to fluids and explored fluid inertia and resistance, free jets,
and viscosity. That effort was built upon by the Swiss Daniel Bernoulli FIGURE 1-12

A mine hoist powered
by a reversible water wheel.
! This section is contributed by Professor Glenn Brown of Oklahoma State University. G. Agricola, De Re Metalica, Basel, 1556.
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(1700-1782) and his associate Leonard Euler (1707-1783). Together, their
work defined the energy and momentum equations. Bernoulli’s 1738 classic
treatise Hydrodynamica may be considered the first fluid mechanics text.
Finally, Jean d’Alembert (1717-1789) developed the idea of velocity and
acceleration components, a differential expression of continuity, and his
“paradox” of zero resistance to steady uniform motion.

The development of fluid mechanics theory up through the end of the
eighteenth century had little impact on engineering since fluid properties
and parameters were poorly quantified, and most theories were abstractions
that could not be quantified for design purposes. That was to change with
the development of the French school of engineering led by Riche de Prony
(1755-1839). Prony (still known for his brake to measure power) and his
associates in Paris at the Ecole Polytechnic and the Ecole Ponts et Chaussees
were the first to integrate calculus and scientific theory into the engineering
curriculum, which became the model for the rest of the world. (So now
you know whom to blame for your painful freshman year.) Antonie Chezy
(1718-1798), Louis Navier (1785-1836), Gaspard Coriolis (1792-1843),
Henry Darcy (1803-1858), and many other contributors to fluid engineering
and theory were students and/or instructors at the schools.

By the mid nineteenth century fundamental advances were coming on
several fronts. The physician Jean Poiseuille (1799-1869) had accurately
measured flow in capillary tubes for multiple fluids, while in Germany
Gotthilf Hagen (1797-1884) had differentiated between laminar and turbu-
lent flow in pipes. In England, Lord Osborn Reynolds (1842-1912) contin-
ued that work and developed the dimensionless number that bears his name.
Similarly, in parallel to the early work of Navier, George Stokes (1819-
1903) completed the general equations of fluid motion with friction that
take their names. William Froude (1810-1879) almost single-handedly
developed the procedures and proved the value of physical model testing.
American expertise had become equal to the Europeans as demonstrated by
James Francis’s (1815-1892) and Lester Pelton’s (1829-1908) pioneering
work in turbines and Clemens Herschel’s (1842—-1930) invention of the Ven-
turi meter.

The late nineteenth century was notable for the expansion of fluid theory
by Irish and English scientists and engineers, including in addition to
Reynolds and Stokes, William Thomson, Lord Kelvin (1824-1907), William
Strutt, Lord Rayleigh (1842-1919), and Sir Horace Lamb (1849-1934).
These individuals investigated a large number of problems including dimen-
sional analysis, irrotational flow, vortex motion, cavitation, and waves. In a
broader sense their work also explored the links between fluid mechanics,
thermodynamics, and heat transfer.

The dawn of the twentieth century brought two monumental develop-
ments. First in 1903, the self-taught Wright brothers (Wilbur, 1867-1912;
Orville, 1871-1948) through application of theory and determined experi-
mentation perfected the airplane. Their primitive invention was complete
and contained all the major aspects of modern craft (Fig. 1-13). The

FIGURE 1-13 Navier—Stokes equations were of little use up to this time because they were
The Wright brothers take too difficult to solve. In a pioneering paper in 1904, the German Ludwig
flight at Kitty Hawk. Prandtl (1875-1953) showed that fluid flows can be divided into a layer
National Air and Space Museum/ near the walls, the boundary layer, where the friction effects are significant
Smithsonian Institution. and an outer layer where such effects are negligible and the simplified Euler
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and Bernoulli equations are applicable. His students, Theodore von Kdrman
(1881-1963), Paul Blasius (1883-1970), Johann Nikuradse (1894-1979),
and others, built on that theory in both hydraulic and aerodynamic applica-
tions. (During World War II, both sides benefited from the theory as Prandtl
remained in Germany while his best student, the Hungarian born von Kér-
man, worked in America.)

The mid twentieth century could be considered a golden age of fluid
mechanics applications. Existing theories were adequate for the tasks at
hand, and fluid properties and parameters were well defined. These sup-
ported a huge expansion of the aeronautical, chemical, industrial, and water
resources sectors; each of which pushed fluid mechanics in new directions.
Fluid mechanics research and work in the late twentieth century were domi-
nated by the development of the digital computer in America. The ability to
solve large complex problems, such as global climate modeling or to opti-
mize the design of a turbine blade, has provided a benefit to our society that
the eighteenth-century developers of fluid mechanics could never have
imagined (Fig. 1-14). The principles presented in the following pages have
been applied to flows ranging from a moment at the microscopic scale to 50
years of simulation for an entire river basin. It is truly mind-boggling.

Where will fluid mechanics go in the twenty-first century? Frankly, even
a limited extrapolation beyond the present would be sheer folly. However, if
history tells us anything, it is that engineers will be applying what they
know to benefit society, researching what they don’t know, and having a
great time in the process.

1-4 - CLASSIFICATION OF FLUID FLOWS

Earlier we defined fluid mechanics as the science that deals with the behav-
ior of fluids at rest or in motion, and the interaction of fluids with solids or
other fluids at the boundaries. There is a wide variety of fluid flow problems
encountered in practice, and it is usually convenient to classify them on the
basis of some common characteristics to make it feasible to study them in
groups. There are many ways to classify fluid flow problems, and here we
present some general categories.

Viscous versus Inviscid Regions of Flow
When two fluid layers move relative to each other, a friction force develops
between them and the slower layer tries to slow down the faster layer. This
internal resistance to flow is quantified by the fluid property viscosity,
which is a measure of internal stickiness of the fluid. Viscosity is caused by
cohesive forces between the molecules in liquids and by molecular colli-
sions in gases. There is no fluid with zero viscosity, and thus all fluid flows
involve viscous effects to some degree. Flows in which the frictional effects
are significant are called viscous flows. However, in many flows of practical
interest, there are regions (typically regions not close to solid surfaces)
where viscous forces are negligibly small compared to inertial or pressure
forces. Neglecting the viscous terms in such inviscid flow regions greatly
simplifies the analysis without much loss in accuracy.

The development of viscous and inviscid regions of flow as a result of
inserting a flat plate parallel into a fluid stream of uniform velocity is
shown in Fig. 1-15. The fluid sticks to the plate on both sides because of

S
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FIGURE 1-14

The Oklahoma Wind Power Center
near Woodward consists of 68
turbines, 1.5 MW each.

Courtesy Steve Stadler, Oklahoma
Wind Power Initiative. Used by permission.

Inviscid flow
region

Viscous flow.

Tegion

region

FIGURE 1-15

The flow of an originally uniform
fluid stream over a flat plate, and
the regions of viscous flow (next to
the plate on both sides) and inviscid
flow (away from the plate).

Fundamentals of Boundary Layers,
National Committee from Fluid Mechanics Films,
© Education Development Center.
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the no-slip condition, and the thin boundary layer in which the viscous
effects are significant near the plate surface is the viscous flow region. The
region of flow on both sides away from the plate and unaffected by the
presence of the plate is the inviscid flow region.

Internal versus External Flow
A fluid flow is classified as being internal or external, depending on
whether the fluid is forced to flow in a confined channel or over a surface.
The flow of an unbounded fluid over a surface such as a plate, a wire, or a
pipe is external flow. The flow in a pipe or duct is internal flow if the fluid
is completely bounded by solid surfaces. Water flow in a pipe, for example,
is internal flow, and airflow over a ball or over an exposed pipe during a
windy day is external flow (Fig. 1-16). The flow of liquids in a duct is
called open-channel flow if the duct is only partially filled with the liquid
and there is a free surface. The flows of water in rivers and irrigation
ditches are examples of such flows.

Internal flows are dominated by the influence of viscosity throughout the
flow field. In external flows the viscous effects are limited to boundary lay-
ers near solid surfaces and to wake regions downstream of bodies.

FIGURE 1-16
External flow over a tennis ball, and
the turbulent wake region behind.

Courtesy NASA and Cislunar Aerospace, Inc.

Compressible versus Incompressible Flow

A flow is classified as being compressible or incompressible, depending on
the level of variation of density during flow. Incompressibility is an approx-
imation, and a flow is said to be incompressible if the density remains
nearly constant throughout. Therefore, the volume of every portion of fluid
remains unchanged over the course of its motion when the flow (or the
fluid) is incompressible.

The densities of liquids are essentially constant, and thus the flow of lig-
uids is typically incompressible. Therefore, liquids are usually referred to as
incompressible substances. A pressure of 210 atm, for example, causes the
density of liquid water at 1 atm to change by just 1 percent. Gases, on the
other hand, are highly compressible. A pressure change of just 0.01 atm, for
example, causes a change of 1 percent in the density of atmospheric air.

When analyzing rockets, spacecraft, and other systems that involve high-
speed gas flows, the flow speed is often expressed in terms of the dimen-
sionless Mach number defined as
VvV Speed of flow
Ma=—=—""—"—""—
¢ Speed of sound
where c is the speed of sound whose value is 346 m/s in air at room tem-
perature at sea level. A flow is called sonic when Ma = 1, subsonic when
Ma < 1, supersonic when Ma > 1, and hypersonic when Ma >> 1.

Liquid flows are incompressible to a high level of accuracy, but the level
of variation in density in gas flows and the consequent level of approxima-
tion made when modeling gas flows as incompressible depends on the
Mach number. Gas flows can often be approximated as incompressible if
the density changes are under about 5 percent, which is usually the case
when Ma < 0.3. Therefore, the compressibility effects of air can be
neglected at speeds under about 100 m/s. Note that the flow of a gas is not
necessarily a compressible flow.
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Small density changes of liquids corresponding to large pressure changes — [———

. ? N @ 9y - ———
can still have important consequences. The irritating “water hammer” in a =

water pipe, for example, is caused by the vibrations of the pipe generated by
the reflection of pressure waves following the sudden closing of the valves.

Laminar versus Turbulent Flow

Some flows are smooth and orderly while others are rather chaotic. The
highly ordered fluid motion characterized by smooth layers of fluid is called
laminar. The word laminar comes from the movement of adjacent fluid
particles together in “laminates.” The flow of high-viscosity fluids such as
oils at low velocities is typically laminar. The highly disordered fluid
motion that typically occurs at high velocities and is characterized by veloc-
ity fluctuations is called turbulent (Fig. 1-17). The flow of low-viscosity
fluids such as air at high velocities is typically turbulent. The flow regime
greatly influences the required power for pumping. A flow that alternates
between being laminar and turbulent is called transitional. The experiments
conducted by Osborn Reynolds in the 1880s resulted in the establishment of
the dimensionless Reynolds number, Re, as the key parameter for the
determination of the flow regime in pipes (Chap. 8).

Natural (or Unforced) versus Forced Flow

A fluid flow is said to be natural or forced, depending on how the fluid
motion is initiated. In forced flow, a fluid is forced to flow over a surface or
in a pipe by external means such as a pump or a fan. In natural flows, any
fluid motion is due to natural means such as the buoyancy effect, which
manifests itself as the rise of the warmer (and thus lighter) fluid and the fall
of cooler (and thus denser) fluid (Fig. 1-18). In solar hot-water systems, for
example, the thermosiphoning effect is commonly used to replace pumps by
placing the water tank sufficiently above the solar collectors.

Steady versus Unsteady Flow

The terms steady and uniform are used frequently in engineering, and thus it
is important to have a clear understanding of their meanings. The term
steady implies no change at a point with time. The opposite of steady is
unsteady. The term uniform implies no change with location over a speci-
fied region. These meanings are consistent with their everyday use (steady
girlfriend, uniform distribution, etc.).

The terms unsteady and transient are often used interchangeably, but
these terms are not synonyms. In fluid mechanics, unsteady is the most gen-
eral term that applies to any flow that is not steady, but transient is typi-
cally used for developing flows. When a rocket engine is fired up, for exam-
ple, there are transient effects (the pressure builds up inside the rocket
engine, the flow accelerates, etc.) until the engine settles down and operates
steadily. The term periodic refers to the kind of unsteady flow in which the
flow oscillates about a steady mean.

Many devices such as turbines, compressors, boilers, condensers, and heat
exchangers operate for long periods of time under the same conditions, and
they are classified as steady-flow devices. (Note that the flow field near the
rotating blades of a turbomachine is of course unsteady, but we consider the
overall flow field rather than the details at some localities when we classify

—_—

Laminar

Transitional

Turbulent

FIGURE 1-17

Laminar, transitional, and turbulent
flows.

Courtesy ONERA, photograph by Werlé.

FIGURE 1-18

In this schlieren image of a girl in a
swimming suit, the rise of lighter,
warmer air adjacent to her body
indicates that humans and warm-
blooded animals are surrounded by
thermal plumes of rising warm air.

G. S. Settles, Gas Dynamics Lab,
Penn State University. Used by permission.
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FIGURE 1-19

Oscillating wake of a blunt-based
airfoil at Mach number 0.6. Photo (a)
is an instantaneous image, while
photo (b) is a long-exposure
(time-averaged) image.

(a) Dyment, A., Flodrops, J. P. & Gryson, P. 1982
in Flow Visualization II, W. Merzkirch, ed.,

331-336. Washington: Hemisphere. Used by
permission of Arthur Dyment.

(b) Dyment, A. & Gryson, P. 1978 in Inst. Mec.
Fluides Lille, No. 78-5. Used by permission of
Arthur Dyment.

devices.) During steady flow, the fluid properties can change from point to
point within a device, but at any fixed point they remain constant. There-
fore, the volume, the mass, and the total energy content of a steady-flow
device or flow section remain constant in steady operation.

Steady-flow conditions can be closely approximated by devices that are
intended for continuous operation such as turbines, pumps, boilers, con-
densers, and heat exchangers of power plants or refrigeration systems. Some
cyclic devices, such as reciprocating engines or compressors, do not satisfy
the steady-flow conditions since the flow at the inlets and the exits is pulsat-
ing and not steady. However, the fluid properties vary with time in a peri-
odic manner, and the flow through these devices can still be analyzed as a
steady-flow process by using time-averaged values for the properties.

Some fascinating visualizations of fluid flow are provided in the book An
Album of Fluid Motion by Milton Van Dyke (1982). A nice illustration of an
unsteady-flow field is shown in Fig. 1-19, taken from Van Dyke’s book.
Figure 1-19q is an instantaneous snapshot from a high-speed motion pic-
ture; it reveals large, alternating, swirling, turbulent eddies that are shed into
the periodically oscillating wake from the blunt base of the object. The
eddies produce shock waves that move upstream alternately over the top and
bottom surfaces of the airfoil in an unsteady fashion. Figure 1-19b shows
the same flow field, but the film is exposed for a longer time so that the
image is time averaged over 12 cycles. The resulting time-averaged flow
field appears “steady” since the details of the unsteady oscillations have
been lost in the long exposure.

One of the most important jobs of an engineer is to determine whether it
is sufficient to study only the time-averaged “steady” flow features of a
problem, or whether a more detailed study of the unsteady features is
required. If the engineer were interested only in the overall properties of the
flow field, (such as the time-averaged drag coefficient, the mean velocity,
and pressure fields) a time-averaged description like that of Fig. 1-19b,
time-averaged experimental measurements, or an analytical or numerical
calculation of the time-averaged flow field would be sufficient. However, if
the engineer were interested in details about the unsteady-flow field, such as
flow-induced vibrations, unsteady pressure fluctuations, or the sound waves
emitted from the turbulent eddies or the shock waves, a time-averaged
description of the flow field would be insufficient.

Most of the analytical and computational examples provided in this text-
book deal with steady or time-averaged flows, although we occasionally
point out some relevant unsteady-flow features as well when appropriate.

One-, Two-, and Three-Dimensional Flows

A flow field is best characterized by the velocity distribution, and thus a
flow is said to be one-, two-, or three-dimensional if the flow velocity varies
in one, two, or three primary dimensions, respectively. A typical fluid flow
involves a three-dimensional geometry, and the velocity may vary in all
three dimensions, rendering the flow three-dimensional [V (x, y, z) in rec-
tangular or 1% (r, 6, ) in cylindrical coordinates]. However, the variation of
velocity in certain directions can be small relative to the variation in other
directions and can be ignored with negligible error. In such cases, the flow
can be modeled conveniently as being one- or two-dimensional, which is
easier to analyze.
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Developing velocity Fully developed FIGURE 1-20
profile, V(r, z) velocity profile, V(r) The development of the velocity

- profile in a circular pipe. V = V(r, 2)

/ and thus the flow is two-dimensional
in the entrance region, and becomes

3—‘ one-dimensional downstream when

E—~ the velocity profile fully develops and
remains unchanged in the flow

direction, V = V(r).
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Consider steady flow of a fluid through a circular pipe attached to a large
tank. The fluid velocity everywhere on the pipe surface is zero because of
the no-slip condition, and the flow is two-dimensional in the entrance region
of the pipe since the velocity changes in both the r- and z-directions. The
velocity profile develops fully and remains unchanged after some distance
from the inlet (about 10 pipe diameters in turbulent flow, and less in laminar
pipe flow, as in Fig. 1-20), and the flow in this region is said to be fully
developed. The fully developed flow in a circular pipe is one-dimensional
since the velocity varies in the radial r-direction but not in the angular 6- or
axial z-directions, as shown in Fig. 1-20. That is, the velocity profile is the
same at any axial z-location, and it is symmetric about the axis of the pipe.

Note that the dimensionality of the flow also depends on the choice of
coordinate system and its orientation. The pipe flow discussed, for example,
is one-dimensional in cylindrical coordinates, but two-dimensional in Carte-
sian coordinates—illustrating the importance of choosing the most appropri-
ate coordinate system. Also note that even in this simple flow, the velocity
cannot be uniform across the cross section of the pipe because of the no-slip j_..#‘l \
condition. However, at a well-rounded entrance to the pipe, the velocity pro-
file may be approximated as being nearly uniform across the pipe, since the @ @
velocity is nearly constant at all radii except very close to the pipe wall.

A flow may be approximated as two-dimensional when the aspect ratio is

—

large and the flow does not change appreciably along the longer dimension. FIGURE 1-21
For example, the flow of air over a car antenna can be considered two-dimen- Flow over a car antenna is
sional except near its ends since the antenna’s length is much greater than its approximately two-dimensional
diameter, and the airflow hitting the antenna is fairly uniform (Fig. 1-21). except near the top and bottom

of the antenna.

: EXAMPLE 1-1 Axisymmetric Flow over a Bullet

® Consider a bullet piercing through calm air. Determine if the time-averaged Axis of
m airflow over the bullet during its flight is one-, two-, or three-dimensional (Fig. symmetry
m 1-22). re
. LJ
SOLUTION It is to be determined whether airflow over a bullet is one-, two-, > OL
or three-dimensional. {
Assumptions There are no significant winds and the bullet is not spinning.
Analysis The bullet possesses an axis of symmetry and is therefore an FIGURE 1-22

axisymmetric body. The airflow upstream of the bullet is parallel to this axis,

) . h . Axis tric fl bullet.
and we expect the time-averaged airflow to be rotationally symmetric about xasymmetric How over a butle
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the axis—such flows are said to be axisymmetric. The velocity in this case
varies with axial distance z and radial distance r, but not with angle 6.
Therefore, the time-averaged airflow over the bullet is two-dimensional.
Discussion While the time-averaged airflow is axisymmetric, the instanta-
neous airflow is not, as illustrated in Fig. 1-19.

1-5 = SYSTEM AND CONTROL VOLUME

SURROUNDINGS A system is defined as a quantity of matter or a region in space chosen for
study. The mass or region outside the system is called the surroundings.
The real or imaginary surface that separates the system from its surround-
ings is called the boundary (Fig. 1-23). The boundary of a system can be
fixed or movable. Note that the boundary is the contact surface shared by
both the system and the surroundings. Mathematically speaking, the bound-

BOUNDARY ary has zero thickness, and thus it can neither contain any mass nor occupy
any volume in space.

FIGURE 1-23 Systems may be considered to be closed or open, depending on whether a

System, surroundings, and boundary. fixed mass or a volume in space is chosen for study. A closed system (also

known as a control mass) consists of a fixed amount of mass, and no mass
can cross its boundary. But energy, in the form of heat or work, can cross

i:.: the boundary, and the volume of a closed system does not have to be fixed.

Moving If, as a special case, even energy is not allowed to cross the boundary, that
boundary system is called an isolated system.

GAS Consider the piston—cylinder device shown in Fig. 1-24. Let us say that

2ke we would like to find out what happens to the enclosed gas when it is

G 1.5m3 heated. Since we are focusing our attention on the gas, it is our system. The

1211;g3 inner surfaces of the piston and the cylinder form the boundary, and since

~ no mass is crossing this boundary, it is a closed system. Notice that energy

/,Y \ may cross the boundary, and part of the boundary (the inner surface of the

H Fixed piston, in this case) may move. Everything outside the gas, including the

boundary piston and the cylinder, is the surroundings.

An open system, or a control volume, as it is often called, is a properly

FIGURE 1-24 selected region in space. It usually encloses a device that involves mass flow

A closed system with a moving such as a compressor, turbine, or nozzle. Flow through these devices is best

boundary. studied by selecting the region within the device as the control volume.

Both mass and energy can cross the boundary of a control volume.

A large number of engineering problems involve mass flow in and out of
a system and, therefore, are modeled as control volumes. A water heater, a
car radiator, a turbine, and a compressor all involve mass flow and should
be analyzed as control volumes (open systems) instead of as control masses
(closed systems). In general, any arbitrary region in space can be selected
as a control volume. There are no concrete rules for the selection of control
volumes, but the proper choice certainly makes the analysis much easier. If
we were to analyze the flow of air through a nozzle, for example, a good
choice for the control volume would be the region within the nozzle.

A control volume can be fixed in size and shape, as in the case of a noz-
zle, or it may involve a moving boundary, as shown in Fig. 1-25. Most con-
trol volumes, however, have fixed boundaries and thus do not involve any
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(a) A control volume (CV) with real and
imaginary boundaries

(b) A control volume (CV) with fixed and
moving boundaries

moving boundaries. A control volume may also involve heat and work inter-
actions just as a closed system, in addition to mass interaction.

1-6 = IMPORTANCE OF DIMENSIONS AND UNITS

Any physical quantity can be characterized by dimensions. The magnitudes
assigned to the dimensions are called units. Some basic dimensions such as
mass m, length L, time ¢, and temperature 7 are selected as primary or fun-
damental dimensions, while others such as velocity V, energy E, and vol-
ume V are expressed in terms of the primary dimensions and are called sec-
ondary dimensions, or derived dimensions.

A number of unit systems have been developed over the years. Despite
strong efforts in the scientific and engineering community to unify the
world with a single unit system, two sets of units are still in common use
today: the English system, which is also known as the United States Cus-
tomary System (USCS), and the metric SI (from Le Systeme International
d’ Unités), which is also known as the International System. The Sl is a sim-
ple and logical system based on a decimal relationship between the various
units, and it is being used for scientific and engineering work in most of the
industrialized nations, including England. The English system, however, has
no apparent systematic numerical base, and various units in this system are
related to each other rather arbitrarily (12 in = 1 ft, 1 mile = 5280 ft, 4 qt
= 1 gal, etc.), which makes it confusing and difficult to learn. The United
States is the only industrialized country that has not yet fully converted to
the metric system.

The systematic efforts to develop a universally acceptable system of units
dates back to 1790 when the French National Assembly charged the French
Academy of Sciences to come up with such a unit system. An early version
of the metric system was soon developed in France, but it did not find uni-
versal acceptance until 1875 when The Metric Convention Treaty was pre-
pared and signed by 17 nations, including the United States. In this interna-
tional treaty, meter and gram were established as the metric units for length
and mass, respectively, and a General Conference of Weights and Measures
(CGPM) was established that was to meet every six years. In 1960, the
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FIGURE 1-25

A control volume may involve fixed,
moving, real, and imaginary
boundaries.
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TABLE 1-1 CGPM produced the SI, which was based on six fundamental quantities,
and their units were adopted in 1954 at the Tenth General Conference of
Weights and Measures: meter (m) for length, kilogram (kg) for mass, sec-
ond (s) for time, ampere (A) for electric current, degree Kelvin (°K) for

The seven fundamental (or primary)
dimensions and their units in SI

Dimension Unit temperature, and candela (cd) for luminous intensity (amount of light). In
Length meter (m) 1971, the CGPM added a seventh fundamental quantity and unit: mole
Mass kilogram (kg) (mol) for the amount of matter.

Time second (s) Based on the notational scheme introduced in 1967, the degree symbol
Temperature kelvin (K) was officially dropped from the absolute temperature unit, and all unit
Electric current ampere (A) names were to be written without capitalization even if they were derived
Amount of light candela (cd)

from proper names (Table 1-1). However, the abbreviation of a unit was to
be capitalized if the unit was derived from a proper name. For example, the
SI unit of force, which is named after Sir Isaac Newton (1647-1723), is
newton (not Newton), and it is abbreviated as N. Also, the full name of a
unit may be pluralized, but its abbreviation cannot. For example, the length
of an object can be 5 m or 5 meters, not 5 ms or 5 meter. Finally, no period
is to be used in unit abbreviations unless they appear at the end of a sen-
tence. For example, the proper abbreviation of meter is m (not m.).

The recent move toward the metric system in the United States seems to
have started in 1968 when Congress, in response to what was happening in
the rest of the world, passed a Metric Study Act. Congress continued to pro-
mote a voluntary switch to the metric system by passing the Metric Conver-
sion Act in 1975. A trade bill passed by Congress in 1988 set a September
1992 deadline for all federal agencies to convert to the metric system. How-
ever, the deadlines were relaxed later with no clear plans for the future.

The industries that are heavily involved in international trade (such as the
automotive, soft drink, and liquor industries) have been quick in converting
to the metric system for economic reasons (having a single worldwide
design, fewer sizes, smaller inventories, etc.). Today, nearly all the cars
manufactured in the United States are metric. Most car owners probably do
not realize this until they try an English socket wrench on a metric bolt.
Most industries, however, resisted the change, thus slowing down the con-
version process.

Presently the United States is a dual-system society, and it will stay that
TABLE 1-2 way until the transition to the metric system is completed. This puts an extra
burden on today’s engineering students, since they are expected to retain
their understanding of the English system while learning, thinking, and

Amount of matter mole (mol)

Standard prefixes in S| units

Multiple Prefix working in terms of the SI. Given the position of the engineers in the transi-
1012 tera, T tion period, both unit systems are used in this text, with particular emphasis
109 giga, G on SI units.

106 mega, M As pointed out, the SI is based on a decimal relationship between units.
108 kilo, k The prefixes used to express the multiples of the various units are listed in
102 hecto, h Table 1-2. They are standard for all units, and the student is encouraged to
10! deka, da memorize them because of their widespread use (Fig. 1-26).

107! deci, d

1072 centi, ¢

o i Some SI and English Units

10-9 nano,yn In SI, the units of mass, length, and time are the kilogram (kg), meter (m),

and second (s), respectively. The respective units in the English system are

1012 pico, p
the pound-mass (Ibm), foot (ft), and second (s). The pound symbol /b is
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FIGURE 1-26
The SI unit prefixes are used in all
branches of engineering.

actually the abbreviation of libra, which was the ancient Roman unit of
weight. The English retained this symbol even after the end of the Roman
occupation of Britain in 410. The mass and length units in the two systems
are related to each other by

11bm = 0.45359 kg
1 ft = 0.3048 m

In the English system, force is usually considered to be one of the pri-
mary dimensions and is assigned a nonderived unit. This is a source of con-
fusion and error that necessitates the use of a dimensional constant (g.) in )
many formulas. To avoid this nuisance, we consider force to be a secondary m=1kg ﬂ»F: IN
dimension whose unit is derived from Newton’s second law, i.e.,

Force = (Mass) (Acceleration) a=11fus?

m=32.174 Ibm e [ = | |bf

or F =ma (1-1)

In SI, the force unit is the newton (N), and it is defined as the force required
to accelerate a mass of 1 kg at a rate of 1 m/s*. In the English system, the
force unit is the pound-force (Ibf) and is defined as the force required to
accelerate a mass of 32.174 Ibm (1 slug) at a rate of 1 fi/s* (Fig. 1-27).
That is, 1 kef

IN = 1kg - m/s?
1 1bf = 32.174 1bm - ft/s*

FIGURE 1-27
The definition of the force units.

A force of 1 N is roughly equivalent to the weight of a small apple (m
= 102 g), whereas a force of 1 Ibf is roughly equivalent to the weight of
four medium apples (m,, = 454 g), as shown in Fig. 1-28. Another force
unit in common use in many European countries is the kilogram-force (kgf),
which is the weight of 1 kg mass at sea level (1 kgf = 9.807 N).

The term weight is often incorrectly used to express mass, particularly by
the “weight watchers.” Unlike mass, weight W is a force. It is the gravita-
tional force applied to a body, and its magnitude is determined from New-
ton’s second law,

W=mg N) (1-2)

where m is the mass of the body, and g is the local gravitational acceleration
(g is 9.807 m/s? or 32.174 ft/s? at sea level and 45° latitude). An ordinary
bathroom scale measures the gravitational force acting on a body. The
weight of a unit volume of a substance is called the specific weight y and is

determined from y = pg, where p is density. FIGURE 1-28

The mass of a body remains the same regardless of its location in the uni- The relative magnitudes of the force
verse. Its weight, however, changes with a change in gravitational accelera- units newton (N), kilogram-force
tion. A body weighs less on top of a mountain since g decreases with altitude. (kgf), and pound-force (Ibf).
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NS .

FIGURE 1-29
A body weighing 150 Ibf on earth will
weigh only 25 Ibf on the moon.

i
D
kg Ibm
¢=9.807 m/s? g =32.174 fu/s?

W =32.174 Ibm - ft/s
=11bf

W =9.807 kg - m/s’
=9.807N
=1 kef
FIGURE 1-30
The weight of a unit mass at sea level.

SALAMI + LETTUCE +
OLIVES + MAYONNAISE
+ CHEESE +P\CKLES..._

FIGURE 1-31

To be dimensionally homogeneous, all
the terms in an equation must have the
same unit.

© Reprinted with special permission of King
Features Syndicate.

On the surface of the moon, an astronaut weighs about one-sixth of what
she or he normally weighs on earth (Fig. 1-29).

At sea level a mass of 1 kg weighs 9.807 N, as illustrated in Fig. 1-30. A
mass of 1 1bm, however, weighs 1 1bf, which misleads people to believe that
pound-mass and pound-force can be used interchangeably as pound (lb),
which is a major source of error in the English system.

It should be noted that the gravity force acting on a mass is due to the
attraction between the masses, and thus it is proportional to the magnitudes
of the masses and inversely proportional to the square of the distance
between them. Therefore, the gravitational acceleration g at a location
depends on the local density of the earth’s crust, the distance to the center
of the earth, and to a lesser extent, the positions of the moon and the sun.
The value of g varies with location from 9.8295 m/s? at 4500 m below sea
level to 7.3218 m/s? at 100,000 m above sea level. However, at altitudes up
to 30,000 m, the variation of g from the sea-level value of 9.807 m/s? is less
than 1 percent. Therefore, for most practical purposes, the gravitational
acceleration can be assumed to be constant at 9.81 m/s>. It is interesting to
note that at locations below sea level, the value of g increases with distance
from the sea level, reaches a maximum at about 4500 m, and then starts
decreasing. (What do you think the value of g is at the center of the earth?)

The primary cause of confusion between mass and weight is that mass is
usually measured indirectly by measuring the gravity force it exerts. This
approach also assumes that the forces exerted by other effects such as air
buoyancy and fluid motion are negligible. This is like measuring the dis-
tance to a star by measuring its red shift, or measuring the altitude of an air-
plane by measuring barometric pressure. Both of these are also indirect
measurements. The correct direct way of measuring mass is to compare it to
a known mass. This is cumbersome, however, and it is mostly used for cali-
bration and measuring precious metals.

Work, which is a form of energy, can simply be defined as force times dis-
tance; therefore, it has the unit “newton-meter (N - m),” which is called a
joule (J). That is,

1J=1N'm (1-3)

A more common unit for energy in SI is the kilojoule (1 kJ = 103 J). In the
English system, the energy unit is the Btu (British thermal unit), which is
defined as the energy required to raise the temperature of 1 Ibm of water at
68°F by 1°F. In the metric system, the amount of energy needed to raise the
temperature of 1 g of water at 14.5°C by 1°C is defined as 1 calorie (cal),
and 1 cal = 4.1868 J. The magnitudes of the kilojoule and Btu are almost
identical (1 Btu = 1.0551 kJ).

Dimensional Homogeneity

We all know from grade school that apples and oranges do not add. But we
somehow manage to do it (by mistake, of course). In engineering, all equa-
tions must be dimensionally homogeneous. That is, every term in an equa-
tion must have the same unit (Fig. 1-31). If, at some stage of an analysis,
we find ourselves in a position to add two quantities that have different
units, it is a clear indication that we have made an error at an earlier stage.
So checking dimensions can serve as a valuable tool to spot errors.
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: EXAMPLE 1-2 Spotting Errors from Unit Inconsistencies

While solving a problem, a person ended up with the following equation at
some stage:

E =25kJ + 7kl/kg

where E is the total energy and has the unit of kilojoules. Determine how to
correct the error and discuss what may have caused it.

A correction is to be found, and the probable cause of the error is to be
determined.

Analysis The two terms on the right-hand side do not have the same units,
and therefore they cannot be added to obtain the total energy. Multiplying
the last term by mass will eliminate the kilograms in the denominator, and
the whole equation will become dimensionally homogeneous; that is, every
term in the equation will have the same unit.

Discussion Obviously this error was caused by forgetting to multiply the last

|
|

|

|

|

|

|

u

SOLUTION During an analysis, a relation with inconsistent units is obtained.
term by mass at an earlier stage.

We all know from experience that units can give terrible headaches if they
are not used carefully in solving a problem. However, with some attention
and skill, units can be used to our advantage. They can be used to check for-
mulas; they can even be used to derive formulas, as explained in the follow-
ing example.

: EXAMPLE 1-3 Obtaining Formulas from Unit Considerations

: A tank is filled with oil whose density is p = 850 kg/m?. If the volume of the
m tank is V=2 m3, determine the amount of mass m in the tank.

u
SOLUTION The volume of an oil tank is given. The mass of oil is to be
determined. OIL
Assumptions Qil is an incompressible substance and thus its density is
constant. V=2m3
Analysis A sketch of the system just described is given in Fig. 1-32. Sup- p =850 kg/m®
pose we forgot the formula that relates mass to density and volume. However, m=2
we know that mass has the unit of kilograms. That is, whatever calculations
we do, we should end up with the unit of kilograms. Putting the given infor-
mation into perspective, we have FIGURE 1-32

p=850kg/m* and V=2m’ Schematic for Example 1-3.

It is obvious that we can eliminate m3 and end up with kg by multiplying
these two quantities. Therefore, the formula we are looking for should be

m = pV
Thus,
m = (850 kg/m*)(2 m®) = 1700 kg

Discussion Note that this approach may not work for more complicated
formulas.
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The student should keep in mind that a formula that is not dimensionally
homogeneous is definitely wrong, but a dimensionally homogeneous for-
mula is not necessarily right.

Unity Conversion Ratios

Just as all nonprimary dimensions can be formed by suitable combinations
of primary dimensions, all nonprimary units (secondary units) can be
formed by combinations of primary units. Force units, for example, can be
expressed as

fi
N=kg5 and Ibf=32.174 Ibm -
N S

They can also be expressed more conveniently as unity conversion ratios as

N Ibf

ﬁ = 1 and ﬁ = 1
kg - m/s 32.174 1bm - ft/s

Unity conversion ratios are identically equal to 1 and are unitless, and thus
such ratios (or their inverses) can be inserted conveniently into any calcula-
tion to properly convert units. Students are encouraged to always use unity
conversion ratios such as those given here when converting units. Some text-
books insert the archaic gravitational constant g, defined as g, = 32.174 lbm
-ft/Ibf - s> = kg - m/N - s> = 1 into equations in order to force units to
match. This practice leads to unnecessary confusion and is strongly discour-
aged by the present authors. We recommend that students instead use unity
conversion ratios.

EXAMPLE 1-4 The Weight of One Pound-Mass

Using unity conversion ratios, show that 1.00 Ibm weighs 1.00 Ibf on earth
(Fig. 1-33).

5 ... Solution A mass of 1.00 Ibm is subjected to standard earth gravity. Its
¥ weight in Ibf is to be determined.

Assumptions Standard sea-level conditions are assumed.

Properties The gravitational constant is g = 32.174 ft/s?.

Analysis We apply Newton’s second law to calculate the weight (force) that

corresponds to the known mass and acceleration. The weight of any object is
equal to its mass times the local value of gravitational acceleration. Thus,

- 1 Ibf

FIGURE 1-33 , W = mg = (1.00 Ibm)(32.174 ft/sz)<72> = 1.00 Ibf

A mass of 1 Ibm weighs 1 Ibf on earth. 32.174 1bm - ft/s
Discussion Mass is the same regardless of its location. However, on some
other planet with a different value of gravitational acceleration, the weight of
1 Ibm would differ from that calculated here.

When you buy a box of breakfast cereal, the printing may say “Net
weight: One pound (454 grams).” (See Fig. 1-34.) Technically, this means
that the cereal inside the box weighs 1.00 Ibf on earth and has a mass of
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Weight?
I thought gram

453.6 gm (0.4536 kg). Using Newton’s second law, the actual weight on
earth of the cereal in the metric system is

W (453.6 2)(9.81 m/ 2)( N )( kg ) 449N ey
=mg = 0g . m/s 72 = 4. Netweiop.
1 kg - m/s°/\1000 g ! weigh
N
O A

1-7 = MATHEMATICAL MODELING
OF ENGINEERING PROBLEMS

An engineering device or process can be studied either experimentally (test-
ing and taking measurements) or analytically (by analysis or calculations).
The experimental approach has the advantage that we deal with the actual
physical system, and the desired quantity is determined by measurement,
within the limits of experimental error. However, this approach is expensive,
time-consuming, and often impractical. Besides, the system we are studying
may not even exist. For example, the entire heating and plumbing systems
of a building must usually be sized before the building is actually built on
the basis of the specifications given. The analytical approach (including the
numerical approach) has the advantage that it is fast and inexpensive, but
the results obtained are subject to the accuracy of the assumptions, approxi-
mations, and idealizations made in the analysis. In engineering studies,
often a good compromise is reached by reducing the choices to just a few
by analysis, and then verifying the findings experimentally.

FIGURE 1-34
A quirk in the metric system of units.

Modeling in Engineering

The descriptions of most scientific problems involve equations that relate
the changes in some key variables to each other. Usually the smaller the
increment chosen in the changing variables, the more general and accurate
the description. In the limiting case of infinitesimal or differential changes
in variables, we obtain differential equations that provide precise mathemat-

Physical problem

. . . . . Identify

ical formulations for the Phys1ca1 prmmplgs and l.aws by Fepresentmg the T

rates of change as derivatives. Therefore, differential equations are used to variables Make

investigate a wide variety of problems in sciences and engineering (Fig. reasonable

1-35). However, many problems encountered in practice can be solved B £
. . . . . . . . Apply approximations

without resorting to differential equations and the complications associated b

with them. physical laws

The study of physical phenomena involves two important steps. In the
first step, all the variables that affect the phenomena are identified, reason-
able assumptions and approximations are made, and the interdependence of

A

A differential equation

these variables is studied. The relevant physical laws and principles are Apply

invoked, and the problem is formulated mathematically. The equation itself aPPlhi?ble Apply
is very instructive as it.sho.ws the degree of .dependence of some variables tzghifé’:e :;’;‘i‘:iz_‘g’l
on others, and the relative importance of various terms. In the second step, RS

the problem is solved using an appropriate approach, and the results are

A

interpreted.
Many processes that seem to occur in nature randomly and without any

Solution of the problem

order are, in fact, being governed by some visible or not-so-visible physical FIGURE 1-35
laws. Whether we notice them or not, these laws are there, governing con- Mathematical modeling of physical
sistently and predictably over what seem to be ordinary events. Most of problems.
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these laws are well defined and well understood by scientists. This makes it
possible to predict the course of an event before it actually occurs or to
study various aspects of an event mathematically without actually running
expensive and time-consuming experiments. This is where the power of
analysis lies. Very accurate results to meaningful practical problems can be
obtained with relatively little effort by using a suitable and realistic mathe-
matical model. The preparation of such models requires an adequate knowl-
edge of the natural phenomena involved and the relevant laws, as well as
sound judgment. An unrealistic model will obviously give inaccurate and
thus unacceptable results.

An analyst working on an engineering problem often finds himself or her-
self in a position to make a choice between a very accurate but complex
model, and a simple but not-so-accurate model. The right choice depends on
the situation at hand. The right choice is usually the simplest model that
yields satisfactory results. Also, it is important to consider the actual operat-
ing conditions when selecting equipment.

Preparing very accurate but complex models is usually not so difficult.
But such models are not much use to an analyst if they are very difficult and
time-consuming to solve. At the minimum, the model should reflect the
essential features of the physical problem it represents. There are many sig-
nificant real-world problems that can be analyzed with a simple model. But
it should always be kept in mind that the results obtained from an analysis
are at best as accurate as the assumptions made in simplifying the problem.
Therefore, the solution obtained should not be applied to situations for
which the original assumptions do not hold.

A solution that is not quite consistent with the observed nature of the prob-
lem indicates that the mathematical model used is too crude. In that case, a
more realistic model should be prepared by eliminating one or more of the
questionable assumptions. This will result in a more complex problem that,

SOLUTION of course, is more difficult to solve. Thus any solution to a problem should
be interpreted within the context of its formulation.

é/ T
N %
S
< & 1-8 = PROBLEM-SOLVING TECHNIQUE
~
= The first step in learning any science is to grasp the fundamentals and to gain
PROBLEM a sound knowledge of it. The next step is to master the fundamentals by test-
ing this knowledge. This is done by solving significant real-world problems.
FIGURE 1-36 Solving such problems, especially complicated ones, requires a systematic
A step-by-step approach can greatly approach. By using a step-by-step approach, an engineer can reduce the solu-
simplify problem solving. tion of a complicated problem into the solution of a series of simple prob-

lems (Fig. 1-36). When you are solving a problem, we recommend that you
use the following steps zealously as applicable. This will help you avoid
some of the common pitfalls associated with problem solving.

Step 1: Problem Statement

In your own words, briefly state the problem, the key information given,
and the quantities to be found. This is to make sure that you understand the
problem and the objectives before you attempt to solve the problem.
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Step 2: Schematic

Draw a realistic sketch of the physical system involved, and list the relevant
information on the figure. The sketch does not have to be something elabo-
rate, but it should resemble the actual system and show the key features.
Indicate any energy and mass interactions with the surroundings. Listing the
given information on the sketch helps one to see the entire problem at once.
Also, check for properties that remain constant during a process (such as
temperature during an isothermal process), and indicate them on the sketch.

Step 3: Assumptions and Approximations

State any appropriate assumptions and approximations made to simplify the
problem to make it possible to obtain a solution. Justify the questionable
assumptions. Assume reasonable values for missing quantities that are nec-
essary. For example, in the absence of specific data for atmospheric pres-
sure, it can be taken to be 1 atm. However, it should be noted in the analysis
that the atmospheric pressure decreases with increasing elevation. For exam-
ple, it drops to 0.83 atm in Denver (elevation 1610 m) (Fig. 1-37).

Step 4: Physical Laws

Apply all the relevant basic physical laws and principles (such as the con-
servation of mass), and reduce them to their simplest form by utilizing the
assumptions made. However, the region to which a physical law is applied
must be clearly identified first. For example, the increase in speed of water
flowing through a nozzle is analyzed by applying conservation of mass
between the inlet and outlet of the nozzle.

Step 5: Properties

Determine the unknown properties at known states necessary to solve the
problem from property relations or tables. List the properties separately, and
indicate their source, if applicable.

Step 6: Calculations

Substitute the known quantities into the simplified relations and perform the
calculations to determine the unknowns. Pay particular attention to the units
and unit cancellations, and remember that a dimensional quantity without a
unit is meaningless. Also, don’t give a false implication of high precision by
copying all the digits from the screen of the calculator—round the results to
an appropriate number of significant digits (Section 1-10).

Step 7: Reasoning, Verification, and Discussion
Check to make sure that the results obtained are reasonable and intuitive,
and verify the validity of the questionable assumptions. Repeat the calcula-
tions that resulted in unreasonable values. For example, under the same test
conditions the aerodynamic drag acting on a car should not increase after
streamlining the shape of the car (Fig. 1-38).

Also, point out the significance of the results, and discuss their implica-
tions. State the conclusions that can be drawn from the results, and any rec-
ommendations that can be made from them. Emphasize the limitations
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Given: Air temperature in Denver
(@)
To be found: Density of air
Missing information: Atmospheric
pressure
Assumption #1: Take P = | atm
e (Inappropriate. Ignores effect of

altitude. Will cause more than
15% error.)

Assumption #2: Take P = 0.83 atm
(Appropriate. Ignores only minor
effects such as weather.)

FIGURE 1-37

The assumptions made while solving
an engineering problem must be
reasonable and justifiable.

Before streamlining

@ — F)p &
@ .;
Unreasonable!  After streamlining

FIGURE 1-38

The results obtained from an
engineering analysis must be checked
for reasonableness.
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under which the results are applicable, and caution against any possible mis-
understandings and using the results in situations where the underlying
assumptions do not apply. For example, if you determined that using a
larger-diameter pipe in a proposed pipeline will cost an additional $5000 in
materials, but it will reduce the annual pumping costs by $3000, indicate
that the larger-diameter pipeline will pay for its cost differential from the
electricity it saves in less than two years. However, also state that only addi-
tional material costs associated with the larger-diameter pipeline are consid-
ered in the analysis.

Keep in mind that the solutions you present to your instructors, and any
engineering analysis presented to others, is a form of communication.
Therefore neatness, organization, completeness, and visual appearance are
of utmost importance for maximum effectiveness. Besides, neatness also
serves as a great checking tool since it is very easy to spot errors and incon-
sistencies in neat work. Carelessness and skipping steps to save time often
end up costing more time and unnecessary anxiety.

The approach described here is used in the solved example problems with-
out explicitly stating each step, as well as in the Solutions Manual of this
text. For some problems, some of the steps may not be applicable or neces-
sary. For example, often it is not practical to list the properties separately.
However, we cannot overemphasize the importance of a logical and orderly
approach to problem solving. Most difficulties encountered while solving a
problem are not due to a lack of knowledge; rather, they are due to a lack of
organization. You are strongly encouraged to follow these steps in problem
solving until you develop your own approach that works best for you.

1-9 = ENGINEERING SOFTWARE PACKAGES

You may be wondering why we are about to undertake an in-depth study of
the fundamentals of another engineering science. After all, almost all such
problems we are likely to encounter in practice can be solved using one of
several sophisticated software packages readily available in the market
today. These software packages not only give the desired numerical results,
but also supply the outputs in colorful graphical form for impressive presen-
tations. It is unthinkable to practice engineering today without using some
of these packages. This tremendous computing power available to us at the
touch of a button is both a blessing and a curse. It certainly enables engi-
neers to solve problems easily and quickly, but it also opens the door for
abuses and misinformation. In the hands of poorly educated people, these
software packages are as dangerous as sophisticated powerful weapons in
the hands of poorly trained soldiers.

Thinking that a person who can use the engineering software packages
without proper training on fundamentals can practice engineering is like
thinking that a person who can use a wrench can work as a car mechanic. If
it were true that the engineering students do not need all these fundamental
courses they are taking because practically everything can be done by com-
puters quickly and easily, then it would also be true that the employers would
no longer need high-salaried engineers since any person who knows how to
use a word-processing program can also learn how to use those software
packages. However, the statistics show that the need for engineers is on the
rise, not on the decline, despite the availability of these powerful packages.
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We should always remember that all the computing power and the engi-
neering software packages available today are just frools, and tools have
meaning only in the hands of masters. Having the best word-processing pro-
gram does not make a person a good writer, but it certainly makes the job of
a good writer much easier and makes the writer more productive (Fig.
1-39). Hand calculators did not eliminate the need to teach our children
how to add or subtract, and the sophisticated medical software packages did
not take the place of medical school training. Neither will engineering soft-
ware packages replace the traditional engineering education. They will sim-
ply cause a shift in emphasis in the courses from mathematics to physics. -
That is, more time will be spent in the classroom discussing the physical .
aspects of the problems in greater detail, and less time on the mechanics of
solution procedures.

All these marvelous and powerful tools available today put an extra bur-

den on today’s engineers. They must still have a thorough understanding of FIGURE 1-39
the fundamentals, develop a “feel” of the physical phenomena, be able to An excellent word-processing
put the data into proper perspective, and make sound engineering judg- program does not make a person
ments, just like their predecessors. However, they must do it much better, a good writer; it simply makes a
and much faster, using more realistic models because of the powerful tools good writer a more efficient writer.

available today. The engineers in the past had to rely on hand calculations,
slide rules, and later hand calculators and computers. Today they rely on
software packages. The easy access to such power and the possibility of a
simple misunderstanding or misinterpretation causing great damage make it
more important today than ever to have solid training in the fundamentals of
engineering. In this text we make an extra effort to put the emphasis on
developing an intuitive and physical understanding of natural phenomena
instead of on the mathematical details of solution procedures.

Engineering Equation Solver (EES)

EES is a program that solves systems of linear or nonlinear algebraic or dif-
ferential equations numerically. It has a large library of built-in thermody-
namic property functions as well as mathematical functions, and allows the
user to supply additional property data. Unlike some software packages,
EES does not solve engineering problems; it only solves the equations sup-
plied by the user. Therefore, the user must understand the problem and for-
mulate it by applying any relevant physical laws and relations. EES saves
the user considerable time and effort by simply solving the resulting mathe-
matical equations. This makes it possible to attempt significant engineering
problems not suitable for hand calculations and to conduct parametric stud-
ies quickly and conveniently. EES is a very powerful yet intuitive program
that is very easy to use, as shown in Example 1-5. The use and capabilities
of EES are explained in Appendix 3 on the enclosed DVD.

: EXAMPLE 1-5 Solving a System of Equations with EES

® The difference of two numbers is 4, and the sum of the squares of these two
@ humbers is equal to the sum of the numbers plus 20. Determine these two
m humbers.

|
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SOLUTION Relations are given for the difference and the sum of the
squares of two numbers. They are to be determined.

Analysis We start the EES program by double-clicking on its icon, open a
new file, and type the following on the blank screen that appears:

x-y=4
x2+y2=x+y+20
which is an exact mathematical expression of the problem statement with x
and y denoting the unknown numbers. The solution to this system of two

nonlinear equations with two unknowns is obtained by a single click on the
“calculator” icon on the taskbar. It gives

x=5 and y=1

Discussion Note that all we did is formulate the problem as we would on
paper; EES took care of all the mathematical details of solution. Also note
that equations can be linear or nonlinear, and they can be entered in any
order with unknowns on either side. Friendly equation solvers such as EES
allow the user to concentrate on the physics of the problem without worrying
about the mathematical complexities associated with the solution of the
resulting system of equations.

FLUENT

FLUENT is a computational fluid dynamics (CFD) code widely used for
flow-modeling applications. The first step in analysis is preprocessing,
which involves building a model or importing one from a CAD package,
applying a finite-volume-based mesh, and entering data. Once the numerical
model is prepared, FLUENT performs the necessary calculations and pro-
duces the desired results. The final step in analysis is postprocessing, which
involves organization and interpretation of the data and images. Packages
tailored for specific applications such as electronics cooling, ventilating sys-
tems, and mixing are also available. FLUENT can handle subsonic or super-
sonic flows, steady or transient flows, laminar or turbulent flows, Newton-
ian or non-Newtonian flows, single or multiphase flows, chemical reactions
including combustion, flow through porous media, heat transfer, and flow-
induced vibrations. Most numerical solutions presented in this text are
obtained using FLUENT, and CFD is discussed in more detail in Chap. 15.

1-10 = ACCURACY, PRECISION,
AND SIGNIFICANT DIGITS

In engineering calculations, the supplied information is not known to more
than a certain number of significant digits, usually three digits. Conse-
quently, the results obtained cannot possibly be precise to more significant
digits. Reporting results in more significant digits implies greater precision
than exists, and it should be avoided.

Regardless of the system of units employed, engineers must be aware of
three principles that govern the proper use of numbers: accuracy, precision,
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and significant digits. For engineering measurements, they are defined as
follows:

e Accuracy error (inaccuracy) is the value of one reading minus the true
value. In general, accuracy of a set of measurements refers to the
closeness of the average reading to the true value. Accuracy is generally
associated with repeatable, fixed errors.

* Precision error is the value of one reading minus the average of readings. In
general, precision of a set of measurements refers to the fineness of the
resolution and the repeatability of the instrument. Precision is generally
associated with unrepeatable, random errors. A

 Significant digits are digits that are relevant and meaningful.

A measurement or calculation can be very precise without being very
accurate, and vice versa. For example, suppose the true value of wind speed
is 25.00 m/s. Two anemometers A and B take five wind speed readings each:

Anemometer A: 25.50, 25.69, 25.52, 25.58, and 25.61 m/s. Average of all
readings = 25.58 m/s.

Anemometer B: 26.3, 24.5, 23.9, 26.8, and 23.6 m/s. Average of all readings
= 25.02 m/s.

Clearly, anemometer A is more precise, since none of the readings differs
by more than 0.11 m/s from the average. However, the average is 25.58 m/s,
0.58 m/s greater than the true wind speed; this indicates significant bias
error, also called constant error or systematic error. On the other hand,
anemometer B is not very precise, since its readings swing wildly from the
average; but its overall average is much closer to the true value. Hence,
anemometer B is more accurate than anemometer A, at least for this set of
readings, even though it is less precise. The difference between accuracy
and precision can be illustrated effectively by analogy to shooting a gun at a
target, as sketched in Fig. 1-40. Shooter A is very precise, but not very
accurate, while shooter B has better overall accuracy, but less precision.
Many engineers do not pay proper attention to the number of significant
digits in their calculations. The least significant numeral in a number
implies the precision of the measurement or calculation. For example, a
result written as 1.23 (three significant digits) implies that the result is pre-
cise to within one digit in the second decimal place; i.e., the number is TABLE 1-3
somewhere between 1.22 and 1.24. Expressing this number with any more
digits would be misleading. The number of significant digits is most easily
evaluated when the number is written in exponential notation; the number of Number of
significant digits can then simply be counted, including zeroes. Some exam- Exponential Significant
ples are shown in Table 1-3. Number Notation Digits

FIGURE 1-40

Ilustration of accuracy versus
precision. Shooter A is more precise,
but less accurate, while shooter B is
more accurate, but less precise.

Significant digits

When performing calculations or manipulations of several parameters, 12.3  1.23x 10! 3
the final result is generally only as precise as the least precise parameter in 123,000 1.23 x10°
the problem. For example, suppose A and B are multiplied to obtain C. If 0.00123 1.23x10°*
A =2.3601 (five significant digits), and B = 0.34 (two significant digits), 40,300  4.03 x 10

then C = 0.80 (only two digits are 51g31ﬁcant in the .ﬁnal. resglt).. Note that 0.005600 5.600 x 10-2
most students are tempted to write C = 0.802434, with six significant dig- 0.0056 56 % 10-3
its, since that is what is displayed on a calculator after multiplying these 6.006 6 % 10-3
two numbers.

3
3
3
40,300. 4.0300 x 104 5
4
2
1
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Let’s analyze this simple example carefully. Suppose the exact value of B
is 0.33501, which is read by the instrument as 0.34. Also suppose A is
exactly 2.3601, as measured by a more accurate and precise instrument. In
this case, C = A X B = 0.79066 to five significant digits. Note that our first
answer, C = 0.80 is off by one digit in the second decimal place. Likewise,
if B is 0.34499, and is read by the instrument as 0.34, the product of A and
B would be 0.81421 to five significant digits. Our original answer of 0.80 is
again off by one digit in the second decimal place. The main point here is
that 0.80 (to two significant digits) is the best one can expect from this mul-
tiplication since, to begin with, one of the values had only two significant
digits. Another way of looking at this is to say that beyond the first two dig-
its in the answer, the rest of the digits are meaningless or not significant.
For example, if one reports what the calculator displays, 2.3601 times 0.34
equals 0.802434, the last four digits are meaningless. As shown, the final
result may lie between 0.79 and 0.81—any digits beyond the two significant
digits are not only meaningless, but misleading, since they imply to the
reader more precision than is really there.

As another example, consider a 3.75-L container filled with gasoline
whose density is 0.845 kg/L, and determine its mass. Probably the first
thought that comes to your mind is to multiply the volume and density to

O Given: Volume: V=375 L obtain 3.16875 kg for the mass, which falsely implies that the mass so
c Density: p = 0.845 kg/L determined is precise to six significant digits. In reality, however, the mass
cannot be more precise than three significant digits since both the volume

(3 significant digits) and the density are precise to three significant digits only. Therefore, the

Also, 3.75 % 0.845 = 3.16875 result should be rounded to three significant digits, and the mass should be

reported to be 3.17 kg instead of what the calculator displays (Fig. 1-41).
The result 3.16875 kg would be correct only if the volume and density were
C  Rounding to 3 significant digits: given to be 3.75000 L and 0.845000 kg/L, respectively. The value 3.75 L

m=3.17kg implies that we are fairly confident that the volume is precise within
+0.01 L, and it cannot be 3.74 or 3.76 L. However, the volume can be
3.746, 3.750, 3.753, etc., since they all round to 3.75 L.

You should also be aware that sometimes we knowingly introduce small
errors in order to avoid the trouble of searching for more accurate data.
For example, when dealing with liquid water, we often use the value of
1000 kg/m? for density, which is the density value of pure water at 0°C.
Using this value at 75°C will result in an error of 2.5 percent since the den-
sity at this temperature is 975 kg/m®. The minerals and impurities in the
water will introduce additional error. This being the case, you should have
FIGURE 1-41 no reservation in rounding the final results to a reasonable number of signif-
A result with more significant digits icant digits. Besides, having a few percent uncertainty in the results of engi-
than that of given data falsely implies  peering analysis is usually the norm, not the exception.
more precision. When writing intermediate results in a computation, it is advisable to
keep several “extra” digits to avoid round-off errors; however, the final
result should be written with the number of significant digits taken into con-
sideration. The reader must also keep in mind that a certain number of sig-
nificant digits of precision in the result does not necessarily imply the same
number of digits of overall accuracy. Bias error in one of the readings may,
for example, significantly reduce the overall accuracy of the result, perhaps
even rendering the last significant digit meaningless, and reducing the over-
all number of reliable digits by one. Experimentally determined values are

Find: Mass: m = pV = 3.16875 kg
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subject to measurement errors, and such errors are reflected in the results
obtained. For example, if the density of a substance has an uncertainty of 2
percent, then the mass determined using this density value will also have an

uncertainty of 2 percent.

Finally, when the number of significant digits is unknown, the accepted
engineering standard is three significant digits. Therefore, if the length of a
pipe is given to be 40 m, we will assume it to be 40.0 m in order to justify

using three significant digits in the final results.

EXAMPLE 1-6 Significant Digits and Volume Flow Rate

Jennifer is conducting an experiment that uses cooling water from a garden
hose. In order to calculate the volume flow rate of water through the hose,
she times how long it takes to fill a container (Fig. 1-42). The volume of
water collected is V = 1.1 gal in time period At= 45.62 s, as measured
with a stopwatch. Calculate the volume flow rate of water through the hose
in units of cubic meters per minute.

SOLUTION Volume flow rate is to be determined from measurements of vol-
ume and time period.

Assumptions 1 Jennifer recorded her measurements properly, such that the
volume measurement is precise to two significant digits while the time
period is precise to four significant digits. 2 No water is lost due to splash-
ing out of the container.

Analysis Volume flow rate V is volume displaced per unit time and is
expressed as

- AV
VEES
At

Volume flow rate:

Substituting the measured values, the volume flow rate is determined to be

. Llgal (3.785 X 1073 m3> (60 s

T 45.62s

- ) = 5.5 x 10> m*/min
1 min,

1 gal

Discussion The final result is listed to two significant digits since we can-
not be confident of any more precision than that. If this were an intermedi-
ate step in subsequent calculations, a few extra digits would be carried along
to avoid accumulated round-off error. In such a case, the volume flow rate
would be written as V = 5.4759 X 10-3 m3min. Based on the given infor-
mation, we cannot say anything about the accuracy of our result, since we
have no information about systematic errors in either the volume measure-
ment or the time measurement.

Also keep in mind that good precision does not guarantee good accuracy.
For example, if the batteries in the stopwatch were weak, its accuracy could
be quite poor, yet the readout would still be displayed to four significant dig-
its of precision.

In common practice, precision is often associated with resolution, which is
a measure of how finely the instrument can report the measurement. For
example, a digital voltmeter with five digits on its display is said to be more
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FIGURE 142
Schematic for Example 1-6 for the
measurement of volume flow rate.
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FIGURE 143
An instrument with many digits of
resolution (stopwatch ¢) may be less

Exact time span =45.623451 ... s

accurate than an instrument with few

TIMEXAM

digits of resolution (stopwatch a). l 46. ‘ R

[45.624]¢

What can you say about stopwatches b

and d? (a) (b)

precise than a digital voltmeter with only three digits. However, the number
of displayed digits has nothing to do with the overall accuracy of the mea-
surement. An instrument can be very precise without being very accurate
when there are significant bias errors. Likewise, an instrument with very few
displayed digits can be more accurate than one with many digits (Fig.

1-43).

SUMMARY

In this chapter some basic concepts of fluid mechanics are
introduced and discussed. A substance in the liquid or gas
phase is referred to as a fluid. Fluid mechanics is the science
that deals with the behavior of fluids at rest or in motion and
the interaction of fluids with solids or other fluids at the
boundaries.

The flow of an unbounded fluid over a surface is external
flow, and the flow in a pipe or duct is internal flow if the
fluid is completely bounded by solid surfaces. A fluid flow is
classified as being compressible or incompressible, depend-
ing on the density variation of the fluid during flow. The den-
sities of liquids are essentially constant, and thus the flow of
liquids is typically incompressible. The term steady implies
no change with time. The opposite of steady is unsteady, or
transient. The term uniform implies no change with location
over a specified region. A flow is said to be one-dimensional
when the velocity changes in one dimension only. A fluid in
direct contact with a solid surface sticks to the surface and

there is no slip. This is known as the no-slip condition, which
leads to the formation of boundary layers along solid sur-
faces.

A system of fixed mass is called a closed system, and a
system that involves mass transfer across its boundaries is
called an open system or control volume. A large number of
engineering problems involve mass flow in and out of a sys-
tem and are therefore modeled as control volumes.

In engineering calculations, it is important to pay particular
attention to the units of the quantities to avoid errors caused
by inconsistent units, and to follow a systematic approach. It
is also important to recognize that the information given is
not known to more than a certain number of significant dig-
its, and the results obtained cannot possibly be accurate to
more significant digits. The information given on dimensions
and units; problem-solving technique; and accuracy, preci-
sion, and significant digits will be used throughout the entire
text.
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Why do the two images in Fig. 1-44 look alike? Figure 1-44b shows an
above-ground nuclear test performed by the U.S. Department of Energy in
1957. An atomic blast created a fireball on the order of 100 m in diameter.
Expansion is so quick that a compressible flow feature occurs: an expanding
spherical shock wave. The image shown in Fig. 1-44a is an everyday
innocuous event: an inverted image of a dye-stained water drop after it has
fallen into a pool of water, looking from below the pool surface. It could
have fallen from your spoon into a cup of coffee, or been a secondary splash
after a raindrop hit a lake. Why is there such a strong similarity between
these two vastly different events? The application of fundamental principles
of fluid mechanics learned in this book will help you understand much of the
answer, although one can go much deeper.

The water has higher density (Chap. 2) than air, so the drop has experi-
enced negative buoyancy (Chap. 3) as it has fallen through the air before
impact. The fireball of hot gas is less dense than the cool air surrounding it,
so it has positive buoyancy and rises. The shock wave (Chap. 12) reflecting
from the ground also imparts a positive upward force to the fireball. The pri-
mary structure at the top of each image is called a vortex ring. This ring is a
mini-tornado of concentrated vorticity (Chap. 4) with the ends of the tornado
looping around to close on itself. The laws of kinematics (Chap. 4) tell us
that this vortex ring will carry the fluid in a direction toward the top of the
page. This is expected in both cases from the forces applied and the law of
conservation of momentum applied through a control volume analysis (Chap.
5). One could also analyze this problem with differential analysis (Chaps. 9
and 10) or with computational fluid dynamics (Chap. 15). But why does the
shape of the tracer material look so similar? This occurs if there is approxi-
mate geometric and kinematic similarity (Chap. 7), and if the flow visualiza-
tion (Chap. 4) technique is similar. The passive tracers of heat and dust for
the bomb, and fluorescent dye for the drop, were introduced in a similar
manner as noted in the figure caption.

Further knowledge of kinematics and vortex dynamics can help explain the
similarity of the vortex structure in the images to much greater detail, as dis-
cussed by Sigurdson (1997) and Peck and Sigurdson (1994). Look at the
lobes dangling beneath the primary vortex ring, the striations in the “stalk,”
and the ring at the base of each structure. There is also topological similarity
of this structure to other vortex structures occurring in turbulence. Compari-
son of the drop and bomb has given us a better understanding of how turbu-
lent structures are created and evolve. What other secrets of fluid mechanics
are left to be revealed in explaining the similarity between these two flows?

\ Guest Author: Lorenz Sigurdson, Vortex Fluid
N\ Dynamics Lab, University of Alberta
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APPLICATION SPOTLIGHT m What Nuclear Blasts and Raindrops Have in Common

FIGURE 1-44

Comparison of the vortex structure
created by: (a) a water drop after
impacting a pool of water (inverted,
from Peck and Sigurdson, 1994), and
(b) an above-ground nuclear test in
Nevada in 1957 (U.S. Department of
Energy). The 2.6 mm drop was dyed
with fluorescent tracer and illuminated
by a strobe flash 50 ms after it had
fallen 35 mm and impacted the clear
pool. The drop was approximately
spherical at the time of impact with
the clear pool of water. Interruption of
a laser beam by the falling drop was
used to trigger a timer that controlled
the time of the strobe flash after
impact of the drop. Details of the
careful experimental procedure
necessary to create the drop
photograph are given by Peck and
Sigurdson (1994) and Peck et al.
(1995). The tracers added to the flow
in the bomb case were primarily heat
and dust. The heat is from the original
fireball which for this particular test
(the “Priscilla” event of Operation
Plumbob) was large enough to reach
the ground from where the bomb was
initially suspended. Therefore, the
tracer’s initial geometric condition
was a sphere intersecting the ground.

(a) From Peck, B., and Sigurdson, L. W.,
Phys. Fluids, 6(2)(Part 1), 564, 1994.
Used by permission of the author.

(b) United States Department of Energy.
Photo from Lorenz Sigurdson.
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PROBLEMS®

Introduction, Classification, and System
1-1C Define internal, external, and open-channel flows.

1-2C Define incompressible flow and incompressible fluid.
Must the flow of a compressible fluid necessarily be treated
as compressible?

1-3C

1-4C  What is forced flow? How does it differ from natural
flow? Is flow caused by winds forced or natural flow?

What is the no-slip condition? What causes it?

1-5C  What is a boundary layer? What causes a boundary
layer to develop?

1-6C  What is the difference between the classical and the
statistical approaches?

1-7C What is a steady-flow process?

1-8C Define stress, normal stress, shear stress, and pressure.
1-9C  What are system, surroundings, and boundary?
1-10C  When is a system a closed system, and when is it a
control volume?

Mass, Force, and Units

1-11C  What is the difference between pound-mass and
pound-force?

1-12C
force?
1-13C  What is the net force acting on a car cruising at a

constant velocity of 70 km/h (a) on a level road and (b) on an
uphill road?

What is the difference between kg-mass and kg-

1-14 A 3-kg plastic tank that has a volume of 0.2 m? is
filled with liquid water. Assuming the density of water is
1000 kg/m?, determine the weight of the combined system.

1-15  Determine the mass and the weight of the air con-
tained in a room whose dimensions are 6 m X 6 m X § m.
Assume the density of the air is 1.16 kg/m>.  Answers: 334.1
kg, 3277 N

1-16 At 45° latitude, the gravitational acceleration as a
function of elevation z above sea level is given by ¢ = a — bz,

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the S| users can ignore them.
Problems with the @ icon are solved using EES, and complete
solutions together with parametric studies are included on the
enclosed DVD. Problems with the E icon are comprehensive in
nature and are intended to be solved with a computer, preferably
using the EES software that accompanies this text.

where a = 9.807 m/s> and b = 3.32 X 107° s~2. Determine
the height above sea level where the weight of an object will
decrease by 1 percent. Answer: 29,539 m

1-17E A 150-lbm astronaut took his bathroom scale (a
spring scale) and a beam scale (compares masses) to the
moon where the local gravity is g = 5.48 ft/s’>. Determine
how much he will weigh (@) on the spring scale and (b) on
the beam scale. Answers: (a) 25.5 Ibf; (b) 150 Ibf

1-18 The acceleration of high-speed aircraft is sometimes
expressed in g’s (in multiples of the standard acceleration of
gravity). Determine the net upward force, in N, that a 90-kg
man would experience in an aircraft whose acceleration is 6 g’s.

1-19 P A 5-kg rock is thrown upward with a force of

%& 150 N at a location where the local gravitational
acceleration is 9.79 m/s?. Determine the acceleration of the
rock, in m/s>.

1-20 Solve Prob. 1-19 using EES (or other) software.
s Print out the entire solution, including the
numerical results with proper units.

1-21 The value of the gravitational acceleration g decreases
with elevation from 9.807 m/s” at sea level to 9.767 m/s? at
an altitude of 13,000 m, where large passenger planes cruise.
Determine the percent reduction in the weight of an airplane
cruising at 13,000 m relative to its weight at sea level.

Modeling and Solving Engineering Problems

1-22C  What is the difference between precision and accu-
racy? Can a measurement be very precise but inaccurate?
Explain.

1-23C  What is the difference between the analytical and
experimental approach to engineering problems? Discuss the
advantages and disadvantages of each approach.

1-24C  What is the importance of modeling in engineering?
How are the mathematical models for engineering processes
prepared?

1-25C  When modeling an engineering process, how is the
right choice made between a simple but crude and a complex
but accurate model? Is the complex model necessarily a bet-
ter choice since it is more accurate?

1-26C How do the differential equations in the study of a
physical problem arise?

1-27C What is the value of the engineering software pack-

ages in (a) engineering education and (b) engineering prac-

tice?

1-28 W Determine a positive real root of this equation
s using EES:

2x3 = 10x% — 3y = =3
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1-29 Solve this system of two equations with two tional acceleration g with elevation. Accounting for this vari-
unknowns using EES: ation using the relation in Prob. 1-16, determine the weight
3= y2 =775 of an 80-kg person at sea level (z = 0), in Denver (z = 1610

m), and on the top of Mount Everest (z = 8848 m).
3xy +y=235

1-33 A man goes to a traditional market to buy a steak for
dinner. He finds a 12-oz steak (1 Ibm = 16 oz) for $3.15. He
then goes to the adjacent international market and finds a
320-g steak of identical quality for $2.80. Which steak is the

1-30 Solve this system of three equations with three
unknowns using EES:

2x—y+z=5 better buy?
3x% + 2y =2z+2 1-34 The reactive force developed by a jet engine to push
an airplane forward is called thrust, and the thrust developed
xy+2z=8 by the engine of a Boeing 777 is about 85,000 Ibf. Express
. . . this thrust in N and kgf.
1-31 Solve this system of three equations with three
unknowns using EES: Design and Essay Problem
xzy —z=1 1-35 Write an essay on the various mass- and volume-mea-
Y- 3y0'5 fxz= -2 surement devices used throughout history. Also, explain the
' development of the modern units for mass and volume.
xty—z=2

Review Probhlems

1-32 The weight of bodies may change somewhat from one
location to another as a result of the variation of the gravita-
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CHAPTER

PROPERTIES OF FLUIDS

of fluid flow. First we discuss intensive and extensive properties and OBJECTIVES

define density and specific graviry. This is followed by a discussion of Whhenldy(i)u ﬁrt])iISh reading this chapter, you
should be able to

I n this chapter, we discuss properties that are encountered in the analysis

the properties vapor pressure, energy and its various forms, the specific
heats of ideal gases and incompressible substances, and the coefficient of u Have a working knowledge of the

compressibility. Then we discuss the property viscosity, which plays a dom- basic properties of fluids and
understand the continuum

approximation

Have a working knowledge of
viscosity and the consequences
of the frictional effects it causes
in fluid flow

Calculate the capillary rises and

drops due to the surface tension
effect

inant role in most aspects of fluid flow. Finally, we present the property sur-
face tension and determine the capillary rise from static equilibrium condi-
tions. The property pressure is discussed in Chap. 3 together with fluid statics.
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2-1 = INTRODUCTION

Any characteristic of a system is called a property. Some familiar proper-
ties are pressure P, temperature 7, volume V, and mass m. The list can be
extended to include less familiar ones such as viscosity, thermal conductiv-
ity, modulus of elasticity, thermal expansion coefficient, electric resistivity,
and even velocity and elevation.

Properties are considered to be either intensive or extensive. Intensive
properties are those that are independent of the mass of a system, such as
temperature, pressure, and density. Extensive properties are those whose
values depend on the size—or extent—of the system. Total mass, total vol-
ume V, and total momentum are some examples of extensive properties. An

T T NS

-—

AT easy way to determine whether a property is intensive or extensive is to
zm o om } Extensive divide the system into two equal parts with an imaginary partition, as shown
1y 1 2y properties . . . . . .
ZT i ZT in Fig. 2—1. Each part will have the same value of intensive properties as the
i Intensive original system, but half the value of the extensive properties.
P, P - 3 1 1
b properties Generally, uppercase letters are used to denote extensive properties (with
: mass m being a major exception), and lowercase letters are used for intensive
FIGURE 21 properties (with pressure P and temperature 7" being the obvious exceptions).

o ) o ) Extensive properties per unit mass are called specific properties. Some
Criteria to differentiate intensive and examples of specific properties are specific volume (v = V/m) and specific
extensive properties. total energy (¢ = E/m).

The state of a system is described by its properties. But we know from
experience that we do not need to specify all the properties in order to fix a
state. Once the values of a sufficient number of properties are specified, the
rest of the properties assume certain values. That is, specifying a certain
number of properties is sufficient to fix a state. The number of properties
required to fix the state of a system is given by the state postulate: The
state of a simple compressible system is completely specified by two inde-
pendent, intensive properties.

Two properties are independent if one property can be varied while the
other one is held constant. Not all properties are independent, and some are
defined in terms of others, as explained in Section 2-2.

Continuum

Matter is made up of atoms that are widely spaced in the gas phase. Yet it is
very convenient to disregard the atomic nature of a substance and view it as
a continuous, homogeneous matter with no holes, that is, a continuum. The
continuum idealization allows us to treat properties as point functions and to
assume that the properties vary continually in space with no jump disconti-
nuities. This idealization is valid as long as the size of the system we deal
with is large relative to the space between the molecules. This is the case in
practically all problems, except some specialized ones. The continuum ide-
alization is implicit in many statements we make, such as “the density of
water in a glass is the same at any point.”

To have a sense of the distances involved at the molecular level, consider a
container filled with oxygen at atmospheric conditions. The diameter of the
oxygen molecule is about 3 X 1079 m and its mass is 5.3 X 10726 kg. Also,
the mean free path of oxygen at 1 atm pressure and 20°C is 6.3 X 1078 m.
That is, an oxygen molecule travels, on average, a distance of 6.3 X 1078 m
(about 200 times its diameter) before it collides with another molecule.
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Also, there are about 2.5 X 10'® molecules of oxygen in the tiny volume
of 1 mm? at 1 atm pressure and 20°C (Fig. 2-2). The continuum model is
applicable as long as the characteristic length of the system (such as its
diameter) is much larger than the mean free path of the molecules. At very
high vacuums or very high elevations, the mean free path may become large
(for example, it is about 0.1 m for atmospheric air at an elevation of 100
km). For such cases the rarefied gas flow theory should be used, and the
impact of individual molecules should be considered. In this text we limit
our consideration to substances that can be modeled as a continuum.

2-2 = DENSITY AND SPECIFIC GRAVITY

Density is defined as mass per unit volume (Fig. 2-3). That is,

Density: p=2" (keg/md) @2-1)

v
The reciprocal of density is the specific volume v, which is defined as vol-
ume per unit mass. That is, v = V/m = 1/p. For a differential volume ele-
ment of mass 6m and volume &V, density can be expressed as p = 6m/d\V.

The density of a substance, in general, depends on temperature and pres-
sure. The density of most gases is proportional to pressure and inversely
proportional to temperature. Liquids and solids, on the other hand, are
essentially incompressible substances, and the variation of their density with
pressure is usually negligible. At 20°C, for example, the density of water
changes from 998 kg/m? at 1 atm to 1003 kg/m? at 100 atm, a change of
just 0.5 percent. The density of liquids and solids depends more strongly on
temperature than it does on pressure. At 1 atm, for example, the density of
water changes from 998 kg/m? at 20°C to 975 kg/m? at 75°C, a change of
2.3 percent, which can still be neglected in many engineering analyses.

Sometimes the density of a substance is given relative to the density of a
well-known substance. Then it is called specific gravity, or relative den-
sity, and is defined as the ratio of the density of a substance to the density of
some standard substance at a specified temperature (usually water at 4°C,
for which py , = 1000 kg/m?). That is,
Specific gravity: (2-2)
Note that the specific gravity of a substance is a dimensionless quantity.
However, in SI units, the numerical value of the specific gravity of a sub-
stance is exactly equal to its density in g/cm? or kg/L (or 0.001 times the
density in kg/m?) since the density of water at 4°C is 1 g/cm?® = 1 kg/L =
1000 kg/m?. The specific gravity of mercury at 0°C, for example, is 13.6.
Therefore, its density at 0°C is 13.6 g/cm?® = 13.6 kg/L = 13,600 kg/m>.
The specific gravities of some substances at 0°C are given in Table 2-1.
Note that substances with specific gravities less than 1 are lighter than
water, and thus they would float on water.

The weight of a unit volume of a substance is called specific weight and
is expressed as

Specific weight: Y = pg (N/m?) (2-3)

where g is the gravitational acceleration.
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0, 1 atm, 20°C

3 x 10'® molecules/mm?>

/
o

VOID

o

N

FIGURE 2-2

Despite the large gaps between
molecules, a substance can be treated
as a continuum because of the very
large number of molecules even in an
extremely small volume.

FIGURE 2-3
Density is mass per unit volume;
specific volume is volume per

unit mass.
TABLE 2-1
Specific gravities of some
substances at 0°C
Substance SG
Water 1.0
Blood 1.05
Seawater 1.025
Gasoline 0.7
Ethyl alcohol 0.79
Mercury 13.6
Wood 0.3-0.9
Gold 19.2
Bones 1.7-2.0
Ice 0.92
Air (at 1 atm) 0.0013
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Recall from Chap. 1 that the densities of liquids are essentially constant,
and thus they can often be approximated as being incompressible substances
during most processes without sacrificing much in accuracy.

Density of Ideal Gases

Property tables provide very accurate and precise information about the
properties, but sometimes it is convenient to have some simple relations
among the properties that are sufficiently general and accurate. Any equa-
tion that relates the pressure, temperature, and density (or specific volume)
of a substance is called an equation of state. The simplest and best-known
equation of state for substances in the gas phase is the ideal-gas equation of
state, expressed as

Pv = RT or P = pRT (2-4)

where P is the absolute pressure, V is the specific volume, T is the thermody-
namic (absolute) temperature, p is the density, and R is the gas constant. The
gas constant R is different for each gas and is determined from R = R, /M,
where R, is the universal gas constant whose value is R, = 8.314 kJ/kmol - K
= 1.986 Btu/lbmol - R, and M is the molar mass (also called molecular
weight) of the gas. The values of R and M for several substances are given
in Table A-1.

The thermodynamic temperature scale in the SI is the Kelvin scale, and
the temperature unit on this scale is the kelvin, designated by K. In the Eng-
lish system, it is the Rankine scale, and the temperature unit on this scale is
the rankine, R. Various temperature scales are related to each other by

T(K) = T(°C) + 273.15 (2-5)
T(R) T(°F) + 459.67 (2-6)

It is common practice to round the constants 273.15 and 459.67 to 273 and
460, respectively.

Equation 2—4 is called the ideal-gas equation of state, or simply the
ideal-gas relation, and a gas that obeys this relation is called an ideal gas.
For an ideal gas of volume V, mass m, and number of moles N = m/M, the
ideal-gas equation of state can also be written as PV = mRT or PV = NR,T.
For a fixed mass m, writing the ideal-gas relation twice and simplifying, the
properties of an ideal gas at two different states are related to each other by
P VT, = P,V,IT,.

An ideal gas is a hypothetical substance that obeys the relation Pv = RT.
It has been experimentally observed that the ideal-gas relation closely
approximates the P-v-T behavior of real gases at low densities. At low pres-
sures and high temperatures, the density of a gas decreases and the gas
behaves like an ideal gas. In the range of practical interest, many familiar
gases such as air, nitrogen, oxygen, hydrogen, helium, argon, neon, and
krypton and even heavier gases such as carbon dioxide can be treated as
ideal gases with negligible error (often less than 1 percent). Dense gases
such as water vapor in steam power plants and refrigerant vapor in refriger-
ators, however, should not be treated as ideal gases since they usually exist
at a state near saturation.




cen72367_ch02.gxd 10/29/04 2:20 PM Page 39
Printed freen POF by LPS

39
CHAPTER 2

. o . .. 6
: EXAMPLE 2-1 Density, Specific Gravity, and Mass of Air in a Room S -
® Determine the density, specific gravity, and mass of the air in a room whose AIR 5m
@ dimensions are 4 m X 5 m X 6 m at 100 kPa and 25°C (Fig. 2-4). P =100 kPa
i=25°C
Solution The density, specific gravity, and mass of the air in a room are to

be determined.
Assumptions At specified conditions, air can be treated as an ideal gas. FIGURE 2-4
Properties The gas constant of air is R = 0.287 kPa - m3/kg - K.

Analysis The density of air is determined from the ideal-gas relation P = pRT
to be

Schematic for Example 2—1.

P 100 kP:
p=—= — = 1.17 kg/m®
RT  (0.287 kPa - m¥/kg - K)(25 + 273) K
Then the specific gravity of air becomes
1.17 kg/m?
sg= P - LI7kem
Puo 1000 kg/m
Finally, the volume and the mass of air in the room are
V= (4 m)(5 m)(6 m) = 120 m>

m = pV = (1.17 kg/m*)(120 m*) = 140 kg

= 0.00117

Discussion Note that we converted the temperature to the unit K from °C
before using it in the ideal-gas relation.

2-3 = VAPOR PRESSURE AND CAVITATION

It is well-established that temperature and pressure are dependent properties
for pure substances during phase-change processes, and there is one-to-one
correspondence between temperatures and pressures. At a given pressure, the
temperature at which a pure substance changes phase is called the satura-
tion temperature T,. Likewise, at a given temperature, the pressure at
which a pure substance changes phase is called the saturation pressure P_,.
At an absolute pressure of 1 standard atmosphere (1 atm or 101.325 kPa),
for example, the saturation temperature of water is 100°C. Conversely, at a
temperature of 100°C, the saturation pressure of water is 1 atm.

The vapor pressure P, of a pure substance is defined as the pressure
exerted by its vapor in phase equilibrium with its liquid at a given tempera-
ture. P, is a property of the pure substance, and turns out to be identical to
the saturation pressure P, of the liquid (P, = P). We must be careful not
to confuse vapor pressure with partial pressure. Partial pressure is defined
as the pressure of a gas or vapor in a mixture with other gases. For example,
atmospheric air is a mixture of dry air and water vapor, and atmospheric
pressure is the sum of the partial pressure of dry air and the partial pressure
of water vapor. The partial pressure of water vapor constitutes a small frac-
tion (usually under 3 percent) of the atmospheric pressure since air is mostly
nitrogen and oxygen. The partial pressure of a vapor must be less than or
equal to the vapor pressure if there is no liquid present. However, when both
vapor and liquid are present and the system is in phase equilibrium, the par-
tial pressure of the vapor must equal the vapor pressure, and the system is
said to be saturated. The rate of evaporation from open water bodies such as

V\/WW.EHQ[HOOH% %BOOKS Pdf.com



cen72367_ch02.gxd 10/29/04 2:20 PM Page 40

o

Printed freen PDF Dy LPS

40
FLUID MECHANICS

TABLE 2-2

Saturation (or vapor) pressure of
water at various temperatures

Saturation
Temperature Pressure
T,°C P, kPa
-10 0.260
-5 0.403
0 0.611
5 0.872
10 1.23
15 1.71
20 2.34
25 3.17
30 4.25
40 7.38
50 12.35
100 101.3 (1 atm)
150 475.8
200 1554
250 3973
300 8581

FIGURE 2-5

Cavitation damage on a 16-mm by
23-mm aluminum sample tested at
60 m/s for 2.5 h. The sample was
located at the cavity collapse region
downstream of a cavity generator
specifically designed to produce high
damage potential.

Photograph by David Stinebring,
ARL/Pennsylvania State University.
Used by permission.

lakes is controlled by the difference between the vapor pressure and the partial
pressure. For example, the vapor pressure of water at 20°C is 2.34 kPa. There-
fore, a bucket of water at 20°C left in a room with dry air at 1 atm will con-
tinue evaporating until one of two things happens: the water evaporates
away (there is not enough water to establish phase equilibrium in the room),
or the evaporation stops when the partial pressure of the water vapor in the
room rises to 2.34 kPa at which point phase equilibrium is established.

For phase-change processes between the liquid and vapor phases of a pure
substance, the saturation pressure and the vapor pressure are equivalent
since the vapor is pure. Note that the pressure value would be the same
whether it is measured in the vapor or liquid phase (provided that it is mea-
sured at a location close to the liquid—vapor interface to avoid the hydrosta-
tic effects). Vapor pressure increases with temperature. Thus, a substance at
higher temperatures boils at higher pressures. For example, water boils at
134°C in a pressure cooker operating at 3 atm absolute pressure, but it boils
at 93°C in an ordinary pan at a 2000-m elevation, where the atmospheric
pressure is 0.8 atm. The saturation (or vapor) pressures are given in Appen-
dices 1 and 2 for various substances. A mini table for water is given in
Table 2-2 for easy reference.

The reason for our interest in vapor pressure is the possibility of the liquid
pressure in liquid-flow systems dropping below the vapor pressure at some
locations, and the resulting unplanned vaporization. For example, water at
10°C will flash into vapor and form bubbles at locations (such as the tip
regions of impellers or suction sides of pumps) where the pressure drops
below 1.23 kPa. The vapor bubbles (called cavitation bubbles since they
form “cavities” in the liquid) collapse as they are swept away from the low-
pressure regions, generating highly destructive, extremely high-pressure waves.
This phenomenon, which is a common cause for drop in performance and
even the erosion of impeller blades, is called cavitation, and it is an impor-
tant consideration in the design of hydraulic turbines and pumps (Fig. 2-5).

Cavitation must be avoided (or at least minimized) in flow systems since
it reduces performance, generates annoying vibrations and noise, and causes
damage to equipment. The pressure spikes resulting from the large number
of bubbles collapsing near a solid surface over a long period of time may
cause erosion, surface pitting, fatigue failure, and the eventual destruction of
the components or machinery. The presence of cavitation in a flow system
can be sensed by its characteristic tumbling sound.

EXAMPLE 2-2 Minimum Pressure to Avoid Cavitation

In a water distribution system, the temperature of water is observed to be as
high as 30°C. Determine the minimum pressure allowed in the system to
avoid cavitation.

SOLUTION The minimum pressure in a water distribution system to avoid
cavitation is to be determined.

Properties The vapor pressure of water at 30°C is 4.25 kPa.

Analysis To avoid cavitation, the pressure anywhere in flow should not be
allowed to drop below the vapor (or saturation) pressure at the given temper-
ature. That is,

Prin = Paesoc = 4.25 kPa
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Therefore, the pressure should be maintained above 4.25 kPa everywhere in
the flow.

Discussion Note that the vapor pressure increases with increasing tempera-
ture, and thus the risk of cavitation is greater at higher fluid temperatures.

2-4 - ENERGY AND SPECIFIC HEATS

Energy can exist in numerous forms such as thermal, mechanical, kinetic,
potential, electrical, magnetic, chemical, and nuclear, and their sum consti-
tutes the total energy E (or e on a unit mass basis) of a system. The forms
of energy related to the molecular structure of a system and the degree of
the molecular activity are referred to as the microscopic energy. The sum of
all microscopic forms of energy is called the internal energy of a system,
and is denoted by U (or u# on a unit mass basis).

The macroscopic energy of a system is related to motion and the influ-
ence of some external effects such as gravity, magnetism, electricity, and
surface tension. The energy that a system possesses as a result of its motion
relative to some reference frame is called kinetic energy. When all parts of
a system move with the same velocity, the kinetic energy per unit mass is
expressed as ke = V%2 where V denotes the velocity of the system relative
to some fixed reference frame. The energy that a system possesses as a
result of its elevation in a gravitational field is called potential energy and
is expressed on a per-unit mass basis as pe = gz where g is the gravitational
acceleration and z is the elevation of the center of gravity of a system rela-
tive to some arbitrarily selected reference plane.

In daily life, we frequently refer to the sensible and latent forms of inter-
nal energy as heat, and we talk about the heat content of bodies. In engi-
neering, however, those forms of energy are usually referred to as thermal
energy to prevent any confusion with heat transfer.

The international unit of energy is the joule (J) or kilojoule (1 kJ = 1000 J).
In the English system, the unit of energy is the British thermal unit (Btu),
which is defined as the energy needed to raise the temperature of 1 lbm of
water at 68°F by 1°F. The magnitudes of kJ and Btu are almost identical
(1 Btu = 1.0551 kJ). Another well-known unit of energy is the calorie
(1 cal = 4.1868 J), which is defined as the energy needed to raise the tem-
perature of 1 g of water at 14.5°C by 1°C.

In the analysis of systems that involve fluid flow, we frequently encounter — Flowing — Energy = h

the combination of properties u and Pv. For convenience, this combination fluid
is called enthalpy 4. That is,
P
Enthalpy: =u+Pv=u+— (2-7)
) P o Statiopary Energy = u

where P/p is the flow energy, also called the flow work, which is the energy fluid
per unit mass needed to move the fluid and maintain flow. In the energy
analysis of flowing fluids, it is convenient to treat the flow energy as part of FIGURE 2-6
the energy of the fluid and to represent the microscopic energy of a fluid The internal energy u represents the
stream by enthalpy 4 (Fig. 2-6). Note that enthalpy is a quantity per unit microscopic energy of a nonflowing
mass, and thus it is a specific property. fluid per unit mass, whereas enthalpy

In the absence of such effects as magnetic, electric, and surface tension, a & represents the microscopic energy of
system is called a simple compressible system. The total energy of a simple a flowing fluid per unit mass.
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compressible system consists of three parts: internal, kinetic, and potential
energies. On a unit-mass basis, it is expressed as e = u + ke + pe. The
fluid entering or leaving a control volume possesses an additional form of
energy—the flow energy Plp. Then the total energy of a flowing fluid on a
unit-mass basis becomes
VZ
€fowing = PIp + e =h + ke + pe =h + B + gz (kJ/kg) (2-8)
where h = P/p + u is the enthalpy, V is the velocity, and z is the elevation
of the system relative to some external reference point.
By using the enthalpy instead of the internal energy to represent the energy
of a flowing fluid, one does not need to be concerned about the flow work.
The energy associated with pushing the fluid is automatically taken care of by
enthalpy. In fact, this is the main reason for defining the property enthalpy.
| The differential and finite changes in the internal energy and enthalpy of
an ideal gas can be expressed in terms of the specific heats as

0 du = ¢, dT and dh = c,dT (2-9)

! where ¢, and ¢, are the constant-volume and constant-pressure specific heats of
| -— the ideal gas. Using specific heat values at the average temperature, the finite
X changes in internal energy and enthalpy can be expressed approximately as

Ah e Au = cype AT Ah = ¢, AT (2-10)

¢ and - Cp.u\ e

- — Cvave

For incompressible substances, the constant-volume and constant-pressure
specific heats are identical. Therefore, ¢, = ¢, = ¢ for liquids, and the
change in the internal energy of liquids can be expressed as Au = c,,, AT.

Noting that p = constant for incompressible substances, the differentia-
tion of enthalpy # = u + Plp gives dh = du + dP/p. Integrating, the

enthalpy change becomes
Ah = Au + AP/lp = ¢,

- Therefore, Ah = Au = c,,, AT for constant-pressure processes, and Ah =
/ AP/p for constant-temperature processes of liquids.
I

P, > P,

AT + APip (2-11)

- 2-5 = COEFFICIENT OF COMPRESSIBILITY

FIGURE 2-7

Fluids, like solids, compress when
the applied pressure is increased
from P, to P,.

We know from experience that the volume (or density) of a fluid changes
with a change in its temperature or pressure. Fluids usually expand as they
are heated or depressurized and contract as they are cooled or pressurized.
But the amount of volume change is different for different fluids, and we
need to define properties that relate volume changes to the changes in pres-
sure and temperature. Two such properties are the bulk modulus of elasticity
k and the coefficient of volume expansion 3.

It is a common observation that a fluid contracts when more pressure is
applied on it and expands when the pressure acting on it is reduced (Fig.
2-7). That is, fluids act like elastic solids with respect to pressure. Therefore,
in an analogous manner to Young’s modulus of elasticity for solids, it is
appropriate to define a coefficient of compressibility « (also called the bulk
modulus of compressibility or bulk modulus of elasticity) for fluids as

L0 o) -
k=—-vl—]| = p|— a -
)y P\op/,
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It can also be expressed approximately in terms of finite changes as
_ AP _ AP

=-——=— T= tant 2-13
AUV Aplp ( constant) ( )

Noting that Av/v or Ap/p is dimensionless, k must have the dimension of
pressure (Pa or psi). Also, the coefficient of compressibility represents the
change in pressure corresponding to a fractional change in volume or density
of the fluid while the temperature remains constant. Then it follows that the
coefficient of compressibility of a truly incompressible substance (v = con-
stant) is infinity.

A large value of k indicates that a large change in pressure is needed to
cause a small fractional change in volume, and thus a fluid with a large « is
essentially incompressible. This is typical for liquids, and explains why lig-
uids are usually considered to be incompressible. For example, the pressure
of water at normal atmospheric conditions must be raised to 210 atm to
compress it 1 percent, corresponding to a coefficient of compressibility
value of k = 21,000 atm.

Small density changes in liquids can still cause interesting phenomena in
piping systems such as the water hammer—characterized by a sound that
resembles the sound produced when a pipe is “hammered.” This occurs
when a liquid in a piping network encounters an abrupt flow restriction
(such as a closing valve) and is locally compressed. The acoustic waves pro-
duced strike the pipe surfaces, bends, and valves as they propagate and
reflect along the pipe, causing the pipe to vibrate and produce the familiar
sound.

Note that volume and pressure are inversely proportional (volume
decreases as pressure is increased and thus dP/dv is a negative quantity),
and the negative sign in the definition (Eq. 2—12) ensures that « is a positive
quantity. Also, differentiating p = 1/v gives dp = —dv/v?, which can be
rearranged as

d_ _dv (2-14)
p v
That is, the fractional changes in the specific volume and the density of a
fluid are equal in magnitude but opposite in sign.
For an ideal gas, P = pRT and (dP/dp); = RT = P/p, and thus

Kigeal gas =P (Pa) (2-15)

Therefore, the coefficient of compressibility of an ideal gas is equal to its
absolute pressure, and the coefficient of compressibility of the gas increases
with increasing pressure. Substituting k = P into the definition of the coef-
ficient of compressibility and rearranging gives

Y,

Ideal gas:
eal gas p P

(T = constant) (2-16)
Therefore, the percent increase of density of an ideal gas during isothermal
compression is equal to the percent increase in pressure.

For air at 1 atm pressure, kK = P = 1 atm and a decrease of 1 percent in
volume (AV/V = —0.01) corresponds to an increase of AP = 0.01 atm in
pressure. But for air at 1000 atm, k = 1000 atm and a decrease of 1 percent
in volume corresponds to an increase of AP = 10 atm in pressure. Therefore,
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a small fractional change in the volume of a gas can cause a large change in
pressure at very high pressures.

The inverse of the coefficient of compressibility is called the isothermal
compressibility « and is expressed as

1 1 [ov 1 /dp
a=-=—(Z) =2 (2 (1/Pa) @2-17)
K V\IP/r p\oP/;
The isothermal compressibility of a fluid represents the fractional change in
volume or density corresponding to a unit change in pressure.

Coefficient of Volume Expansion

The density of a fluid, in general, depends more strongly on temperature
than it does on pressure, and the variation of density with temperature is
responsible for numerous natural phenomena such as winds, currents in

FIGURE 2-8 oceans, rise of plumes in chimneys, the operation of hot-air balloons, heat
Natural convection over a woman’s transfer by natural convection, and even the rise of hot air and thus the
hand. phrase “heat rises” (Fig. 2-8). To quantify these effects, we need a property
G. 5. Settles, Gas Dynamics Lab, that represents the variation of the density of a fluid with temperature at
Penn State University. Used by permission. constant pressure.

The property that provides that information is the coefficient of volume
expansion (or volume expansivity) B, defined as (Fig. 2-9)

1/ov 1 [p
B ="\ =\ (1/K) (2-18)
v\dT/p p \oT/p
F"(a}j o It can also be expressed approximately in terms of finite changes as
L[V
aT, ‘
L2 Avlv Aplp
20°C 21°C B=— =7 (at constant P) (2-19)
100 kPa 100 kPa AT AT
ke ke A large value of B for a fluid means a large change in density with temper-
(a) A substance with a large 8 ature, and the product 8 AT represents the fraction of volume change of a
(Q) fluid that corresponds to a temperature change of AT at constant pressure.
aT)p It can be shown easily that the volume expansion coefficient of an ideal
( gas (P = pRT) at a temperature 7T is equivalent to the inverse of the tem-
\ perature:
e S
oc | | e 1
20°C 21°C ) =— _
100 kPa 100 kPa Bideal gas T (1/K) (2-20)
kg 1 kg

where T is the absolute temperature.

(b) A substance with a small 8 In the study of natural convection currents, the condition of the main fluid

FIGURE 2-9 body that surrounds the finite hot or cold regions is indicated by the sub-
. . script “infinity” to serve as a reminder that this is the value at a distance

The coefficient of volume expansion ..

. . where the presence of the hot or cold region is not felt. In such cases, the

is a measure of the change in volume . . .

. . volume expansion coefficient can be expressed approximately as
of a substance with temperature at

constant pressure. (p= — p)lp

B= - O pepS pB(T — T.) (2-21)

where p,, is the density and T, is the temperature of the quiescent fluid
away from the confined hot or cold fluid pocket.
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We will see in Chap. 3 that natural convection currents are initiated by the
buoyancy force, which is proportional to the density difference, which is
proportional to the temperature difference at constant pressure. Therefore,
the larger the temperature difference between the hot or cold fluid pocket
and the surrounding main fluid body, the larger the buoyancy force and thus
the stronger the natural convection currents.

The combined effects of pressure and temperature changes on the volume
change of a fluid can be determined by taking the specific volume to be a
function of 7 and P. Differentiating v = v(7, P) and using the definitions of
the compression and expansion coefficients « and 8 give

d d
dv = (—V> dT + (—V) dP = (B dT — a dP)v (2-22)
oT/» or),
Then the fractional change in volume (or density) due to changes in pres-
sure and temperature can be expressed approximately as

Av_ A

= BAT— a AP (2-23)
v p

: EXAMPLE 2-3  Variation of Density with Temperature and Pressure

: Consider water initially at 20°C and 1 atm. Determine the final density of
m Water (a) if it is heated to 50°C at a constant pressure of 1 atm, and (b) if it
m is compressed to 100-atm pressure at a constant temperature of 20°C. Take
B the isothermal compressibility of water to be « = 4.80 X 107° atm~1.
u
SOLUTION Water at a given temperature and pressure is considered. The
densities of water after it is heated and after it is compressed are to be
determined.
Assumptions 1 The coefficient of volume expansion and the isothermal
compressibility of water are constant in the given temperature range. 2 An
approximate analysis is performed by replacing differential changes in quan-
tities by finite changes.
Properties The density of water at 20°C and 1 atm pressure is p; =
998.0 kg/m3. The coefficient of volume expansion at the average tempera-
ture of (20 + 50)/2 = 35°C is B = 0.337 X 103 K~L. The isothermal com-
pressibility of water is given to be @ = 4.80 X 107° atm~1.
Analysis When differential quantities are replaced by differences and the
properties a and B are assumed to be constant, the change in density in
terms of the changes in pressure and temperature is expressed approxi-
mately as (Eq. 2-23)

Ap = ap AP — Bp AT

(a) The change in density due to the change of temperature from 20°C to
50°C at constant pressure is

Ap = —Bp AT = —(0.337 X 10> K~ 1)(998 kg/m*)(50 — 20) K
= —10.0 kg/m’
Noting that Ap = p, — p;, the density of water at 50°C and 1 atm is
0> =p; + Ap = 998.0 + (—10.0) = 988.0 kg/m*
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0.00050
which is almost identical to the listed value of 988.1 kg/m? at 50°C in Table

0.00045 — A-3. This is mostly due to B varying with temperature almost linearly, as
M0.00040a shown in Fig. 2-10.
= 0.00035 — (b) The change in density due to a change of pressure from 1 atm to 100
QL0.00030 . atm at constant temperature is

0.00025 Ap = ap AP = (4.80 X 1073 atm™")(998 kg/m*)(100 — 1) atm = 4.7 kg/m*

0.00020 T Then the density of water at 100 atm and 20°C becomes

B

FIGURE 2-10

The variation of the coefficient of
volume expansion of water 3 with
temperature in the range of 20°C
to 50°C.

Data were generated and plotted using EES.

I T T T T
20 25 30 35 40 45 5
°C

FIGURE 2-11
A fluid moving relative to a body

exerts a drag force on the body, partly

0

because of friction caused by viscosity.

P2 = p1 + Ap = 998.0 + 4.7 = 1002.7 kg/m®

Discussion Note that the density of water decreases while being heated and
increases while being compressed, as expected. This problem can be solved
more accurately using differential analysis when functional forms of proper-
ties are available.

2-6 - VISCOSITY

1%
- When two solid bodies in contact move relative to each other, a friction
—_— force develops at the contact surface in the direction opposite to motion. To
— ?rag move a table on the floor, for example, we have to apply a force to the table
- orce

in the horizontal direction large enough to overcome the friction force. The
magnitude of the force needed to move the table depends on the friction
coefficient between the table and the floor.

The situation is similar when a fluid moves relative to a solid or when two
fluids move relative to each other. We move with relative ease in air, but not
so in water. Moving in oil would be even more difficult, as can be observed
by the slower downward motion of a glass ball dropped in a tube filled with
oil. It appears that there is a property that represents the internal resistance
of a fluid to motion or the “fluidity,” and that property is the viscosity. The
force a flowing fluid exerts on a body in the flow direction is called the
drag force, and the magnitude of this force depends, in part, on viscosity
(Fig. 2-11).

To obtain a relation for viscosity, consider a fluid layer between two very
large parallel plates (or equivalently, two parallel plates immersed in a large
body of a fluid) separated by a distance € (Fig. 2-12). Now a constant par-
allel force F is applied to the upper plate while the lower plate is held fixed.
After the initial transients, it is observed that the upper plate moves continu-
ously under the influence of this force at a constant velocity V. The fluid in
contact with the upper plate sticks to the plate surface and moves with it at
the same velocity, and the shear stress 7 acting on this fluid layer is

T=— (2-24)
where A is the contact area between the plate and the fluid. Note that the
fluid layer deforms continuously under the influence of shear stress.

The fluid in contact with the lower plate assumes the velocity of that plate,
which is zero (again because of the no-slip condition). In steady laminar
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flow, the fluid velocity between the plates varies linearly between O and V,
and thus the velocity profile and the velocity gradient are
du 'V

=7 =2 .
u(y) = ¢ Vv and dy ¢ (2-25)
where y is the vertical distance from the lower plate.

During a differential time interval df, the sides of fluid particles along a
vertical line MN rotate through a differential angle dB while the upper plate
moves a differential distance da = V dt. The angular displacement or defor-
mation (or shear strain) can be expressed as
da _ Vi _du

dB =~ tanB=— =—dt 2-26

B an 3 ¢ ¢ dy ( )

Rearranging, the rate of deformation under the influence of shear stress 7

becomes

dB  du

—=— 2-27

dt dy ( )

Thus we conclude that the rate of deformation of a fluid element is equiva-

lent to the velocity gradient du/dy. Further, it can be verified experimentally

that for most fluids the rate of deformation (and thus the velocity gradient)
is directly proportional to the shear stress 7,

dap du

o G

T — or T

2-28
dt dy ( )

Fluids for which the rate of deformation is proportional to the shear stress

are called Newtonian fluids after Sir Isaac Newton, who expressed it first in

1687. Most common fluids such as water, air, gasoline, and oils are Newton-

ian fluids. Blood and liquid plastics are examples of non-Newtonian fluids.
In one-dimensional shear flow of Newtonian fluids, shear stress can be

expressed by the linear relationship

(N/m?)

u
T = M (2-29)

dy

Shear stress:

where the constant of proportionality w is called the coefficient of viscosity
or the dynamic (or absolute) viscosity of the fluid, whose unit is kg/m - s,
or equivalently, N - s/m? (or Pa - s where Pa is the pressure unit pascal). A
common viscosity unit is poise, which is equivalent to 0.1 Pa - s (or cen-
tipoise, which is one-hundredth of a poise). The viscosity of water at 20°C
is 1 centipoise, and thus the unit centipoise serves as a useful reference. A
plot of shear stress versus the rate of deformation (velocity gradient) for a
Newtonian fluid is a straight line whose slope is the viscosity of the fluid, as
shown in Fig. 2-13. Note that viscosity is independent of the rate of defor-
mation.

The shear force acting on a Newtonian fluid layer (or, by Newton’s third
law, the force acting on the plate) is

du

F=1A=pA—

N 2-30
dy N) (2-30)

Shear force:
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Area A
Force F

N N u=V
——

8 . g/ Velocity V

Shear stress, 7

M u=0
Velocity profile

v
uy)= =V
0 14

FIGURE 2-12

The behavior of a fluid in laminar
flow between two parallel plates
when the upper plate moves with
a constant velocity.

oil Viscosity = Slope
T a
W= = —
du/ dy b
a
Water
b
Air

Rate of deformation, du/dy

FIGURE 2-13

The rate of deformation (velocity
gradient) of a Newtonian fluid is
proportional to shear stress, and
the constant of proportionality

is the viscosity.
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Bingham
plastic

where again A is the contact area between the plate and the fluid. Then the
force F required to move the upper plate in Fig. 2—12 at a constant velocity
of V while the lower plate remains stationary is

Pseudoplastic

\%
Newtonian F=pA 7 (N) (2-31)

Shear stress, 7

This relation can alternately be used to calculate u when the force F is mea-
sured. Therefore, the experimental setup just described can be used to mea-
sure the viscosity of fluids. Note that under identical conditions, the force F'
will be very different for different fluids.

For non-Newtonian fluids, the relationship between shear stress and rate
of deformation is not linear, as shown in Fig. 2—14. The slope of the curve
FIGURE 2-14 on the 7 versus du/dy chart is referred to as the apparent viscosity of the
Variation of shear stress with the rate fluid. Fluids for which the apparent viscosity increases with the rate of
of deformation for Newtonian and deformation (such as solutions with suspended starch or sand) are referred
non-Newtonian fluids (the slope of a to as dilatant or shear thickening fluids, and those that exhibit the opposite
curve at a point is the apparent behavior (the fluid becoming less viscous as it is sheared harder, such as
viscosity of the fluid at that point). some paints, polymer solutions, and fluids with suspended particles) are

referred to as pseudoplastic or shear thinning fluids. Some materials such as
toothpaste can resist a finite shear stress and thus behave as a solid, but
deform continuously when the shear stress exceeds the yield stress and thus
behave as a fluid. Such materials are referred to as Bingham plastics after
E. C. Bingham, who did pioneering work on fluid viscosity for the U.S.
National Bureau of Standards in the early twentieth century.

In fluid mechanics and heat transfer, the ratio of dynamic viscosity to
density appears frequently. For convenience, this ratio is given the name
kinematic viscosity v and is expressed as v = u/p. Two common units of
kinematic viscosity are m?%/s and stoke (1 stoke = 1 cm?/s = 0.0001 m?/s).

/f \\ In general, the viscosity of a fluid depends on both temperature and pres-
® sure, although the dependence on pressure is rather weak. For liquids, both
the dynamic and kinematic viscosities are practically independent of pres-
Air at 20°C and 1 atm: sure, and any small variation with pressure is usually disregarded, except at
n=183x10"kg/m s extremely high pressures. For gases, this is also the case for dynamic vis-
v =152 107 ms cosity (at low to moderate pressures), but not for kinematic viscosity since

the density of a gas is proportional to its pressure (Fig. 2-15).

The viscosity of a fluid is a measure of its “resistance to deformation.”
Viscosity is due to the internal frictional force that develops between differ-
ent layers of fluids as they are forced to move relative to each other. Viscos-
K . // ity is caused by the cohesive forces between the molecules in liquids and by

Dilatant

Rate of deformation, du/dy

Air at 20°C and 4 atm:
w=183x10"kg/m - s
v =0.380 x 10 m%/s

the molecular collisions in gases, and it varies greatly with temperature. The
viscosity of liquids decreases with temperature, whereas the viscosity of
gases increases with temperature (Fig. 2—16). This is because in a liquid the
molecules possess more energy at higher temperatures, and they can oppose
the large cohesive intermolecular forces more strongly. As a result, the ener-
gized liquid molecules can move more freely.

FIGURE 2-15 In a gas, on the other hand, the intermolecular forces are negligible, and
Dynamic viscosity, in general, does the gas molecules at high temperatures move randomly at higher velocities.
not depend on pressure, but kinematic ~ This results in more molecular collisions per unit volume per unit time and
viscosity does. therefore in greater resistance to flow. The viscosity of a fluid is directly

V\/WW.EHQ[HOOH% %BOOKS Pdf.com



cen72367_ch02.gxd 10/29/04 2:20 PM Page 49
Printed freen POF by LPS

49
CHAPTER 2

related to the pumping power needed to transport a fluid in a pipe or to  Viscosity
move a body (such as a car in air or a submarine in the sea) through a fluid.

The kinetic theory of gases predicts the viscosity of gases to be propor-
tional to the square root of temperature. That is, gy, VT. This prediction
is confirmed by practical observations, but deviations for different gases
need to be accounted for by incorporating some correction factors. The vis-
cosity of gases is expressed as a function of temperature by the Sutherland

correlation (from The U.S. Standard Atmosphere) as Liquids
aTl/Z
Gases: = 2-32
ases "w T o7 ( )

where 7T is absolute temperature and a and b are experimentally determined
constants. Note that measuring viscosities at two different temperatures is
sufficient to determine these constants. For air, the values of these constants Gases
are a = 1.458 X 107° kg/(m - s - K?) and b = 110.4 K at atmospheric
conditions. The viscosity of gases is independent of pressure at low to mod-
erate pressures (from a few percent of 1 atm to several atm). But viscosity

. . . . . T t
increases at high pressures due to the increase in density. cmperature
For liquids, the viscosity is approximated as FIGURE 2-16
Liquids: = aloPT=o (2-33) The v1s€:os1t}.f of liquids Qecreases

and the viscosity of gases increases
where again T is absolute temperature and a, b, and ¢ are experimentally with temperature.

determined constants. For water, using the values a = 2.414 X 107> N - s/m?,
b = 247.8 K, and ¢ = 140 K results in less than 2.5 percent error in viscosity TABLE 2-3
in the temperature range of 0°C to 370°C (Touloukian et al., 1975).

Consider a fluid layer of thickness € within a small gap between two con-  Dynamic viscosities of some fluids
centric cylinders, such as the thin layer of oil in a journal bearing. The gap @t 1 atmand 20°C (unless
between the cylinders can be modeled as two parallel flat plates separated by ~ 2Lherwise stated)

a fluid. Noting that torque is T = FR (force times the moment arm, which is Dynamic Viscosity
the radius R of the inner cylinder in this case), the tangential velocity is V =  Fluid w, kg/m - s
R (angular velocity times the radius), and taking the wetted surface area of Glycerin:
the inner cylinder to be A = 27RL by disregarding the shear stress acting on —20°C 134.0
the two ends of the inner cylinder, torque can be expressed as 282% 1?-22
2nRwL 4w Rl 40°C 0.31
T=FR=p AR (2-34)  Engine oil:
SAE 10W 0.10
where L is the length of the cylinder and 7 is the number of revolutions per SAE 10W30 0.17
unit time, which is usually expressed in rpm (revolutions per minute). Note gﬁg 28 852
that the angular distance traveled during one rotation is 27 rad, and thus the Mercury 0.0015
relation between the angular velocity in rad/min and the rpm is @ = 2. Ethyl alcohol 0.0012
Equation 2—-34 can be used to calculate the viscosity of a fluid by measuring Water:
torque at a specified angular velocity. Therefore, two concentric cylinders 0°C 0.0018
can be used as a viscometer, a device that measures viscosity. 20°C 0.0010
The viscosities of some fluids at room temperature are listed in Table 2-3. 100:C (liquid) 0.00028
They are plotted against temperature in Fig. 2—17. Note that the viscosities Blic?do %(:/gpor) 88882(1)2
of different fluids differ by several orders of magnitude. Also note that it is Gasoline 0.00029
more difficult to move an object in a higher-viscosity fluid such as engine oil  Ammonia 0.00015
than it is in a lower-viscosity fluid such as water. Liquids, in general, are Air 0.000018

much more viscous than gases. Hydrogen, 0°C 0.0000088
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0.5
0.4
0.3
0.2
Castor oil
0.1 SAE 10 oil
0.06 Glycerin
0.04
0.03 SAE 30 oil

Absolute viscosity u, N - s/m?

The variation of dynamic (absolute)
viscosities of common fluids with
temperature at 1 atm (1 N « s/m? =

FIGURE 2-17 :
3
2

Helium
1x107° Alr
1 kg/m + s = 0.020886 Ibf - s/ft?). //—m_e;/_

F. M. White, Fluid Mechanics 4e. 5
Copyright © 1999 The McGraw-Hill Companies, -20 0 20 40 60 80 100 120
Inc. Used by permission. Temperature, °C

EXAMPLE 24 Determining the Viscosity of a Fluid

The viscosity of a fluid is to be measured by a viscometer constructed of two
40-cm-long concentric cylinders (Fig. 2—18). The outer diameter of the inner
cylinder is 12 cm, and the gap between the two cylinders is 0.15 cm. The
inner cylinder is rotated at 300 rpm, and the torque is measured to be
1.8 N - m. Determine the viscosity of the fluid.

Stationary
cylinder

¢ SOLUTION The torque and the rpm of a double cylinder viscometer are
given. The viscosity of the fluid is to be determined.
Assumptions 1 The inner cylinder is completely submerged in oil. 2 The
viscous effects on the two ends of the inner cylinder are negligible.
Analysis The velocity profile is linear only when the curvature effects are
negligible, and the profile can be approximated as being linear in this case
since ¢/R << 1. Solving Eq. 2-34 for viscosity and substituting the given
Fluid values, the viscosity of the fluid is determined to be

T¢ (1.8 N - m)(0.0015 m)

FIGURE 2-18 = 4Rl 472(0.06 m)*(300/60 1/5)(0.4 m)
Schematic for Example 2—4.

= 0.158 N - s/m?

WWW.EﬂqiﬂCCH% EBooKsPdf.com



cen72367_ch02.gxd 10/29/04 2:20 PM Page 51
Printed from PDF by LPS

51
CHAPTER 2

Discussion Viscosity is a strong function of temperature, and a viscosity
value without a corresponding temperature is of little value. Therefore, the
temperature of the fluid should have also been measured during this experi-
ment, and reported with this calculation.

It is often observed that a drop of blood forms a hump on a horizontal glass; | o

a drop of mercury forms a near-perfect sphere and can be rolled just like a il g
steel ball over a smooth surface; water droplets from rain or dew hang from e 1‘!
branches or leaves of trees; a liquid fuel injected into an engine forms a
mist of spherical droplets; water dripping from a leaky faucet falls as spher-
ical droplets; a soap bubble released into the air forms a spherical shape;
and water beads up into small drops on flower petals (Fig. 2-19).

In these and other observances, liquid droplets behave like small spherical
balloons filled with the liquid, and the surface of the liquid acts like a
stretched elastic membrane under tension. The pulling force that causes this
tension acts parallel to the surface and is due to the attractive forces
between the molecules of the liquid. The magnitude of this force per unit
length is called surface tension o and is usually expressed in the unit N/m )

(or Ibf/ft in English units). This effect is also called surface energy and is

expressed in the equivalent unit of N + m/m? or J/m?. In this case, o, repre- FIGURE 2-19
sents the stretching work that needs to be done to increase the surface area Some consequences
of the liquid by a unit amount. of surface tension.

To visualize how surface tension arises, we present a microscopic view in () © Pegasus/Visuals Unlimited.

. . . .. (b) © Dennis Drenner/Visuals Unlimited.
Fig. 2-20 by considering two liquid molecules, one at the surface and one
deep within the liquid body. The attractive forces applied on the interior
molecule by the surrounding molecules balance each other because of sym-
metry. But the attractive forces acting on the surface molecule are not sym-
metric, and the attractive forces applied by the gas molecules above are usu-
ally very small. Therefore, there is a net attractive force acting on the
molecule at the surface of the liquid, which tends to pull the molecules on
the surface toward the interior of the liquid. This force is balanced by the
repulsive forces from the molecules below the surface that are being com-

2—-7 = SURFACE TENSION AND CAPILLARY EFFECT %, \
@

pressed. The resulting compression effect causes the liquid to minimize its |- A molecule
surface area. This is the reason for the tendency of the liquid droplets to on the surface
attain a spherical shape, which has the minimum surface area for a given

volume.

You also may have observed, with amusement, that some insects can land | A molecule
on water or even walk on water (Fig. 2-19b) and that small steel needles inside the
can float on water. These phenomena are again made possible by surface liquid
tension that balances the weights of these objects.

To understand the surface tension effect better, consider a liquid film

(such as the film of a soap bubble) suspended on a U-shaped wire frame

with a movable side (Fig. 2-21). Normally, the liquid film tends to pull the FIGURE 2-20
movable wire inward in order to minimize its surface area. A force F needs to Attractive forces acting on a liquid
be applied on the movable wire in the opposite direction to balance this pull- molecule at the surface and deep
ing effect. The thin film in the device has two surfaces (the top and bottom inside the liquid.
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Rigid wire frame surfaces) exposed to air, and thus the length along which the tension acts in
this case is 2b. Then a force balance on the movable wire gives F = 2bo,
and thus the surface tension can be expressed as

F

= 2-35
S2b ¢ )

ag

Note that for » = 0.5 m, the force F' measured (in N) is simply the surface

tension in N/m. An apparatus of this kind with sufficient precision can be
used to measure the surface tension of various fluids.

In the U-shaped wire, the force F remains constant as the movable wire is

o, pulled to stretch the film and increase its surface area. When the movable
F wire is pulled a distance Ax, the surface area increases by AA = 2b Ax, and
Liquid film % Wire the work done W during this stretching process is

FIGURE 2-21 W = Force X Distance = F Ax = 2bo; Ax = o, AA
Stretching a liquid film with a since the force remains constant in this case. This result can also be inter-
U-shaped wire, and the forces acting preted as the surface energy of the film is increased by an amount o, AA
on the movable wire of length b. during this stretching process, which is consistent with the alternative inter-
pretation of o as surface energy. This is similar to a rubber band having
more potential (elastic) energy after it is stretched further. In the case of lig-
uid film, the work is used to move liquid molecules from the interior parts
to the surface against the attraction forces of other molecules. Therefore,
surface tension also can be defined as the work done per unit increase in the

surface area of the liquid.

The surface tension varies greatly from substance to substance, and with
temperature for a given substance, as shown in Table 2—4. At 20°C, for
example, the surface tension is 0.073 N/m for water and 0.440 N/m for mer-
cury surrounded by atmospheric air. Mercury droplets form spherical balls
that can be rolled like a solid ball on a surface without wetting the surface.

TABLE 2-4 The surface tension of a liquid, in general, decreases with temperature and
Surface tension of some fluids in becomes zero at the critical point (and thus there is no distinct liquid—vapor
air at 1 atm and 20°C (unless interface at temperatures above the critical point). The effect of pressure on
otherwise stated) surface tension is usually negligible.
Surface Tension The surface tension of a substance can be changed considerably by impu-
Fluid o, N/m* rities. Therefore, certain chemicals, called surfactants, can be added to a
Water: liquid to decrease its surface tension. For example, soaps and detergents
0°C 0.076 lower the surface tension of water and enable it to penetrate through the
20°C 0.073 small openings between fibers for more effective washing. But this also
100°C 0.059 means that devices whose operation depends on surface tension (such as
300°C 0.014 heat pipes) can be destroyed by the presence of impurities due to poor
Glycerin 0.063 workmanship.
SAE 30 oil 0.035 We speak of surface tension for liquids only at liquid-liquid or liquid—gas
Mercury 0.440 interfaces. Therefore, it is important to specify the adjacent liquid or gas
Ethyl alco?ol 0.023 when specifying surface tension. Also, surface tension determines the size
Blood, 37°C 0.058 of the liquid droplets that form. A droplet that keeps growing by the addi-
Gasoline 0.022 . . .
Ammonia 0.021 tion o_f more mass v§/111. brf:ak down when the surface tension can no longer
Soap solution 0.025 hold it together. This is like a balloon that will burst while being inflated

Kerosene 0.028 when the pressure inside rises above the strength of the balloon material.
A curved interface indicates a pressure difference (or “pressure jump”)
* Multiply by 0.06852 to convert to Ibf/ft. across the interface with pressure being higher on the concave side. The
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excess pressure AP inside a droplet or bubble above the atmospheric pres-
sure, for example, can be determined by considering the free-body diagram
of half a droplet or bubble (Fig. 2-22). Noting that surface tension acts
along the circumference and the pressure acts on the area, horizontal force
balances for the droplet and the bubble give

Droplet: QR0 = (TR)APyopier = APuopier = Pi — P, = RS (2-36)
) 4o,
Bubble: 2Q27R)oy = (TR)APyyppe = APpupe = Pi— P, = N (2-37)

where P; and P, are the pressures inside and outside the droplet or bubble,
respectively. When the droplet or bubble is in the atmosphere, P, is simply
atmospheric pressure. The factor 2 in the force balance for the bubble is due
to the bubble consisting of a film with rwo surfaces (inner and outer sur-
faces) and thus two circumferences in the cross section.

The excess pressure in a droplet (or bubble) also can be determined by
considering a differential increase in the radius of the droplet due to the
addition of a differential amount of mass and interpreting the surface ten-
sion as the increase in the surface energy per unit area. Then the increase in
the surface energy of the droplet during this differential expansion process
becomes

Wostaee = 0, dA = o, d(4wR?) = 87R0, dR

The expansion work done during this differential process is determined by
multiplying the force by distance to obtain

W, pansion = Force X Distance = F dR = (APA) dR = 47R* AP dR

Equating the two expressions above gives APy, = 207/R, which is the
same relation obtained before and given in Eq. 2-36. Note that the excess
pressure in a droplet or bubble is inversely proportional to the radius.

Capillary Effect

Another interesting consequence of surface tension is the capillary effect,
which is the rise or fall of a liquid in a small-diameter tube inserted into the
liquid. Such narrow tubes or confined flow channels are called capillaries.
The rise of kerosene through a cotton wick inserted into the reservoir of a
kerosene lamp is due to this effect. The capillary effect is also partially
responsible for the rise of water to the top of tall trees. The curved free sur-
face of a liquid in a capillary tube is called the meniscus.

It is commonly observed that water in a glass container curves up slightly
at the edges where it touches the glass surface; but the opposite occurs for
mercury: it curves down at the edges (Fig. 2-23). This effect is usually
expressed by saying that water wets the glass (by sticking to it) while mer-
cury does not. The strength of the capillary effect is quantified by the con-
tact (or wetting) angle ¢, defined as the angle that the tangent to the liquid
surface makes with the solid surface at the point of contact. The surface ten-
sion force acts along this tangent line toward the solid surface. A liquid is
said to wet the surface when ¢ < 90° and not to wet the surface when ¢ >
90°. In atmospheric air, the contact angle of water (and most other organic
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(”RZ)APdroplel

(a) Half a droplet
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(b) Half a bubble

FIGURE 2-22
The free-body diagram of half a
droplet and half a bubble.
)

¢

Water Mercury

(a) Wetting (b) Nonwetting
fluid fluid

FIGURE 2-23

The contact angle for wetting and
nonwetting fluids.
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FIGURE 2-24

The meniscus of colored water in a
4-mm-inner-diameter glass tube. Note
that the edge of the meniscus meets
the wall of the capillary tube at a very
small contact angle.

Photo by Gabrielle Trembley, Pennsylvania State
University. Used by permission.

Meniscus

FIGURE 2-25

The capillary rise of water and
the capillary fall of mercury in a
small-diameter glass tube.

Liquid

FIGURE 2-26

The forces acting on a liquid column
that has risen in a tube due to the
capillary effect.

liquids) with glass is nearly zero, ¢ = 0° (Fig. 2-24). Therefore, the surface
tension force acts upward on water in a glass tube along the circumference,
tending to pull the water up. As a result, water rises in the tube until the
weight of the liquid in the tube above the liquid level of the reservoir bal-
ances the surface tension force. The contact angle is 130° for mercury—glass
and 26° for kerosene—glass in air. Note that the contact angle, in general, is
different in different environments (such as another gas or liquid in place of
air).

The phenomenon of capillary effect can be explained microscopically by
considering cohesive forces (the forces between like molecules, such as
water and water) and adhesive forces (the forces between unlike molecules,
such as water and glass). The liquid molecules at the solid-liquid interface
are subjected to both cohesive forces by other liquid molecules and adhesive
forces by the molecules of the solid. The relative magnitudes of these forces
determine whether a liquid wets a solid surface or not. Obviously, the water
molecules are more strongly attracted to the glass molecules than they are to
other water molecules, and thus water tends to rise along the glass surface.
The opposite occurs for mercury, which causes the liquid surface near the
glass wall to be suppressed (Fig. 2-25).

The magnitude of the capillary rise in a circular tube can be determined
from a force balance on the cylindrical liquid column of height / in the tube
(Fig. 2-26). The bottom of the liquid column is at the same level as the free
surface of the reservoir, and thus the pressure there must be atmospheric
pressure. This balances the atmospheric pressure acting at the top surface,
and thus these two effects cancel each other. The weight of the liquid col-
umn is approximately

W =mg = pVg = pg(mR’h)
Equating the vertical component of the surface tension force to the weight
gives
W = Foaee = pe(mR*h) = 2R0 cos ¢
Solving for & gives the capillary rise to be

20,
h=——cos¢

(2-38)
pgR

Capillary rise: (R = constant)
This relation is also valid for nonwetting liquids (such as mercury in glass)
and gives the capillary drop. In this case ¢ > 90° and thus cos ¢ < 0,
which makes & negative. Therefore, a negative value of capillary rise corre-
sponds to a capillary drop (Fig. 2-25).

Note that the capillary rise is inversely proportional to the radius of the
tube. Therefore, the thinner the tube is, the greater the rise (or fall) of the
liquid in the tube. In practice, the capillary effect is usually negligible in
tubes whose diameter is greater than 1 cm. When pressure measurements
are made using manometers and barometers, it is important to use suffi-
ciently large tubes to minimize the capillary effect. The capillary rise is also
inversely proportional to the density of the liquid, as expected. Therefore,
lighter liquids experience greater capillary rises. Finally, it should be kept in
mind that Eq. 2-38 is derived for constant-diameter tubes and should not be
used for tubes of variable cross section.
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EXAMPLE 2-5 The Capillary Rise of Water in a Tube

A 0.6-mm-diameter glass tube is inserted into water at 20°C in a cup. Deter-
mine the capillary rise of water in the tube (Fig. 2-27).

SOLUTION The rise of water in a slender tube as a result of the capillary
effect is to be determined.

Assumptions 1 There are no impurities in the water and no contamination
on the surfaces of the glass tube. 2 The experiment is conducted in atmos-
pheric air.

Properties The surface tension of water at 20°C is 0.073 N/m (Table 2-3).
The contact angle of water with glass is 0° (from preceding text). We take
the density of liquid water to be 1000 kg/m3.

Analysis The capillary rise is determined directly from Eq. 2-15 by substi-
tuting the given values, yielding

20, 2(0.073 N/m)
cos ¢ = 3 2 =
pgR (1000 kg/m”)(9.81 m/s°)(0.3 X 10~ °m)

= 0.050 m = 5.0 cm

i (lkg . m/sz)
(cos 0°) N

Therefore, water rises in the tube 5 cm above the liquid level in the cup.
Discussion Note that if the tube diameter were 1 cm, the capillary rise
would be 0.3 mm, which is hardly noticeable to the eye. Actually, the capil-
lary rise in a large-diameter tube occurs only at the rim. The center does not
rise at all. Therefore, the capillary effect can be ignored for large-diameter
tubes.
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A 2mR0, cos ¢
\V/T
Air h
Y _L I
Water W
FIGURE 2-27

Schematic for Example 2-5.

SUMMARY

In this chapter various properties commonly used in fluid
mechanics are discussed. The mass-dependent properties of a
system are called extensive properties and the others, inten-
sive properties. Density is mass per unit volume, and specific
volume 1is volume per unit mass. The specific gravity is
defined as the ratio of the density of a substance to the den-
sity of water at 4°C,

sG ="

PH,0
The ideal-gas equation of state is expressed as
P = pRT

where P is the absolute pressure, 7 is the thermodynamic
temperature, p is the density, and R is the gas constant.

At a given temperature, the pressure at which a pure sub-
stance changes phase is called the saturation pressure. For
phase-change processes between the liquid and vapor phases
of a pure substance, the saturation pressure is commonly
called the vapor pressure P,. Vapor bubbles that form in the

low-pressure regions in a liquid (a phenomenon called cavita-
tion) collapse as they are swept away from the low-pressure
regions, generating highly destructive, extremely high-pressure
waves.

Energy can exist in numerous forms, and their sum consti-
tutes the fotal energy E (or e on a unit-mass basis) of a sys-
tem. The sum of all microscopic forms of energy is called the
internal energy U of a system. The energy that a system pos-
sesses as a result of its motion relative to some reference
frame is called kinetic energy expressed per unit mass as
ke = V?/2, and the energy that a system possesses as a result
of its elevation in a gravitational field is called potential
energy expressed per unit mass as pe = gz.

The compressibility effects in a fluid are represented by the
coefficient of compressibility « (also called bulk modulus
of elasticity) defined as

)
K av)r, P\op)r = " Awv
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The property that represents the variation of the density of
a fluid with temperature at constant pressure is the volume
expansion coefficient (or volume expansivity) B, defined as

pol(2) - () ot
v\aT/p p\oT/, AT

The viscosity of a fluid is a measure of its resistance to

deformation. The tangential force per unit area is called shear

stress and is expressed for simple shear flow between plates
(one-dimensional flow) as

where u is the coefficient of viscosity or the dynamic (or
absolute) viscosity of the fluid, u is the velocity component in
the flow direction, and y is the direction normal to the flow
direction. The fluids that obey this linear relationship are called
Newtonian fluids. The ratio of dynamic viscosity to density is
called the kinematic viscosity v.

The pulling effect on the liquid molecules at an interface
caused by the attractive forces of molecules per unit length is
called surface tension o, The excess pressure AP inside a
spherical droplet or bubble is given by

4o
and APy, = P, — P, = R

s

20,
APdmp]elzf)i_P0=7

REFERENCES AND SUGGESTED READING

where P, and P, are the pressures inside and outside the
droplet or bubble. The rise or fall of a liquid in a small-diameter
tube inserted into the liquid due to surface tension is called
the capillary effect. The capillary rise or drop is given by

20, cos &

PgR
where ¢ is the contact angle. The capillary rise is inversely
proportional to the radius of the tube and is negligible for
tubes whose diameter is larger than about 1 cm.

Density and viscosity are two of the most fundamental
properties of fluids, and they are used extensively in the
chapters that follow. In Chap. 3, the effect of density on the
variation of pressure in a fluid is considered, and the hydro-
static forces acting on surfaces are determined. In Chap. 8,
the pressure drop caused by viscous effects during flow is
calculated and used in the determination of the pumping
power requirements. Viscosity is also used as a key property
in the formulation and solutions of the equations of fluid
motion in Chaps. 9 and 10.

h =

1. E. C. Bingham. “An Investigation of the Laws of Plastic
Flow,” U.S. Bureau of Standards Bulletin, 13, pp.
309-353, 1916.

2. Y. A. Cengel and M. A. Boles. Thermodynamics: An
Engineering Approach, 4th ed. New York: McGraw-Hill,
2002.

3. C. T. Crowe, J. A. Roberson, and D. F. Elger. Engineering
Fluid Mechanics, 7th ed. New York: Wiley, 2001.

4. R. W. Fox and A. T. McDonald. Introduction to Fluid
Mechanics, 5th ed. New York: Wiley, 1999.

5. D. C. Giancoli. Physics, 3rd ed. Upper Saddle River, NJ:
Prentice Hall, 1991.

6. M. C. Potter and D. C. Wiggert. Mechanics of Fluids, 2nd
ed. Upper Saddle River, NJ: Prentice Hall, 1997.

7. Y. S. Touloukian, S. C. Saxena, and P. Hestermans.
Thermophysical Properties of Matter, The TPRC Data
Series, Vol. 11, Viscosity. New York: Plenum, 1975.

8. L. Trefethen. “Surface Tension in Fluid Mechanics.” In
Illustrated Experiments in Fluid Mechanics. Cambridge,
MA: MIT Press, 1972.

9. The U.S. Standard Atmosphere. Washington, DC: U.S.
Government Printing Office, 1976.

10. M. Van Dyke. An Album of Fluid Motion. Stanford, CA:
Parabolic Press, 1982.

11. F. M. White. Fluid Mechanics, 5th ed. New York:
McGraw-Hill, 2003.

12. C. L. Yaws, X. Lin, and L. Bu. “Calculate Viscosities for
355 Compounds. An Equation Can Be Used to Calculate
Liquid Viscosity as a Function of Temperature,” Chemical
Engineering, 101, no. 4, pp. 1110-1128, April 1994.

13. C. L. Yaws. Handbook of Viscosity. 3 Vols. Houston, TX:
Gulf Publishing, 1994.

WWW.Enqinocnr% EBooKsPdf.com



cen72367_ch02.gxd 10/29/04 2:20 PM Page 57
Printed freen POF by LPS

CHAPTER 2

— Guest Authors: G. C. Lauchle and M. L. Billet,
N\ Penn State University

Cavitation is the rupture of a liquid, or of a fluid—solid interface, caused by a
reduction of the local static pressure produced by the dynamic action of the
fluid in the interior and/or boundaries of a liquid system. The rupture is the
formation of a visible bubble. Liquids, such as water, contain many micro-
scopic voids that act as cavitation nuclei. Cavitation occurs when these
nuclei grow to a significant, visible size. Although boiling is also the forma-
tion of voids in a liquid, we usually separate this phenomenon from cavita-
tion because it is caused by an increase in temperature, rather than by a
reduction in pressure. Cavitation can be used in beneficial ways, such as in
ultrasonic cleaners, etchers, and cutters. But more often than not, cavitation
is to be avoided in fluid flow applications because it spoils hydrodynamic
performance, it causes extremely loud noise and high vibration levels, and it
damages (erodes) the surfaces that support it. When cavitation bubbles enter
regions of high pressure and collapse, the underwater shock waves some-
times create minute amounts of light. This phenomenon is called sonolumi-
nescence.

Body cavitation is illustrated in Fig. 2-28. The body is a model of the under-
water bulbulous bow region of a surface ship. It is shaped this way because
located within it is a sound navigation and ranging (sonar) system that is
spherical in shape. This part of the surface ship is thus called a sonar dome. As
ship speeds get faster and faster some of these domes start to cavitate and the
noise created by the cavitation renders the sonar system useless. Naval archi-
tects and fluid dynamicists attempt to design these domes so that they will not
cavitate. Model-scale testing allows the engineer to see first hand whether a
given design provides improved cavitation performance. Because such tests are
conducted in water tunnels, the conditions of the test water should have suffi-
cient nuclei to model those conditions in which the prototype operates. This
assures that the effect of liquid tension (nuclei distribution) is minimized.
Important variables are the gas content level (nuclei distribution) of the water,
the temperature, and the hydrostatic pressure at which the body operates. Cavi-
tation first appears—as either the speed V is increased, or as the submergence
depth £ is decreased—at the minimum pressure point C, of the body. Thus,
good hydrodynamic design requires 2(P., — P,)/pV?* > C,,.» Where p is den-
sity, P., = pgh is the reference to static pressure, C, is the pressure coefficient
(Chap. 7), and P, is the vapor pressure of water.
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(b)

FIGURE 2-28

(a) Vaporous cavitation occurs in
water that has very little entrained
gas, such as that found very deep in

a body of water. Cavitation bubbles
are formed when the speed of the
body—in this case the bulbulous bow
region of a surface ship sonar dome—
increases to the point where the local
static pressure falls below the vapor
pressure of the water. The cavitation
bubbles are filled essentially with
water vapor. This type of cavitation
is very violent and noisy. (b) On the
other hand, in shallow water, there is
much more entrained gas in the water
to act as cavitation nuclei. That’s
because of the proximity of the dome
to the atmosphere at the free surface.
The cavitation bubbles first appear at
a slower speed, and hence at a higher
local static pressure. They are
predominantly filled with the gases
that are entrained in the water, so this
is known as gaseous cavitation.

Reprinted by permission of G. C. Lauchle
and M. L. Billet, Penn State University.
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PROBLEMS*

Density and Specific Gravity

2-1C What is the difference between intensive and exten-
sive properties?

2-2C What is specific gravity? How is it related to density?

2-3C Under what conditions is the ideal-gas assumption
suitable for real gases?

2-4C What is the difference between R and R,? How are
these two related?

2-5 A spherical balloon with a diameter of 6 m is filled
with helium at 20°C and 200 kPa. Determine the mole num-
ber and the mass of the helium in the balloon. Answers: 9.28
kmol, 37.2 kg

2-6 & Reconsider Prob. 2-5. Using EES (or other) soft-

B ware, investigate the effect of the balloon diame-
ter on the mass of helium contained in the balloon for the
pressures of (a) 100 kPa and (b) 200 kPa. Let the diameter
vary from 5 m to 15 m. Plot the mass of helium against the
diameter for both cases.

2-7 The pressure in an automobile tire depends on the tem-
perature of the air in the tire. When the air temperature is
25°C, the pressure gage reads 210 kPa. If the volume of the
tire is 0.025 m3, determine the pressure rise in the tire when
the air temperature in the tire rises to 50°C. Also, determine
the amount of air that must be bled off to restore pressure to
its original value at this temperature. Assume the atmospheric
pressure to be 100 kPa.

FIGURE P2-7

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the S| users can ignore them.
Problems with the @ icon are solved using EES, and complete
solutions together with parametric studies are included on the
enclosed DVD Problems with the B icon are comprehensive in
nature and are intended to be solved with a computer, preferably
using the EES software that accompanies this text.

2-8E The air in an automobile tire with a volume of 0.53
ft® is at 90°F and 20 psig. Determine the amount of air that
must be added to raise the pressure to the recommended
value of 30 psig. Assume the atmospheric pressure to be 14.6
psia and the temperature and the volume to remain constant.
Answer: 0.0260 Ibm

2-9E A rigid tank contains 20 lbm of air at 20 psia and
70°F. More air is added to the tank until the pressure and
temperature rise to 35 psia and 90°F, respectively. Determine
the amount of air added to the tank. Answer: 13.7 Ibm

2-10 3} The density of atmospheric air varies with eleva-

G tion, decreasing with increasing altitude. (a)
Using the data given in the table, obtain a relation for the
variation of density with elevation, and calculate the density
at an elevation of 7000 m. (b) Calculate the mass of the
atmosphere using the correlation you obtained. Assume the
earth to be a perfect sphere with a radius of 6377 km, and
take the thickness of the atmosphere to be 25 km.

z, km p, kg/m3
6377 1.225
6378 1.112
6379 1.007
6380 0.9093
6381 0.8194
6382 0.7364
6383 0.6601
6385 0.5258
6387 0.4135
6392 0.1948
6397 0.08891
6402 0.04008

Vapor Pressure and Cavitation

2-11C  What is vapor pressure? How is it related to satura-
tion pressure?

2-12C Does water boil at higher temperatures at higher
pressures? Explain.

2-13C If the pressure of a substance is increased during a
boiling process, will the temperature also increase or will it
remain constant? Why?

2-14C  What is cavitation? What causes it?

2-15 In a piping system, the water temperature remains
under 40°C. Determine the minimum pressure allowed in the
system to avoid cavitation.

2-16 The analysis of a propeller that operates in water at
20°C shows that the pressure at the tips of the propeller drops
to 2 kPa at high speeds. Determine if there is a danger of cav-
itation for this propeller.
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2-17E The analysis of a propeller that operates in water at
70°F shows that the pressure at the tips of the propeller drops
to 0.1 psia at high speeds. Determine if there is a danger of
cavitation for this propeller.

2-18 A pump is used to transport water to a higher reser-
voir. If the water temperature is 25°C, determine the lowest
pressure that can exist in the pump without cavitation.

Energy and Specific Heats

2-19C What is the difference between the macroscopic and
microscopic forms of energy?

2-20C What is total energy? Identify the different forms of
energy that constitute the total energy.

2-21C List the forms of energy that contribute to the inter-
nal energy of a system.

2-22C How are heat, internal energy, and thermal energy
related to each other?

2-23C What is flow energy? Do fluids at rest possess any
flow energy?

2-24C How do the energies of a flowing fluid and a fluid
at rest compare? Name the specific forms of energy associ-
ated with each case.

2-25C Using average specific heats, explain how internal
energy changes of ideal gases and incompressible substances
can be determined.

2-26C Using average specific heats, explain how enthalpy
changes of ideal gases and incompressible substances can be
determined.

Coefficient of Compressibility

2-27C What does the coefficient of compressibility of a
fluid represent? How does it differ from isothermal com-
pressibility?

2-28C What does the coefficient of volume expansion of a
fluid represent? How does it differ from the coefficient of
compressibility?

2-29C Can the coefficient of compressibility of a fluid be
negative? How about the coefficient of volume expansion?

2-30 It is observed that the density of an ideal gas decreases
by 10 percent when compressed isothermally from 10 atm to
11 atm. Determine the percent decrease in density of the gas
if it is compressed isothermally from 100 atm to 101 atm.

2-31 Using the definition of the coefficient of volume
expansion and the expression Bigey g0 = 1/7, show that the
percent increase in the specific volume of an ideal gas during
isobaric expansion is equal to the percent increase in absolute
temperature.

2-32 Water at 1 atm pressure is compressed to 800 atm
pressure isothermally. Determine the increase in the density
of water. Take the isothermal compressibility of water to be
4.80 X 1073 atm™!.

2-33 Water at 15°C and 1 atm pressure is heated to 100°C
at constant pressure. Using coefficient of volume expansion
data, determine the change in the density of water.

Answer: —38.7 kg/m3

2-34 Saturated refrigerant-134a liquid at 10°C is cooled to
0°C at constant pressure. Using coefficient of volume expan-
sion data, determine the change in the density of the refriger-
ant.

2-35 A water tank is completely filled with liquid water at
20°C. The tank material is such that it can withstand tension
caused by a volume expansion of 2 percent. Determine the
maximum temperature rise allowed without jeopardizing
safety.

2-36 Repeat Prob. 2-35 for a volume expansion of 1 per-
cent for water.

2-37 The density of seawater at a free surface where the
pressure is 98 kPa is approximately 1030 kg/m?. Taking the
bulk modulus of elasticity of seawater to be 2.34 X 10° N/m?
and expressing variation of pressure with depth z as dP =
pg dz determine the density and pressure at a depth of
2500 m. Disregard the effect of temperature.

Viscosity

2-38C What is viscosity? What is the cause of it in liquids
and in gases? Do liquids or gases have higher dynamic vis-
cosities?

2-39C What is a Newtonian fluid? Is water a Newtonian
fluid?

2-40C Consider two identical small glass balls dropped
into two identical containers, one filled with water and the
other with oil. Which ball will reach the bottom of the con-
tainer first? Why?

2-41C How does the dynamic viscosity of (a) liquids and
(b) gases vary with temperature?

2-42C How does the kinematic viscosity of (a) liquids and
(b) gases vary with temperature?

2-43 A 50-cm X 30-cm X 20-cm block weighing 150 N is
to be moved at a constant velocity of 0.8 m/s on an inclined
surface with a friction coefficient of 0.27. (a) Determine the
force F that needs to be applied in the horizontal direction.
(b) If a 0.4-mm-thick oil film with a dynamic viscosity of
0.012 Pa - s is applied between the block and inclined sur-
face, determine the percent reduction in the required force.

\ . V=0.8 m/s

50 cm

ISON‘

FIGURE P2-43
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2-44 Consider the flow of a fluid with viscosity u through a
circular pipe. The velocity profile in the pipe is given as u(r)
= Uy (1 — r"/R"), where u,,, is the maximum flow velocity,
which occurs at the centerline; r is the radial distance from
the centerline; and u(r) is the flow velocity at any position r.
Develop a relation for the drag force exerted on the pipe wall
by the fluid in the flow direction per unit length of the pipe.

U(r) = Uy (1 = r"IR™)

FIGURE P2-44

2-45 A thin 20-cm X 20-cm flat plate is pulled at 1 m/s
horizontally through a 3.6-mm-thick oil layer sandwiched
between two plates, one stationary and the other moving at a
constant velocity of 0.3 m/s, as shown in Fig. P2—45. The
dynamic viscosity of oil is 0.027 Pa - s. Assuming the veloc-
ity in each oil layer to vary linearly, (a) plot the velocity pro-
file and find the location where the oil velocity is zero and
(b) determine the force that needs to be applied on the plate
to maintain this motion.

Fixed wall
0 ]
Ihl =1 mm V=1m/s F
hp =26 mm v, =03 ms
[ ]
Moving wall
FIGURE P2-45

2-46 A frustum-shaped body is rotating at a constant angu-
lar speed of 200 rad/s in a container filled with SAE 10W oil

FIGURE P2-46

at 20°C (u = 0.1 Pa - s), as shown in Fig. P2-46. If the
thickness of the oil film on all sides is 1.2 mm, determine the
power required to maintain this motion. Also determine the
reduction in the required power input when the oil tempera-
ture rises to 80°C (u = 0.0078 Pa - s).

2-47 The clutch system shown in Fig. P2-47 is used to
transmit torque through a 3-mm-thick oil film with u =
0.38 N - s/m? between two identical 30-cm-diameter disks.
When the driving shaft rotates at a speed of 1450 rpm, the
driven shaft is observed to rotate at 1398 rpm. Assuming a
linear velocity profile for the oil film, determine the transmit-
ted torque.

I\
Driving Driven
wwy  shaft shaft  yymm
V#2772 30 cm 3 mm VA
-+ %mb\ SAE 30W oil
FIGURE P2-47

2-48 [l Reconsider Prob. 2-47. Using EES (or other)

software, investigate the effect of oil film thick-
ness on the torque transmitted. Let the film thickness vary
from 0.1 mm to 10 mm. Plot your results, and state your con-
clusions.

2-49 The viscosity of some fluids changes when a strong
electric field is applied on them. This phenomenon is known
as the electrorheological (ER) effect, and fluids that exhibit
such behavior are known as ER fluids. The Bingham plastic
model for shear stress, which is expressed as 7 = T, +
u(duldy) is widely used to describe ER fluid behavior
because of its simplicity. One of the most promising applica-
tions of ER fluids is the ER clutch. A typical multidisk ER
clutch consists of several equally spaced steel disks of inner
radius R, and outer radius R,, N of them attached to the
input shaft. The gap & between the parallel disks is filled
with a viscous fluid. (a) Find a relationship for the torque
generated by the clutch when the output shaft is stationary

Input shaft Output shaft

Plates mounted | Plates mounted on shell
oninputshaft y y y
Variable magnetic field

FIGURE P2—49
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and (b) calculate the torque for an ER clutch with N = 11 for
R, = 50 mm, R, = 200 mm, and 72 = 2400 rpm if the fluid is
SAE 10 with w = 0.1 Pa +s, 7, = 2.5 kPa, and 7 = 1.2 mm.
Answer: (b) 2060 N + m ’

2-50 The viscosity of some fluids, called magnetorheologi-
cal (MR) fluids, changes when a magnetic field is applied.
Such fluids involve micron-sized magnetizable particles sus-
pended in an appropriate carrier liquid, and are suitable for use
in controllable hydraulic clutches. See Fig. P2-49. The MR
fluids can have much higher viscosities than the ER fluids, and
they often exhibit shear-thinning behavior in which the viscos-
ity of the fluid decreases as the applied shear force increases.
This behavior is also known as pseudoplastic behavior, and can
be successfully represented by Herschel-Bulkley constitutive
model expressed as 7 = 7, + K(du/dy)". Here 7 is the shear
stress applied, 7, is the yield stress, K is the consistency index,
and m is the power index. For a Herschel-Bulkley fluid with 7,
=900 Pa, K = 58 Pa - s, and m = 0.82, (a) find a relation-
ship for the torque transmitted by an MR clutch for N plates
attached to the input shaft when the input shaft is rotating at
an angular speed of w while the output shaft is stationary and
(b) calculate the torque transmitted by such a clutch with N
= 11 plates for R, = 50 mm, R, = 200 mm, n" = 2400 rpm,
and 7 = 1.2 mm.

2-51 The viscosity of a fluid is to be measured by a vis-
cometer constructed of two 75-cm-long concentric cylinders.
The outer diameter of the inner cylinder is 15 cm, and the
gap between the two cylinders is 0.12 cm. The inner cylinder
is rotated at 200 rpm, and the torque is measured to be 0.8 N
+ m. Determine the viscosity of the fluid.

200 rpm
0.12 cm
Fluid
Stationary
cylinder
FIGURE P2-51

2-52E The viscosity of a fluid is to be measured by a vis-
cometer constructed of two 3-ft-long concentric cylinders. The
inner diameter of the outer cylinder is 6 in, and the gap between
the two cylinders is 0.05 in. The outer cylinder is rotated at 250
rpm, and the torque is measured to be 1.2 Ibf - ft. Determine the
viscosity of the fluid. Answer: 0.000648 Ib - s/ft?

2-53 In regions far from the entrance, fluid flow through a
circular pipe is one-dimensional, and the velocity profile for

laminar flow is given by u(r) = u,, (1 — r*R?), where R is
the radius of the pipe, r is the radial distance from the center of
the pipe, and u,,,, is the maximum flow velocity, which occurs
at the center. Obtain (a) a relation for the drag force applied by
the fluid on a section of the pipe of length L and (b) the value
of the drag force for water flow at 20°C with R = 0.08 m, L
=15m,u,,, =3 m/s, and u = 0.0010 kg/m - s.

‘max

(1~ )

L=
0 ?

FIGURE P2-53

2-54 Repeat Prob. 2-53 for u
0.942 N

= 5 m/s. Answer: (b)

max

Surface Tension and Capillary Effect

2-55C What is surface tension? What is it caused by? Why
is the surface tension also called surface energy?

2-56C Consider a soap bubble. Is the pressure inside the
bubble higher or lower than the pressure outside?

2-57C What is the capillary effect? What is it caused by?
How is it affected by the contact angle?

2-58C A small-diameter tube is inserted into a liquid
whose contact angle is 110°. Will the level of liquid in the
tube rise or drop? Explain.

2-59C Is the capillary rise greater in small- or large-diameter
tubes?

2-60E A 0.03-in-diameter glass tube is inserted into
kerosene at 68°F. The contact angle of kerosene with a glass
surface is 26°. Determine the capillary rise of kerosene in the
tube. Answer: 0.65 in

— +~—0.03 in

f
h
'

Kerosene

FIGURE P2-60E

2-61 A 1.9-mm-diameter tube is inserted into an unknown
liquid whose density is 960 kg/m?, and it is observed that the
liquid rises 5 mm in the tube, making a contact angle of 15°.
Determine the surface tension of the liquid.
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2-62 Determine the gage pressure inside a soap bub-
ble of diameter (a) 0.2 cm and (b) 5 cm at 20°C.

2-63 Nutrients dissolved in water are carried to upper parts
of plants by tiny tubes partly because of the capillary effect.
Determine how high the water solution will rise in a tree in a
0.005-mm-diameter tube as a result of the capillary effect.
Treat the solution as water at 20°C with a contact angle of
15°.  Answer: 5.75 m

solution

FIGURE P2-63

2-64 The surface tension of a liquid is to be measured using
a liquid film suspended on a U-shaped wire frame with an
8-cm-long movable side. If the force needed to move the wire
is 0.012 N, determine the surface tension of this liquid in air.

2-65 Contrary to what you might expect, a solid steel ball
can float on water due to the surface tension effect. Deter-
mine the maximum diameter of a steel ball that would float
on water at 20°C. What would your answer be for an alu-
minum ball? Take the densities of steel and aluminum balls
to be 7800 kg/m? and 2700 kg/m?, respectively.

Review Probhlems

2-66 The absolute pressure of an automobile tire is mea-
sured to be 290 kPa before a trip and 310 kPa after the trip.
Assuming the volume of the tire remains constant at 0.022 m?,
determine the percent increase in the absolute temperature of
the air in the tire.

2-67 A 20-m? tank contains nitrogen at 25°C and 800 kPa.
Some nitrogen is allowed to escape until the pressure in the
tank drops to 600 kPa. If the temperature at this point is
20°C, determine the amount of nitrogen that has escaped.
Answer: 42.9 kg

2-68 The composition of a liquid with suspended solid par-
ticles is generally characterized by the fraction of solid parti-

cles either by weight or mass C, .. = m,/m,, or by volume,
C, o = V,/V,, where m is mass and V is volume. The sub-
scripts s and m indicate solid and mixture, respectively.
Develop an expression for the specific gravity of a water-
based suspension in terms of C, and C,

s, mass 5, vol*

2-69 The specific gravities of solids and carrier fluids of a
slurry are usually known, but the specific gravity of the slurry
depends on the concentration of the solid particles. Show that
the specific gravity of a water-based slurry can be expressed
in terms of the specific gravity of the solid SG, and the mass
concentration of the suspended solid particles C as

1
I + C ass(1/SG; — 1)

mass

SG,, =

2-70E The pressure on the suction side of pumps is typi-
cally low, and the surfaces on that side of the pump are sus-
ceptible to cavitation, especially at high fluid temperatures. If
the minimum pressure on the suction side of a water pump is
0.95 psia absolute, determine the maximum water tempera-
ture to avoid the danger of cavitation.

2-71 A closed tank is partially filled with water at 60°C. If
the air above the water is completely evacuated, determine
the absolute pressure in the evacuated space. Assume the
temperature to remain constant.

2-72 3 The variation of the dynamic viscosity of water
S with absolute temperature is given as

T, K u, Pa-s
273.15 1.787 x 1073
278.15 1.519 x 103
283.15 1.307 x 1073
293.15 1.002 x 1073
303.15 7.975 x 1074
313.15 6.529 x 1074
333.15 4.665 x 1074
353.15 3.547 x 1074
373.15 2.828 x 1074

Using tabulated data, develop a relation for viscosity in the
form of w = w(T) = A + BT + CT? + DT3 + ET*. Using
the relation developed, predict the dynamic viscosity of water
at 50°C at which the reported value is 5.468 X 107* Pa - s.
Compare your result with the results of Andrade’s equation,
which is given in the form of w = D - ¢, where D and B
are constants whose values are to be determined using the
viscosity data given.

2-73 Consider laminar flow of a Newtonian fluid of viscos-
ity u between two parallel plates. The flow is one-dimen-
sional, and the velocity profile is given as u(y) = 4u,,,
[y/h — (y/h)?], where y is the vertical coordinate from the
bottom surface, & is the distance between the two plates, and
Uy 15 the maximum flow velocity that occurs at midplane.
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Develop a relation for the drag force exerted on both plates
by the fluid in the flow direction per unit area of the plates.

u(y) = 4oy [V = (y/h)2]

=W

y T ‘max

0
FIGURE P2-73

2-74 Some non-Newtonian fluids behave as a Bingham
plastic for which shear stress can be expressed as 7 = 7, +
u(du/dr). For laminar flow of a Bingham plastic in a horizon-
tal pipe of radius R, the velocity profile is given as u(r) =
(AP/ApL)(r? — R*) + (7,/u)(r — R), where AP/L is the con-
stant pressure drop along the pipe per unit length, w is the
dynamic viscosity, r is the radial distance from the centerline,
and 7, is the yield stress of Bingham plastic. Determine (a)
the shear stress at the pipe wall and (b) the drag force acting
on a pipe section of length L.

2-75 In some damping systems, a circular disk immersed
in oil is used as a damper, as shown in Fig. P2-75. Show

rh

'S

| | Disk  Damping oil

FIGURE P2-75

that the damping torque is proportional to angular speed
in accordance with the relation Ty, = Co where C =
0.57u(1/a +1/b)R*. Assume linear velocity profiles on both
sides of the disk and neglect the tip effects.

2-76E A 0.9-in-diameter glass tube is inserted into mer-
cury, which makes a contact angle of 1408 with glass. Deter-
mine the capillary drop of mercury in the tube at 68°F.
Answer: 0.0175 in

2-77 Derive a relation for the capillary rise of a liquid
between two large parallel plates a distance ¢ apart inserted
into the liquid vertically. Take the contact angle to be ¢.

2-78 Consider a 30-cm-long journal bearing that is lubri-
cated with oil whose viscosity is 0.1 kg/m - s at 20°C at the
beginning of operation and 0.008 kg/m - s at the anticipated
steady operating temperature of 80°C. The diameter of the
shaft is 8 cm, and the average gap between the shaft and the
journal is 0.08 cm. Determine the torque needed to overcome
the bearing friction initially and during steady operation
when the shaft is rotated at 500 rpm.

Design and Essay Problems

2-79 Design an experiment to measure the viscosity of lig-
uids using a vertical funnel with a cylindrical reservoir of
height & and a narrow flow section of diameter D and length
L. Making appropriate assumptions, obtain a relation for vis-
cosity in terms of easily measurable quantities such as den-
sity and volume flow rate.

2-80 Write an essay on the rise of the fluid to the top of the
trees by capillary and other effects.

2-81 Write an essay on the oils used in car engines in dif-
ferent seasons and their viscosities.
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CHAPTER

PRESSURE AND
FLUID STATICS

motion. The fluid property responsible for those forces is pressure, OBJECTIVES

which is a normal force exerted by a fluid per unit area. We start this When you finish reading this chapter, you
should be able to

This chapter deals with forces applied by fluids at rest or in rigid-body

chapter with a detailed discussion of pressure, including absolute and gage

pressures, the pressure at a point, the variation of pressure with depth in a u Determine the variation of

gravitational field, the manometer, the barometer, and pressure measure- pressure in a fluid at rest

ment devices. This is followed by a discussion of the hydrostatic forces Calculate the forces exerted by a

applied on submerged bodies with plane or curved surfaces. We then con- fluid at rest on plane or curved

sider the buoyant force applied by fluids on submerged or floating bodies, STTETERIAERES

and discuss the stability of such bodies. Finally, we apply Newton’s second Anz_alyz_e the rig_id-body motiqn of

law of motion to a body of fluid in motion that acts as a rigid body and ana- fluids in gontalners QUrlng linear
acceleration or rotation

lyze the variation of pressure in fluids that undergo linear acceleration and

in rotating containers. This chapter makes extensive use of force balances

for bodies in static equilibrium, and it will be helpful if the relevant topics

from statics are first reviewed.
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3-1 - PRESSURE

Pressure is defined as a normal force exerted by a fluid per unit area. We
speak of pressure only when we deal with a gas or a liquid. The counterpart
of pressure in solids is normal stress. Since pressure is defined as force per
unit area, it has the unit of newtons per square meter (N/m?), which is called
a pascal (Pa). That is,

1Pa=1Nm?

The pressure unit pascal is too small for pressures encountered in prac-
tice. Therefore, its multiples kilopascal (1 kPa = 103 Pa) and megapascal
(1 MPa = 10° Pa) are commonly used. Three other pressure units com-
monly used in practice, especially in Europe, are bar, standard atmosphere,
and kilogram-force per square centimeter:

1 bar = 10° Pa = 0.1 MPa = 100 kPa
1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bars
1 kgf/em® = 9.807 N/cm? = 9.807 X 10* N/m* = 9.807 X 10* Pa
= 0.9807 bar
= 0.9679 atm

300 pounds

Note the pressure units bar, atm, and kgf/cm? are almost equivalent to each
other. In the English system, the pressure unit is pound-force per square
inch (Ibf/in?, or psi), and 1 atm = 14.696 psi. The pressure units kgf/cm?
and Ibf/in? are also denoted by kg/cm? and Ib/in?, respectively, and they are
commonly used in tire gages. It can be shown that 1 kgf/cm? = 14.223 psi.

Pressure is also used for solids as synonymous to normal stress, which is

ﬁﬁ force acting perpendicular to the surface per unit area. For example, a 150-
P=6psi pound person with a total foot imprint area of 50 in” exerts a pressure of
g o W _ 150 lbzf - 150 1bf/50 in?> = 3.0 psi on the floor (Fig. 3-1). If the person stands on one

foot, the pressure doubles. If the person gains excessive weight, he or she is
likely to encounter foot discomfort because of the increased pressure on the

FIGURE 3-1 foot (the size of the foot does not change with weight gain). This also
The normal stress (or “pressure”) explains how a person can walk on fresh snow without sinking by wearing
on the feet of a chubby person is large snowshoes, and how a person cuts with little effort when using a sharp
much greater than on the feet of knife.

a slim person. The actual pressure at a given position is called the absolute pressure,

and it is measured relative to absolute vacuum (i.e., absolute zero pressure).
Most pressure-measuring devices, however, are calibrated to read zero in the

atmosphere (Fig. 3-2), and so they indicate the difference between the
(n absolute pressure and the local atmospheric pressure. This difference is
J.J‘_'_:"" '_ l/ | called the gage pressure. Pressures below atmospheric pressure are called
T e P vacuum pressures and are measured by vacuum gages that indicate the dif-
I""‘"ﬂ-..: . o Q:U ference between the atmospheric pressure and the absolute pressure.
Absolute, gage, and vacuum pressures are all positive quantities and are

w related to each other by
FIGURE 3-2 Pyage = Paos = P @1
Two basic pressure gages. P, =Py — P (3-2)

Dresser Instruments, Dresser, Inc. Used by oL . .
permission. This is illustrated in Fig. 3-3.
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Absolute Absolute FIGURE 3-3
vacuum : vacuum Absolute, gage, and vacuum pressures.

Like other pressure gages, the gage used to measure the air pressure in an
automobile tire reads the gage pressure. Therefore, the common reading of
32 psi (2.25 kgf/cm?) indicates a pressure of 32 psi above the atmospheric
pressure. At a location where the atmospheric pressure is 14.3 psi, for exam-
ple, the absolute pressure in the tire is 32 + 14.3 = 46.3 psi.

In thermodynamic relations and tables, absolute pressure is almost always
used. Throughout this text, the pressure P will denote absolute pressure
unless specified otherwise. Often the letters “a” (for absolute pressure) and
“g” (for gage pressure) are added to pressure units (such as psia and psig) to
clarify what is meant.

: EXAMPLE 3-1 Absolute Pressure of a Vacuum Chamber

® A vacuum gage connected to a chamber reads 5.8 psi at a location where
m the atmospheric pressure is 14.5 psi. Determine the absolute pressure in the
m Chamber.
u
SOLUTION The gage pressure of a vacuum chamber is given. The absolute
pressure in the chamber is to be determined.
Analysis The absolute pressure is easily determined from Eq. 3-2 to be

Pos = Py — Pype = 14.5 — 5.8 = 8.7 psi

Discussion Note that the /ocal value of the atmospheric pressure is used
when determining the absolute pressure.

Pressure at a Point

Pressure is the compressive force per unit area, and it gives the impression
of being a vector. However, pressure at any point in a fluid is the same in all
directions. That is, it has magnitude but not a specific direction, and thus it
is a scalar quantity. This can be demonstrated by considering a small
wedge-shaped fluid element of unit length (into the page) in equilibrium, as
shown in Fig. 3—4. The mean pressures at the three surfaces are P, P,, and
P;, and the force acting on a surface is the product of mean pressure and the
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FIGURE 34
Forces acting on a wedge-shaped fluid

. e (Ay=1)
element in equilibrium. x

surface area. From Newton’s second law, a force balance in the x- and z-
directions gives

2 F,=ma,=0: Py Az — Pslsinf =0 (3-3a)

1
EE._:maZZO: PZAx*P3lc059*§pgAxAz:0 (3-3h)

where p is the density and W = mg = pg Ax Az/2 is the weight of the fluid
element. Noting that the wedge is a right triangle, we have Ax = [ cos 6 and
Az = [ sin 6. Substituting these geometric relations and dividing Eq. 3-3a
by Az and Eq. 3-3b by Ax gives

P,—Py=0 (3-42)
1
PZ—P3—§pg Az=0 (3-4h)

The last term in Eq. 3-4b drops out as Az — 0 and the wedge becomes
infinitesimal, and thus the fluid element shrinks to a point. Then combining
the results of these two relations gives

P=P,=P;=P (3-5)

regardless of the angle 6. We can repeat the analysis for an element in the
xz-plane and obtain a similar result. Thus we conclude that the pressure at a
point in a fluid has the same magnitude in all directions. It can be shown in
the absence of shear forces that this result is applicable to fluids in motion
as well as fluids at rest.

Variation of Pressure with Depth

It will come as no surprise to you that pressure in a fluid at rest does not
change in the horizontal direction. This can be shown easily by considering
a thin horizontal layer of fluid and doing a force balance in any horizontal
direction. However, this is not the case in the vertical direction in a gravity
field. Pressure in a fluid increases with depth because more fluid rests on
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v

deeper layers, and the effect of this “extra weight” on a deeper layer is bal-
anced by an increase in pressure (Fig. 3-5).

To obtain a relation for the variation of pressure with depth, consider a
rectangular fluid element of height Az, length Ax, and unit depth (into the
page) in equilibrium, as shown in Fig. 3-6. Assuming the density of the
fluid p to be constant, a force balance in the vertical z-direction gives

EFz:maZ:O: Py Ax — P, Ax — pg AxAz =0 (3-6)

where W = mg = pg Ax Az is the weight of the fluid element. Dividing by
Ax and rearranging gives

AP =P, — P, =pgAz=1v,Az G-7 FIGURE 3-5
The pressure of a fluid at rest

increases with depth (as a result
of added weight).

where vy, = pg is the specific weight of the fluid. Thus, we conclude that the
pressure difference between two points in a constant density fluid is propor-
tional to the vertical distance Az between the points and the density p of the
fluid. In other words, pressure in a fluid increases linearly with depth. This |
is what a diver experiences when diving deeper in a lake. For a given fluid,
the vertical distance Az is sometimes used as a measure of pressure, and it is
called the pressure head. P,
We also conclude from Eq. 3-7 that for small to moderate distances, the l l l l l l l l l l l
variation of pressure with height is negligible for gases because of their low
density. The pressure in a tank containing a gas, for example, can be consid-
ered to be uniform since the weight of the gas is too small to make a signif- —| Az l —
w

icant difference. Also, the pressure in a room filled with air can be assumed
to be constant (Fig. 3-7). ‘ ‘ { ‘

If we take point 1 to be at the free surface of a liquid open to the atmo-
sphere (Fig. 3-8), where the pressure is the atmospheric pressure P,
the pressure at a depth 4 from the free surface becomes

then

atm®

P = P, + pgh or Pyoee = pgh (3-8 O *

Liquids are essentially incompressible substances, and thus the variation FIGURE 3-6
of density with depth is negligible. This is also the case for gases when the Free-body diagram of a rectangular
elevation change is not very large. The variation of density of liquids or fluid element in equilibrium.
gases with temperature can be significant, however, and may need to be
considered when high accuracy is desired. Also, at great depths such as
those encountered in oceans, the change in the density of a liquid can be
significant because of the compression by the tremendous amount of liquid
weight above.

The gravitational acceleration g varies from 9.807 m/s? at sea level to P, =1atm
9.764 m/s? at an elevation of 14,000 m where large passenger planes cruise.

This is a change of just 0.4 percent in this extreme case. Therefore, g can be
assumed to be constant with negligible error.

For fluids whose density changes significantly with elevation, a relation
for the variation of pressure with elevation can be obtained by dividing Eq.

AIR
(A 5-m-high room)

3-6 by Ax Az, and taking the limit as Az — 0. It gives Proom = 1006 2tm
dP
e = —pg (3-9)
FIGURE 3-7
The negative sign is due to our taking the positive z direction to be upward In a room filled with a gas, the
so that dP is negative when dz is positive since pressure decreases in an variation of pressure with height
upward direction. When the variation of density with elevation is known, is negligible.
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the pressure difference between points 1 and 2 can be determined by inte-

gration to be
Pl = Pa!m

@

2
v AP=P,— P = ,J pg dz (3-10)
‘ I
h

For constant density and constant gravitational acceleration, this relation
reduces to Eq. 3-7, as expected.
PP 4ok Pressurg in a fluid at resF is indepegdent Qf the shape or cross section (_)f
@ P2=Pun+ 8 the container. It changes with the vertical distance, but remains constant in
other directions. Therefore, the pressure is the same at all points on a hori-
zontal plane in a given fluid. The Dutch mathematician Simon Stevin
(1548-1620) published in 1586 the principle illustrated in Fig. 3-9. Note
that the pressures at points A, B, C, D, E, F, and G are the same since they
are at the same depth, and they are interconnected by the same static fluid.
However, the pressures at points A and / are not the same since these two
points cannot be interconnected by the same fluid (i.e., we cannot draw a
curve from point / to point H while remaining in the same fluid at all
times), although they are at the same depth. (Can you tell at which point the
pressure is higher?) Also, the pressure force exerted by the fluid is always
normal to the surface at the specified points.

A consequence of the pressure in a fluid remaining constant in the hori-
zontal direction is that the pressure applied to a confined fluid increases the
pressure throughout by the same amount. This is called Pascal’s law, after
Blaise Pascal (1623-1662). Pascal also knew that the force applied by a
fluid is proportional to the surface area. He realized that two hydraulic
cylinders of different areas could be connected, and the larger could be used
to exert a proportionally greater force than that applied to the smaller. “Pas-
cal’s machine” has been the source of many inventions that are a part of our
daily lives such as hydraulic brakes and lifts. This is what enables us to lift

FIGURE 3-8

Pressure in a liquid at rest increases
linearly with distance from the free
surface.

atm

If<1

Water

Py=Pp=Pc=Pp=Pp=Pp=Pg=Pyy+pgh
Py#P;

FIGURE 3-9
The pressure is the same at all points on a horizontal plane in a given fluid regardless of geometry, provided that the
points are interconnected by the same fluid.
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a car easily by one arm, as shown in Fig. 3—-10. Noting that P, = P, since Fy=PyA,
both pistons are at the same level (the effect of small height differences is

negligible, especially at high pressures), the ratio of output force to input Fr=Pd,
force is determined to be *
F F. F, A
p=pP, - L= 5 222 (3-11)
A A F A
The area ratio A,/A, is called the ideal mechanical advantage of the hydraulic A A
lift. Using a hydraulic car jack with a piston area ratio of A,/A; = 10, for O P, P @
example, a person can lift a 1000-kg car by applying a force of just 100 kgf
(= 908 N).

3-2 = THE MANOMETER FIGURE 3-10

Lifting of a large weight by
We notice from Eq. 3-7 that an elevation change of Az in a fluid at rest cor- a small force by the application
responds to AP/pg, which suggests that a fluid column can be used to mea- of Pascal’s law.
sure pressure differences. A device based on this principle is called a
manometer, and it is commonly used to measure small and moderate pres-
sure differences. A manometer mainly consists of a glass or plastic U-tube
containing one or more fluids such as mercury, water, alcohol, or oil. To
keep the size of the manometer to a manageable level, heavy fluids such as
mercury are used if large pressure differences are anticipated.

Consider the manometer shown in Fig. 3—11 that is used to measure the
pressure in the tank. Since the gravitational effects of gases are negligible,
the pressure anywhere in the tank and at position 1 has the same value. Fur-
thermore, since pressure in a fluid does not vary in the horizontal direction
within a fluid, the pressure at point 2 is the same as the pressure at point 1,
P, =P,

The differential fluid column of height 4 is in static equilibrium, and it is
open to the atmosphere. Then the pressure at point 2 is determined directly
from Eq. 3-8 to be

Py = Py + pgh (3-12) FIGURE 3-11

where p is the density of the fluid in the tube. Note that the cross-sectional The basic manometer.

area of the tube has no effect on the differential height 4, and thus the pres-
sure exerted by the fluid. However, the diameter of the tube should be large
enough (more than a few millimeters) to ensure that the surface tension

effect and thus the capillary rise is negligible. b —96Pa

atm

: EXAMPLE 3-2 Measuring Pressure with a Manometer

® A manometer is used to measure the pressure in a tank. The fluid used has
: a specific gravity of 0.85, and the manometer column height is 55 cm, as
m shown in Fig. 3-12. If the local atmospheric pressure is 96 kPa, determine
m the absolute pressure within the tank.
u
SOLUTION The reading of a manometer attached to a tank and the
atmospheric pressure are given. The absolute pressure in the tank is to be

determined.
Assumptions The fluid in the tank is a gas whose density is much lower FIGURE 3-12
than the density of manometer fluid. Schematic for Example 3-2.
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Properties The specific gravity of the manometer fluid is given to be 0.85.
We take the standard density of water to be 1000 kg/m?.

Analysis The density of the fluid is obtained by multiplying its specific
gravity by the density of water, which is taken to be 1000 kg/m3:

p = SG (pu,0) = (0.85)(1000 kg/m*) = 850 kg/m’
Then from Eq. 3-12,
P =Py, + pgh

IN 1 kP
= 96 kPa + (850 kg/m’)(9.81 m/s%)(0.55 m)( 2)( 2 z)
1 kg - m/s=/ \1000 N/m

= 100.6 kPa

Discussion Note that the gage pressure in the tank is 4.6 kPa.

Many engineering problems and some manometers involve multiple

immiscible fluids of different densities stacked on top of each other. Such

atm systems can be analyzed easily by remembering that (1) the pressure change

across a fluid column of height & is AP = pgh, (2) pressure increases down-

ward in a given fluid and decreases upward (i.e., Pyyom > Pyp)> and (3) two

points at the same elevation in a continuous fluid at rest are at the same
pressure.

The last principle, which is a result of Pascal’s law, allows us to “jump”
from one fluid column to the next in manometers without worrying about
pressure change as long as we don’t jump over a different fluid, and the
fluid is at rest. Then the pressure at any point can be determined by starting
with a point of known pressure and adding or subtracting pgh terms as we
FIGURE 3-13 advance toward the point of interest. For example, the pressure at the bot-
In stacked-up fluid layers, the pressure  tom of the tank in Fig. 3-13 can be determined by starting at the free sur-
change across a fluid layer of density face where the pressure is P,,,, moving downward until we reach point 1 at

atm?®

p and height & is pgh. the bottom, and setting the result equal to P,. It gives

Fluid 1

Fluid 2

Fluid 3

D =

A

Pym + p1ghy + paghs + psghs = P,

A flow section In the special case of all fluids having the same density, this relation reduces

or flow device to Eq. 3-12, as expected.
Fluid | A======= 5 Manometers are particularly well-suited to measure pressure drops across
- : == a horizontal flow section between two specified points due to the presence
I | of a device such as a valve or heat exchanger or any resistance to flow. This
(O] B = is done by connecting the two legs of the manometer to these two points, as

L shown in Fig. 3—14. The working fluid can be either a gas or a liquid whose
1 density is p;. The density of the manometer fluid is p,, and the differential
;Tl fluid height is A.
b

P A relation for the pressure difference P, — P, can be obtained by starting
A B at point 1 with P, moving along the tube by adding or subtracting the pgh
P terms until we reach point 2, and setting the result equal to P,:
FIGURE 3-14 Pl + p]g(a + h) - ngh - p8a = PZ (3-13)

Measuring the pressure drop across a Note that we jumped from point A horizontally to point B and ignored the

flow section or a flow device by a part underneath since the pressure at both points is the same. Simplifying,
differential manometer.

Py —= Py =(py — pgh (3-14)

WWW. Enginocrm% EBOOKS Pdf.com



cen72367_ch03.gxd 10/29/04 2:21 PM Page 73
Printed freen POF by LPS

73
CHAPTER 3

Note that the distance a has no effect on the result, but must be included in
the analysis. Also, when the fluid flowing in the pipe is a gas, then p, << p,
and the relation in Eq. 3—14 simplifies to P, — P, = p,gh.

| | . A . . .
EXAMPLE 3-3  Measuring Pressure with a Multifluid Manometer /\ oil
| | 7N
AIR (ﬁi‘

® The water in a tank is pressurized by air, and the pressure is measured by a

R multifluid manometer as shown in Fig. 3-15. The tank is located on a moun- 1
m tain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. ° T
m Determine the air pressure in the tank if h; = 0.1 m, h, = 0.2 m, and h; = WATER "

B 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3,
: 850 kg/m3, and 13,600 kg/m3, respectively. -+

SOLUTION The pressure in a pressurized water tank is measured by a multi-
fluid manometer. The air pressure in the tank is to be determined.
Assumption The air pressure in the tank is uniform (i.e., its variation with
elevation is negligible due to its low density), and thus we can determine the ||
pressure at the air-water interface. —
Properties The densities of water, oil, and mercury are given to be Mercury
1000 kg/m3, 850 kg/m3, and 13,600 kg/m?3, respectively.

Analysis Starting with the pressure at point 1 at the air-water interface,

——

moving along the tube by adding or subtracting the pgh terms until we reach ) FIGURE 3‘_15
point 2, and setting the result equal to P, since the tube is open to the Schematic for Example 3-3; drawing
atmosphere gives not to scale.

Pl + pwaterghl + poilghz - pmercurygh3 = Palm
Solving for P, and substituting,
Py = Py = pwaterghl - poilth + pmercurygh3
= Palm + g(pmerculth - pwalerhl - poith)
= 85.6 kPa + (9.81 m/s?)[(13,600 kg/m?)(0.35 m) — (1000 kg/m*)(0.1 m)

— (850 ke/m’)(0.2 m)]( IN )( 1 kPa )
1kg -

m/s?/ \1000 N/m?
= 130 kPa

Discussion Note that jumping horizontally from one tube to the next and
realizing that pressure remains the same in the same fluid simplifies the
analysis considerably. Also note that mercury is a toxic fluid, and mercury
manometers and thermometers are being replaced by ones with safer fluids
because of the risk of exposure to mercury vapor during an accident.

EXAMPLE 34 Analyzing a Multifluid Manometer with EES

Reconsider the multifluid manometer discussed in Example 3-3. Determine
the air pressure in the tank using EES. Also determine what the differential
fluid height h; would be for the same air pressure if the mercury in the last
column were replaced by seawater with a density of 1030 kg/m3.

SOLUTION The pressure in a water tank is measured by a multifluid
manometer. The air pressure in the tank and the differential fluid height A5
if mercury is replaced by seawater are to be determined using EES.
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Analysis We start the EES program by double-clicking on its icon, open a
new file, and type the following on the blank screen that appears (we express
the atmospheric pressure in Pa for unit consistency):

g=9.81
Patm= 85600
h1=0.1; h2=0.2; h3=0.35
rw=1000; roil=850; rm=13600
P1+rw*g*hl+roil*g*h2 —rm*g*h3=Patm
Here P1 is the only unknown, and it is determined by EES to be
P, = 129647 Pa = 130 kPa

which is identical to the result obtained in Example 3-3. The height of the
fluid column h; when mercury is replaced by seawater is determined easily by
replacing “h3=0.35" by “P1=129647" and “rm=13600" by “rm=1030,”
and clicking on the calculator symbol. It gives

hy =4.62m

Discussion Note that we used the screen like a paper pad and wrote down
the relevant information together with the applicable relations in an orga-
nized manner. EES did the rest. Equations can be written on separate lines
or on the same line by separating them by semicolons, and blank or com-
ment lines can be inserted for readability. EES makes it very easy to ask
“what if” questions and to perform parametric studies, as explained in
Appendix 3 on the DVD.

A Other Pressure Measurement Devices
Another type of commonly used mechanical pressure measurement device
is the Bourdon tube, named after the French engineer and inventor Eugene
=0y Bourdon (1808-1884), which consists of a hollow metal tube bent like a

hook whose end is closed and connected to a dial indicator needle (Fig.
3-16). When the tube is open to the atmosphere, the tube is undeflected,
and the needle on the dial at this state is calibrated to read zero (gage pres-
sure). When the fluid inside the tube is pressurized, the tube stretches and

-~
moves the needle in proportion to the pressure applied.

Electronics have made their way into every aspect of life, including pres-
sure measurement devices. Modern pressure sensors, called pressure trans-
ducers, use various techniques to convert the pressure effect to an electrical
effect such as a change in voltage, resistance, or capacitance. Pressure trans-
ducers are smaller and faster, and they can be more sensitive, reliable, and

Twisted tube precise than their mechanical counterparts. They can measure pressures
Helical from less than a millionth of 1 atm to several thousands of atm.

A wide variety of pressure transducers is available to measure gage,

absolute, and differential pressures in a wide range of applications. Gage

Tube oross section pressure transducers use the atmospheric pressure as a reference by venting
the back side of the pressure-sensing diaphragm to the atmosphere, and they

FIGURE 3-16 give a zero signal output at atmospheric pressure regardless of altitude. The
Various types of Bourdon tubes used absolute pressure transducers are calibrated to have a zero signal output at

to measure pressure. full vacuum. Differential pressure transducers measure the pressure difference
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between two locations directly instead of using two pressure transducers
and taking their difference.

Strain-gage pressure transducers work by having a diaphragm deflect
between two chambers open to the pressure inputs. As the diaphragm
stretches in response to a change in pressure difference across it, the strain
gage stretches and a Wheatstone bridge circuit amplifies the output. A
capacitance transducer works similarly, but capacitance change is measured
instead of resistance change as the diaphragm stretches.

Piezoelectric transducers, also called solid-state pressure transducers,
work on the principle that an electric potential is generated in a crystalline
substance when it is subjected to mechanical pressure. This phenomenon,
first discovered by brothers Pierre and Jacques Curie in 1880, is called the
piezoelectric (or press-electric) effect. Piezoelectric pressure transducers
have a much faster frequency response compared to the diaphragm units and I
are very suitable for high-pressure applications, but they are generally not as
sensitive as the diaphragm-type transducers.

3-3 = THE BAROMETER AND h 0
ATMOSPHERIC PRESSURE W=pghA l

Atmospheric pressure is measured by a device called a barometer; thus, the v — ﬁ-

atmospheric pressure is often referred to as the barometric pressure. . |8 —t
The Italian Evangelista Torricelli (1608—1647) was the first to conclu- \ Mercury / _H_

sively prove that the atmospheric pressure can be measured by inverting a P

mercury-filled tube into a mercury container that is open to the atmosphere,

as shown in Fig. 3-17. The pressure at point B is equal to the atmospheric FIGURE 3-17

pressure, and the pressure at C can be taken to be zero since there is only The basic barometer.

mercury vapor above point C and the pressure is very low relative to P,

and can be neglected to an excellent approximation. Writing a force balance

in the vertical direction gives M
Py = pgh (3-15) ~

where p is the density of mercury, g is the local gravitational acceleration, ()
and £ is the height of the mercury column above the free surface. Note that — — —
the length and the cross-sectional area of the tube have no effect on the
height of the fluid column of a barometer (Fig. 3-18).

A frequently used pressure unit is the standard atmosphere, which is Az A, 2 2 A,
defined as the pressure produced by a column of mercury 760 mm in height
at 0°C (py, = 13,595 kg/m?) under standard gravitational acceleration A T
(g = 9.807 m/s?). If water instead of mercury were used to measure the
standard atmospheric pressure, a water column of about 10.3 m would be
needed. Pressure is sometimes expressed (especially by weather forecasters)
in terms of the height of the mercury column. The standard atmospheric
pressure, for example, is 760 mmHg (29.92 inHg) at 0°C. The unit mmHg FIGURE 3-18
is also called the torr in honor of Torricelli. Therefore, 1 atm = 760 torr  The length or the cross-sectional area
and 1 torr = 133.3 Pa. of the tube has no effect on the height

The standard atmospheric pressure P, changes from 101.325 kPa at sea of the fluid column of a barometer,
level to 89.88, 79.50, 54.05, 26.5, and 5.53 kPa at altitudes of 1000, 2000, provided that the tube diameter is
5000, 10,000, and 20,000 meters, respectively. The standard atmospheric large enough to avoid surface tension
pressure in Denver (elevation = 1610 m), for example, is 83.4 kPa. (capillary) effects.
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FIGURE 3-19

At high altitudes, a car engine
generates less power and a person
gets less oxygen because of the
lower density of air.
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Remember that the atmospheric pressure at a location is simply the
weight of the air above that location per unit surface area. Therefore, it
changes not only with elevation but also with weather conditions.

The decline of atmospheric pressure with elevation has far-reaching rami-
fications in daily life. For example, cooking takes longer at high altitudes
since water boils at a lower temperature at lower atmospheric pressures.
Nose bleeding is a common experience at high altitudes since the difference
between the blood pressure and the atmospheric pressure is larger in this
case, and the delicate walls of veins in the nose are often unable to with-
stand this extra stress.

For a given temperature, the density of air is lower at high altitudes, and
thus a given volume contains less air and less oxygen. So it is no surprise
that we tire more easily and experience breathing problems at high altitudes.
To compensate for this effect, people living at higher altitudes develop more
efficient lungs. Similarly, a 2.0-L car engine will act like a 1.7-L car engine
at 1500 m altitude (unless it is turbocharged) because of the 15 percent drop
in pressure and thus 15 percent drop in the density of air (Fig. 3—-19). A fan
or compressor will displace 15 percent less air at that altitude for the same
volume displacement rate. Therefore, larger cooling fans may need to be
selected for operation at high altitudes to ensure the specified mass flow
rate. The lower pressure and thus lower density also affects lift and drag:
airplanes need a longer runway at high altitudes to develop the required lift,
and they climb to very high altitudes for cruising for reduced drag and thus
better fuel efficiency.

EXAMPLE 3-5 Measuring Atmospheric Pressure with a
Barometer

Determine the atmospheric pressure at a location where the barometric read-
ing is 740 mm Hg and the gravitational acceleration is g = 9.81 m/s2.
Assume the temperature of mercury to be 10°C, at which its density is
13,570 kg/m3.

SOLUTION The barometric reading at a location in height of mercury col-
umn is given. The atmospheric pressure is to be determined.

Assumptions The temperature of mercury is assumed to be 10°C.

Properties The density of mercury is given to be 13,570 kg/m3.

Analysis From Eq. 3-15, the atmospheric pressure is determined to be

Pym = pgh

1IN 1 kP
= (13,570 kg/m*)(9.81 m/s?)(0.74 m)( 2)( y 2)
1 kg - m/s7/ \1000 N/m

= 98.5 kPa

Discussion Note that density changes with temperature, and thus this effect
should be considered in calculations.

EXAMPLE 3-6 Effect of Piston Weight on Pressure in a Cylinder

The piston of a vertical piston—cylinder device containing a gas has a mass
of 60 kg and a cross-sectional area of 0.04 m2, as shown in Fig. 3-20. The
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® jocal atmospheric pressure is 0.97 bar, and the gravitational acceleration is P - 097 bar
m 9.81 m/s?. (a) Determine the pressure inside the cylinder. (b) If some heat is “‘f’fr‘l;ﬁ(') ke P,
m transferred to the gas and its volume is doubled, do you expect the pressure l
m inside the cylinder to change? (
]
SOLUTION A gas is contained in a vertical cylinder with a heavy piston. The A=0.04m Hm
pressure inside the cylinder and the effect of volume change on pressure are p=2
to be determined.
Assumptions Friction between the piston and the cylinder is negligible. W=mg
Analysis (a) The gas pressure in the piston—cylinder device depends on the
atmospheric pressure and the weight of the piston. Drawing the free-body FIGURE 3-20
diagram of the piston as shown in Fig. 3-20 and balancing the vertical Schematic for Example 3-6, and the
forces yield free-body diagram of the piston.

PA=P,, A+ W

Solving for P and substituting,
mg

P:Palm+j

60 kg)(9.81 m/s’
=0.97bar+( 2)( s)( IN )( lbar)

0.04 m? 1 kg - m/s*/\10° N/m*
= 1.12 bars

(b) The volume change will have no effect on the free-body diagram drawn in
part (a), and therefore the pressure inside the cylinder will remain the same.
Discussion If the gas behaves as an ideal gas, the absolute temperature
doubles when the volume is doubled at constant pressure.

EXAMPLE 3-7 Hydrostatic Pressure in a Solar Pond
with Variable Density

|
|

|

: Solar ponds are small artificial lakes of a few meters deep that are used to
m store solar energy. The rise of heated (and thus less dense) water to the sur-
m face is prevented by adding salt at the pond bottom. In a typical salt gradi-
B ent solar pond, the density of water increases in the gradient zone, as shown
: in Fig. 3-21, and the density can be expressed as
|
|
|
|
|
|

/ T 2
= 1 + tan?| — =
P = Py an(4 )

where p, is the density on the water surface, z is the vertical distance mea-
sured downward from the top of the gradient zone, and H is the thickness of

Sun
Increasing salinity
ﬁ and density

po = 1040 kg/m?

Ik

\_Surface zone

|
H=4m &adient zone

FIGURE 3-21
Schematic for Example 3-7.
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4
3.5
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0O 10 20 30 40 50 60
P, kPa

FIGURE 3-22

The variation of gage pressure with
depth in the gradient zone of the
solar pond.
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the gradient zone. For H = 4 m, p, = 1040 kg/m3, and a thickness of 0.8
m for the surface zone, calculate the gage pressure at the bottom of the gra-
dient zone.

SOLUTION The variation of density of saline water in the gradient zone of a
solar pond with depth is given. The gage pressure at the bottom of the gradi-
ent zone is to be determined.

Assumptions The density in the surface zone of the pond is constant.
Properties The density of brine on the surface is given to be 1040 kg/m3.
Analysis We label the top and the bottom of the gradient zone as 1 and 2,
respectively. Noting that the density of the surface zone is constant, the gage
pressure at the bottom of the surface zone (which is the top of the gradient
zone) is

1 kN
Py = pghy = (1040 keg/m*)(9.81 m/s?)(0.8 (7)=8.16kP
1 = pghy = (1040 kg/mr)( OB 1000 kg - mis? ¢

since 1 kKN/m?2 = 1 kPa. The differential change in hydrostatic pressure
across a vertical distance of dz is given by

dP = pg dz

Integrating from the top of the gradient zone (point 1 where z = 0) to any
location z in the gradient zone (no subscript) gives

z z
P—P1=[pgdz - P=P1+mel1+tan2<li)gdz
b b 4 H

Performing the integration gives the variation of gage pressure in the gradi-
ent zone to be

P=P + 4 s'nh"(tanﬂ- Z)
- 22 4 S
1T P 4H

Then the pressure at the bottom of the gradient zone (z = H = 4 m)
becomes

4(4 4 1 kN
P, = 8.16 kPa + (1040 kg/m*)(9.81 m/s?) (4 m) sinh_1<tanz*><72)
T 1000 kg - m/s

= 54.0 kPa (gage)

Discussion The variation of gage pressure in the gradient zone with depth is
plotted in Fig. 3-22. The dashed line indicates the hydrostatic pressure for
the case of constant density at 1040 kg/m? and is given for reference. Note
that the variation of pressure with depth is not linear when density varies
with depth.

3-4 - INTRODUCTION TO FLUID STATICS

Fluid statics deals with problems associated with fluids at rest. The fluid
can be either gaseous or liquid. Fluid statics is generally referred to as
hydrostatics when the fluid is a liquid and as aerostatics when the fluid is a
gas. In fluid statics, there is no relative motion between adjacent fluid lay-
ers, and thus there are no shear (tangential) stresses in the fluid trying to
deform it. The only stress we deal with in fluid statics is the normal stress,
which is the pressure, and the variation of pressure is due only to the weight
of the fluid. Therefore, the topic of fluid statics has significance only in

V\/WW.EHQ[HOOH% %BOOKS Pdf.com



cen72367_ch03.gxd 10/29/04 2:21 PM Page 79
Printed freen POF by LPS

79
CHAPTER 3

gravity fields, and the force relations developed naturally involve the gravi-
tational acceleration g. The force exerted on a surface by a fluid at rest is
normal to the surface at the point of contact since there is no relative motion
between the fluid and the solid surface, and thus no shear forces can act par-
allel to the surface.

Fluid statics is used to determine the forces acting on floating or sub-
merged bodies and the forces developed by devices like hydraulic presses
and car jacks. The design of many engineering systems such as water dams
and liquid storage tanks requires the determination of the forces acting on
the surfaces using fluid statics. The complete description of the resultant
hydrostatic force acting on a submerged surface requires the determination
of the magnitude, the direction, and the line of action of the force. In Sec-
tions 3-5 and 3-6, we consider the forces acting on both plane and curved
surfaces of submerged bodies due to pressure.

3-5 = HYDROSTATIC FORCES ON
SUBMERGED PLANE SURFACES

A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liq-
uid storage tank, or the hull of a ship at rest, is subjected to fluid pressure
distributed over its surface (Fig. 3-23). On a plane surface, the hydrostatic
forces form a system of parallel forces, and we often need to determine the
magnitude of the force and its point of application, which is called the cen-
ter of pressure. In most cases, the other side of the plate is open to the
atmosphere (such as the dry side of a gate), and thus atmospheric pressure
acts on both sides of the plate, yielding a zero resultant. In such cases, it is
convenient to subtract atmospheric pressure and work with the gage pres-
sure only (Fig. 3-24). For example, P,,,. = pgh at the bottom of the lake.
Consider the top surface of a flat plate of arbitrary shape completely sub-
merged in a liquid, as shown in Fig. 3-25 together with its top view. The
plane of this surface (normal to the page) intersects the horizontal free sur-
face with an angle 6, and we take the line of intersection to be the x-axis.
The absolute pressure above the liquid is P,, which is the local atmospheric
pressure P, if the liquid is open to the atmosphere (but P, may be different

FIGURE 3-23
Hoover Dam.

Courtesy United States Department of the Interior,
Bureau of Reclamation-Lower Colorado Region.

1N

FIGURE 3-24

When analyzing hydrostatic forces on
submerged surfaces, the atmospheric
Py + pgh pgh pressure can be subtracted for
simplicity when it acts on both
sides of the structure.

(a) P,

atm

considered (b) P,

um Subtracted
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Pe=P

g P=P,+pgysinf Pressure
ave 0 &) Av4 / distribution

Pressure prism

-
of volume V
z
P=P,+ pgh
ot pe \ \ Plane surface
dA

V=[av=[Par=F,

Center of pressure
Plane surface

of area A

FIGURE 3-25
Hydrostatic force on an inclined plane surface completely submerged in a liquid.

than P, if the space above the liquid is evacuated or pressurized). Then the
absolute pressure at any point on the plate is

P =P, + pgh=Py,+ pgysin6 (3-16)

where h is the vertical distance of the point from the free surface and y is
the distance of the point from the x-axis (from point O in Fig. 3-25). The
resultant hydrostatic force F; acting on the surface is determined by inte-
grating the force P dA acting on a differential area dA over the entire sur-
face area,

Fr= JPdA: J (P0+pgysinG)dA:POA+pgsin0JydA (3-17)
A A A

But the first moment of area J ydA is related to the y-coordinate of the
A
centroid (or center) of the surface by

Yo = % Ly dA (3-18)
Substituting,
Pim / Free surface Fr=(Py+ pgycsin0)A = (Py + pghc)A = PcA = P, A (3-19)
= t where P. = P, + pgh, is the pressure at the centroid of the surface, which

is equivalent to the average pressure on the surface, and A = y. sin 0 is the
vertical distance of the centroid from the free surface of the liquid (Fig.
3-26). Thus we conclude that:

Pave=PC=Palm+pghC

Centroid The magnitude of the resultant force acting on a plane surface of a

of surface completely submerged plate in a homogeneous (constant density) fluid
is equal to the product of the pressure P, at the centroid of the surface
and the area A of the surface (Fig. 3-27).

FIGURE 3-26

The pressure at the centroid of a The pressure P, is usually atmospheric pressure, which can be ignored in
surface is equivalent to the average most cases since it acts on both sides of the plate. When this is not the case,
pressure on the surface. a practical way of accounting for the contribution of P, to the resultant
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force is simply to add an equivalent depth h.;, = Py/pg to h¢; that is, to
assume the presence of an additional liquid layer of thickness & on top
of the liquid with absolute vacuum above.

Next we need to determine the line of action of the resultant force Fj.
Two parallel force systems are equivalent if they have the same magnitude
and the same moment about any point. The line of action of the resultant
hydrostatic force, in general, does not pass through the centroid of the sur-
face—it lies underneath where the pressure is higher. The point of intersec-
tion of the line of action of the resultant force and the surface is the center
of pressure. The vertical location of the line of action is determined by
equating the moment of the resultant force to the moment of the distributed
pressure force about the x-axis. It gives

equiv

ypFr = JdeA= Jy(P0+pgysin0)dA =P0JydA +pgsin0Jysz
A

A A A
or

yplr =PoycA + pgsin 01, o (3-20)

where y, is the distance of the center of pressure from the x-axis (point O in

Fig. 3-27) and I, , = J' y? dA is the second moment of area (also called
A

the area moment of inertia) about the x-axis. The second moments of area

are widely available for common shapes in engineering handbooks, but they

are usually given about the axes passing through the centroid of the area.

Fortunately, the second moments of area about two parallel axes are related

to each other by the parallel axis theorem, which in this case is expressed as

Loo=1,c+ YA (3-21)

where I,  is the second moment of area about the x-axis passing through
the centroid of the area and y. (the y-coordinate of the centroid) is the dis-
tance between the two parallel axes. Substituting the F, relation from Eq.
3-19 and the I, relation from Eq. 3-21 into Eq. 3-20 and solving for y,
gives

Ly c

_———— 3-22
[ye + Po/(pg sin 0)A @-222)

yp=yct
For P, = 0, which is usually the case when the atmospheric pressure is
ignored, it simplifies to
Irx.C

Yp=yc+ VoA (3-22h)
Knowing y,, the vertical distance of the center of pressure from the free sur-
face is determined from &, = y, sin 6.

The I, . values for some common areas are given in Fig. 3-28. For these
and other areas that possess symmetry about the y-axis, the center of pres-
sure lies on the y-axis directly below the centroid. The location of the center
of pressure in such cases is simply the point on the surface of the vertical
plane of symmetry at a distance &, from the free surface.

Pressure acts normal to the surface, and the hydrostatic forces acting on a
flat plate of any shape form a volume whose base is the plate area and
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v Line of action
A4 0
N 6

Fp=PrA P

Center of

ressure .
P Centroid

of area

FIGURE 3-27

The resultant force acting on a plane
surface is equal to the product of the
pressure at the centroid of the surface
and the surface area, and its line of
action passes through the center of
pressure.
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FIGURE 3-28

The centroid and the centroidal moments of inertia for some common geometries.

whose height is the linearly varying pressure, as shown in Fig. 3-29. This
virtual pressure prism has an interesting physical interpretation: its volume
is equal to the magnitude of the resultant hydrostatic force acting on the
plate since V = [ P dA, and the line of action of this force passes through
the centroid of this homogeneous prism. The projection of the centroid on
the plate is the pressure center. Therefore, with the concept of pressure
prism, the problem of describing the resultant hydrostatic force on a plane
surface reduces to finding the volume and the two coordinates of the cen-
troid of this pressure prism.

Special Case: Submerged Rectangular Plate

Consider a completely submerged rectangular flat plate of height » and
width a tilted at an angle 6 from the horizontal and whose top edge is hori-
zontal and is at a distance s from the free surface along the plane of the
plate, as shown in Fig. 3-30a. The resultant hydrostatic force on the upper
surface is equal to the average pressure, which is the pressure at the mid-
point of the surface, times the surface area A. That is,

Tilted rectangular plate: Fyx = P-A =[P, + pg(s + b/2) sin Olab (3-23)
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The force acts at a vertical distance of &, = yp sin 0 from the free surface
directly beneath the centroid of the plate where, from Eq. 3-22a,

b ab’/12
yp=s+t -+ -
2 [s+ b2 + Py/(pg sin 0)]ab
b b?
=s+-+ (3-24)

2 12[s + b2 + P, /(pg sin 0)]

When the upper edge of the plate is at the free surface and thus s = 0, Eq.
3-23 reduces to

Tilted rectangular plate (s = 0): Fr =[Py + pg(b sin 0)/2)ab (3-25)

Pressure
prism

Surface
a

e ) FIGURE 3-29
————————— The hydrostatic forces acting on a
plane surface form a volume whose
R base (left face) is the surface and
| -~ P whose height is the pressure.
0 P, 0 P, P,
< 6 (
s ¥ J
R ),
h
Fp = (P, + pgh)ab
b D
\ _g y
I a 1
Fg =[Py + pg(s + b/2) sin O]ab Fp =[Py + pg(s + bl2)]ab
(a) Tilted plate (b) Vertical plate (c) Horizontal plate

FIGURE 3-30
Hydrostatic force acting on the top surface of a submerged rectangular plate for tilted, vertical, and horizontal cases.
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For a completely submerged vertical plate (6 = 90°) whose top edge is hori-
zontal, the hydrostatic force can be obtained by setting sin 6 = 1 (Fig. 3-30b)

Vertical rectangular plate: Fr =[Py + pg(s + b/2)]ab (3-26)
Vertical rectangular plate (s = 0): Fr = (P, + pgb/2)ab (3-27)

When the effect of P, is ignored since it acts on both sides of the plate, the
hydrostatic force on a vertical rectangular surface of height b whose top
edge is horizontal and at the free surface is Fr = pgab*?2 acting at a dis-
tance of 2b/3 from the free surface directly beneath the centroid of the plate.

The pressure distribution on a submerged horizontal surface is uniform,
and its magnitude is P = P, + pgh, where h is the distance of the surface
from the free surface. Therefore, the hydrostatic force acting on a horizontal
rectangular surface is

Horizontal rectangular plate:  Fr = (P, + pgh)ab (3-28)
and it acts through the midpoint of the plate (Fig. 3-30c).

EXAMPLE 3-8 Hydrostatic Force Acting on the Door
of a Submerged Car

A heavy car plunges into a lake during an accident and lands at the bottom
of the lake on its wheels (Fig. 3-31). The door is 1.2 m high and 1 m wide,
and the top edge of the door is 8 m below the free surface of the water.
Determine the hydrostatic force on the door and the location of the pressure
center, and discuss if the driver can open the door.

SOLUTION A car is submerged in water. The hydrostatic force on the door
is to be determined, and the likelihood of the driver opening the door is to
be assessed.

Assumptions 1 The bottom surface of the lake is horizontal. 2 The passen-
ger cabin is well-sealed so that no water leaks inside. 3 The door can be
approximated as a vertical rectangular plate. 4 The pressure in the passenger
cabin remains at atmospheric value since there is no water leaking in, and

Sh

2 m

1 m—

FIGURE 3-31
Schematic for Example 3-8.
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thus no compression of the air inside. Therefore, atmospheric pressure can-
cels out in the calculations since it acts on both sides of the door. 5 The
weight of the car is larger than the buoyant force acting on it.

Properties We take the density of lake water to be 1000 kg/m?3 throughout.
Analysis The average pressure on the door is the pressure value at the cen-
troid (midpoint) of the door and is determined to be

Py = Pc = pghce = pg(s + b/2)

1 kN
= (1000 kg/m?)(9.81 m/s)(8 + 1.2/2 (7)
( g/m) X ™\ 1000 kg - m/s®

= 84.4 kN/m?
Then the resultant hydrostatic force on the door becomes
Fr = P,.A = (844 kN/m* (1 m X 1.2 m) = 101.3 kN

The pressure center is directly under the midpoint of the door, and its dis-
tance from the surface of the lake is determined from Eq. 3-24 by setting
Py = 0 to be

2 2
yP=s+é+b7=8+£+L=8.6lm
2 12(s + b/2) 2 12(8 + 1.2/2)
Discussion A strong person can lift 100 kg, whose weight is 981 N or about
1 kN. Also, the person can apply the force at a point farthest from the
hinges (1 m farther) for maximum effect and generate a moment of 1 kN - m.
The resultant hydrostatic force acts under the midpoint of the door, and thus a
distance of 0.5 m from the hinges. This generates a moment of 50.6 kN - m,
which is about 50 times the moment the driver can possibly generate. There-
fore, it is impossible for the driver to open the door of the car. The driver’s
best bet is to let some water in (by rolling the window down a little, for
example) and to keep his or her head close to the ceiling. The driver should
be able to open the door shortly before the car is filled with water since at
that point the pressures on both sides of the door are nearly the same and
opening the door in water is almost as easy as opening it in air.

3-6 = HYDROSTATIC FORCES ON
SUBMERGED CURVED SURFACES

For a submerged curved surface, the determination of the resultant hydrosta-
tic force is more involved since it typically requires the integration of the
pressure forces that change direction along the curved surface. The concept
of the pressure prism in this case is not much help either because of the
complicated shapes involved.

The easiest way to determine the resultant hydrostatic force F acting on
a two-dimensional curved surface is to determine the horizontal and vertical
components F;; and F, separately. This is done by considering the free-body
diagram of the liquid block enclosed by the curved surface and the two
plane surfaces (one horizontal and one vertical) passing through the two
ends of the curved surface, as shown in Fig. 3-32. Note that the vertical sur-
face of the liquid block considered is simply the projection of the curved
surface on a vertical plane, and the horizontal surface is the projection of
the curved surface on a horizontal plane. The resultant force acting on the
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Horizontal projection
of the curved surface

Vertical projection
of the curved surface

Curved \\\ @ TEEREEERESTREE
surface
Free-body diagram
of the enclosed
liquid block
c
FIGURE 3-32

Determination of the hydrostatic force acting on a submerged curved surface.

curved solid surface is then equal and opposite to the force acting on the
curved liquid surface (Newton’s third law).

The force acting on the imaginary horizontal or vertical plane surface and
its line of action can be determined as discussed in Section 3-5. The weight
of the enclosed liquid block of volume V is simply W = pgV/, and it acts
downward through the centroid of this volume. Noting that the fluid block
is in static equilibrium, the force balances in the horizontal and vertical
directions give

Horizontal force component on curved surface: Fy=F, (3-29)
Vertical force component on curved surface: Fy=F+W (3-30)

where the summation Fy + W is a vector addition (i.e., add magnitudes if

both act in the same direction and subtract if they act in opposite directions).
Thus, we conclude that

Curved 1. The horizontal component of the hydrostatic force acting on a curved
surface

surface is equal (in both magnitude and the line of action) to the
hydrostatic force acting on the vertical projection of the curved surface.

2. The vertical component of the hydrostatic force acting on a curved
surface is equal to the hydrostatic force acting on the horizontal
projection of the curved surface, plus (minus, if acting in the opposite
direction) the weight of the fluid block.

The magnitude of the resultant hydrostatic force acting on the curved sur-
face is Fy = VF% + F?, and the tangent of the angle it makes with the hori-
zontal is tan o = F,/Fy. The exact location of the line of action of the resul-
tant force (e.g., its distance from one of the end points of the curved surface)
FIGURE 3-33 can be determined by taking a moment about an appropriate point. These
When a curved surface is above the discussions are valid for all curved surfaces regardless of whether they are
liquid, the weight of the liquid and the  above or below the liquid. Note that in the case of a curved surface above a
vertical component of the hydrostatic liquid, the weight of the liquid is subtracted from the vertical component of
force act in the opposite directions. the hydrostatic force since they act in opposite directions (Fig. 3-33).
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When the curved surface is a circular arc (full circle or any part of it), the
resultant hydrostatic force acting on the surface always passes through
the center of the circle. This is because the pressure forces are normal to the
surface, and all lines normal to the surface of a circle pass through the cen-
ter of the circle. Thus, the pressure forces form a concurrent force system at
the center, which can be reduced to a single equivalent force at that point
(Fig. 3-34).

Finally, hydrostatic forces acting on a plane or curved surface submerged
in a multilayered fluid of different densities can be determined by consid-
ering different parts of surfaces in different fluids as different surfaces, find-
ing the force on each part, and then adding them using vector addition. For
a plane surface, it can be expressed as (Fig. 3-35)

Fr= EFR,IZ EPCJAi

where P ; = Py + p;ghc ; is the pressure at the centroid of the portion of
the surface in fluid i and A, is the area of the plate in that fluid. The line of
action of this equivalent force can be determined from the requirement that
the moment of the equivalent force about any point is equal to the sum of
the moments of the individual forces about the same point.

Plane surface in a multilayered fluid: (3-31)

: EXAMPLE 3-9 A Gravity-Controlled Cylindrical Gate

: A long solid cylinder of radius 0.8 m hinged at point A is used as an auto-
m matic gate, as shown in Fig. 3-36. When the water level reaches 5 m, the
m gate opens by turning about the hinge at point A. Determine (a) the hydro-
B static force acting on the cylinder and its line of action when the gate opens
: and (b) the weight of the cylinder per m length of the cylinder.

SOLUTION The height of a water reservoir is controlled by a cylindrical gate
hinged to the reservoir. The hydrostatic force on the cylinder and the weight
of the cylinder per m length are to be determined.

Assumptions 1 Friction at the hinge is negligible. 2 Atmospheric pressure
acts on both sides of the gate, and thus it cancels out.

Properties We take the density of water to be 1000 kg/m? throughout.
Analysis (a) We consider the free-body diagram of the liquid block enclosed
by the circular surface of the cylinder and its vertical and horizontal projec-
tions. The hydrostatic forces acting on the vertical and horizontal plane sur-
faces as well as the weight of the liquid block are determined as

Horizontal force on vertical surface:

Fy = F, = Py A= pghcA= pg(s + R/I2)A

1 kN
= (1000 kg/m®)(9.81 m/s%)(4.2 + 0.8/2m)(0.8 m X 1 m)(m)
= 36.1 kN
Vertical force on horizontal surface (upward):
F, =Py .A= pghcA= pghygiomA
= (1000 kg/m*)(9.81 nv/s*)(5 m)(0.8 m X 1 m)(&)
1000 kg - m/s

=392 kN
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The hydrostatic force acting on a
circular surface always passes
through the center of the circle since
the pressure forces are normal to the
surface and they all pass through

the center.
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FIGURE 3-35

The hydrostatic force on a surface
submerged in a multilayered fluid can
be determined by considering parts of

the surface in different fluids as
different surfaces.
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FIGURE 3-36

Schematic for Example 3-9 and
the free-body diagram of the fluid
underneath the cylinder. y

Weight of fluid block per m length (downward):
W = mg = pgV = pg(R*> — wR*/4)(1 m)

1 kN
= (1000 kg/m*)(9.81 m/s%)(0.8 m)*(1 — 7r/4)(1 (7>
( g/m”)(9 $(0.8 m)~(1 — 7/4)(1 m) 1000 ke - m/s®

= 1.3kN
Therefore, the net upward vertical force is
Fy=F, —W=392-13=379kN

Then the magnitude and direction of the hydrostatic force acting on the
cylindrical surface become

Fr= VF3 + F2 = \V/36.1 + 37.92 = 523 kN
tan 0 = F\/F, = 37.9/36.1 = 1.05 — 6 = 46.4°

Therefore, the magnitude of the hydrostatic force acting on the cylinder is
52.3 kN per m length of the cylinder, and its line of action passes through
the center of the cylinder making an angle 46.4° with the horizontal.

(b) When the water level is 5 m high, the gate is about to open and thus the
reaction force at the bottom of the cylinder is zero. Then the forces other
than those at the hinge acting on the cylinder are its weight, acting through
the center, and the hydrostatic force exerted by water. Taking a moment
about point A at the location of the hinge and equating it to zero gives

R=0 — W, = Fgsin0 = (523 kN) sin 46.4° = 37.9 kN

Discussion The weight of the cylinder per m length is determined to be
37.9 kN. It can be shown that this corresponds to a mass of 3863 kg per m
length and to a density of 1921 kg/m3 for the material of the cylinder.

FyR sin 0 — Wy,
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3-7 = BUOYANCY AND STABILITY

It is a common experience that an object feels lighter and weighs less in a
liquid than it does in air. This can be demonstrated easily by weighing a
heavy object in water by a waterproof spring scale. Also, objects made of
wood or other light materials float on water. These and other observations
suggest that a fluid exerts an upward force on a body immersed in it. This
force that tends to lift the body is called the buoyant force and is denoted
by Fj.

The buoyant force is caused by the increase of pressure in a fluid with
depth. Consider, for example, a flat plate of thickness & submerged in a lig-
uid of density p; parallel to the free surface, as shown in Fig. 3-37. The area
of the top (and also bottom) surface of the plate is A, and its distance to the
free surface is 5. The pressures at the top and bottom surfaces of the plate
are p,gs and p,g(s + h), respectively. Then the hydrostatic force F,,, = p;gsA
acts downward on the top surface, and the larger force Fygyon = pp8(s + MA
acts upward on the bottom surface of the plate. The difference between
these two forces is a net upward force, which is the buoyant force,

Fp = Footom — Fiop = ps8(s + WA — pygsA = p;ghA = prgV (3-32)

where V = hA is the volume of the plate. But the relation p;gV/ is simply the
weight of the liquid whose volume is equal to the volume of the plate. Thus,
we conclude that the buoyant force acting on the plate is equal to the weight
of the liquid displaced by the plate. Note that the buoyant force is indepen-
dent of the distance of the body from the free surface. It is also independent
of the density of the solid body.

The relation in Eq. 3-32 is developed for a simple geometry, but it is valid
for any body regardless of its shape. This can be shown mathematically by a
force balance, or simply by this argument: Consider an arbitrarily shaped
solid body submerged in a fluid at rest and compare it to a body of fluid of
the same shape indicated by dotted lines at the same distance from the free
surface (Fig. 3-38). The buoyant forces acting on these two bodies are the
same since the pressure distributions, which depend only on depth, are the
same at the boundaries of both. The imaginary fluid body is in static equilib-
rium, and thus the net force and net moment acting on it are zero. Therefore,
the upward buoyant force must be equal to the weight of the imaginary fluid
body whose volume is equal to the volume of the solid body. Further, the
weight and the buoyant force must have the same line of action to have a
zero moment. This is known as Archimedes’ principle, after the Greek
mathematician Archimedes (287-212 BC), and is expressed as

The buoyant force acting on a body immersed in a fluid is equal to the weight
of the fluid displaced by the body, and it acts upward through the centroid of
the displaced volume.

For floating bodies, the weight of the entire body must be equal to the
buoyant force, which is the weight of the fluid whose volume is equal to the
volume of the submerged portion of the floating body. That is,

Vsuh Pave, body

Vlulul pf

Fy=W = pigVup = Pave. body& Viorr — (3-33)
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A flat plate of uniform thickness &
submerged in a liquid parallel to the
free surface.

Fluid

FIGURE 3-38

The buoyant forces acting on a solid
body submerged in a fluid and on a
fluid body of the same shape at the
same depth are identical. The buoyant
force Fy acts upward through the
centroid C of the displaced volume
and is equal in magnitude to the
weight W of the displaced fluid, but
is opposite in direction. For a solid
of uniform density, its weight W
also acts through the centroid, but its
magnitude is not necessarily equal
to that of the fluid it displaces. (Here
W, > W and thus W, > F; this solid
body would sink.)
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FIGURE 3-39

A solid body dropped into a fluid will o Eilzlking
sink, float, or remain at rest at any point % g 4 0%y
in the fluid, depending on its density
relative to the density of the fluid.

Therefore, the submerged volume fraction of a floating body is equal to the
ratio of the average density of the body to the density of the fluid. Note that
when the density ratio is equal to or greater than one, the floating body
becomes completely submerged.

It follows from these discussions that a body immersed in a fluid (1) remains
at rest at any point in the fluid when its density is equal to the density of the
fluid, (2) sinks to the bottom when its density is greater than the density of
the fluid, and (3) rises to the surface of the fluid and floats when the density
of the body is less than the density of the fluid (Fig. 3-39).

The buoyant force is proportional to the density of the fluid, and thus we
might think that the buoyant force exerted by gases such as air is negligible.
This is certainly the case in general, but there are significant exceptions. For
example, the volume of a person is about 0.1 m?, and taking the density of
air to be 1.2 kg/m?, the buoyant force exerted by air on the person is

Fy = p;gV = (1.2 kg/m*)(9.81 m/s?)(0.1 m*) = 1.2 N

The weight of an 80-kg person is 80 X 9.81 = 788 N. Therefore, ignoring
the buoyancy in this case results in an error in weight of just 0.15 percent,
which is negligible. But the buoyancy effects in gases dominate some impor-
tant natural phenomena such as the rise of warm air in a cooler environment
and thus the onset of natural convection currents, the rise of hot-air or helium
balloons, and air movements in the atmosphere. A helium balloon, for exam-
ple, rises as a result of the buoyancy effect until it reaches an altitude where
the density of air (which decreases with altitude) equals the density of
helium in the balloon—assuming the balloon does not burst by then, and
ignoring the weight of the balloon’s skin.

Archimedes’ principle is also used in modern geology by considering the
continents to be floating on a sea of magma.

EXAMPLE 3-10 Measuring Specific Gravity by a Hydrometer

If you have a seawater aquarium, you have probably used a small cylindrical
glass tube with some lead-weight at its bottom to measure the salinity of the
water by simply watching how deep the tube sinks. Such a device that floats
in a vertical position and is used to measure the specific gravity of a liquid
is called a hydrometer (Fig. 3-40). The top part of the hydrometer extends
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above the liquid surface, and the divisions on it allow one to read the spe-
cific gravity directly. The hydrometer is calibrated such that in pure water it
reads exactly 1.0 at the air—-water interface. (a) Obtain a relation for the spe-
cific gravity of a liquid as a function of distance Az from the mark corre-
sponding to pure water and (b) determine the mass of lead that must be
poured into a 1-cm-diameter, 20-cm-long hydrometer if it is to float halfway
(the 10-cm mark) in pure water.

SOLUTION The specific gravity of a liquid is to be measured by a hydrome-
ter. A relation between specific gravity and the vertical distance from the ref-
erence level is to be obtained, and the amount of lead that needs to be
added into the tube for a certain hydrometer is to be determined.
Assumptions 1 The weight of the glass tube is negligible relative to the
weight of the lead added. 2 The curvature of the tube bottom is disregarded.
Properties We take the density of pure water to be 1000 kg/m3.

Analysis (a) Noting that the hydrometer is in static equilibrium, the buoyant
force Fg exerted by the liquid must always be equal to the weight W of the
hydrometer. In pure water, let the vertical distance between the bottom of
the hydrometer and the free surface of water be z,. Setting Fz = W in this
case gives

Whydro = FB‘W = pwgvsub = ngAZo (1)

where A is the cross-sectional area of the tube, and p,, is the density of pure
water.

In a fluid lighter than water (p; < p,), the hydrometer will sink deeper, and
the liquid level will be a distance of Az above z,. Again setting Fz = W gives

Wayaro = Fp.r = pr&Vaw = prgA(zo + Az) (2)

This relation is also valid for fluids heavier than water by taking the Az below
7, to be a negative quantity. Setting Egs. (1) and (2) here equal to each
other since the weight of the hydrometer is constant and rearranging gives
Pr 2o

w8AZo = prgA(zg + A7) —>  SG=—=
Pgong(o ) fpw 20 + Az

which is the relation between the specific gravity of the fluid and Az. Note
that z, is constant for a given hydrometer and Az is negative for fluids heav-
ier than pure water.

(b) Disregarding the weight of the glass tube, the amount of lead that needs
to be added to the tube is determined from the requirement that the weight
of the lead be equal to the buoyant force. When the hydrometer is floating
with half of it submerged in water, the buoyant force acting on it is
FB = pwgvsub

Equating Fz to the weight of lead gives

W=mg=p,8Vu
Solving for m and substituting, the mass of lead is determined to be
m = p,Vap, = pu(TR*hyy) = (1000 kg/m®)[7(0.005 m)*(0.1 m)] = 0.00785 kg

Discussion Note that if the hydrometer were required to sink only 5 cm in
water, the required mass of lead would be one-half of this amount. Also, the
assumption that the weight of the glass tube is negligible needs to be
checked since the mass of lead is only 7.85 g.
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FIGURE 3-40
Schematic for Example 3—10.
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Air EXAMPLE 3-11 Weight Loss of an Object in Seawater

A crane is used to lower weights into the sea (density = 1025 kg/m3) for an
underwater construction project (Fig. 3-41). Determine the tension in the
rope of the crane due to a rectangular 0.4-m X 0.4-m X 3-m concrete block
(density = 2300 kg/m3) when it is (a) suspended in the air and (b) com-
pletely immersed in water.
Concrete
block SOLUTION A concrete block is lowered into the sea. The tension in the
rope is to be determined before and after the block is in water.
Assumptions 1 The buoyancy of air is negligible. 2 The weight of the ropes
is negligible.
Properties The densities are given to be 1025 kg/m3 for seawater and
2300 kg/m3 for concrete.
Analysis (a) Consider the free-body diagram of the concrete block. The
Water forces acting on the concrete block in air are its weight and the upward pull
action (tension) by the rope. These two forces must balance each other, and
thus the tension in the rope must be equal to the weight of the block:

V= (04 m)(0.4 m)(3m) =048 m>

FT, air = W = pcnncrelegv

LkN ) = 10.8 kN

— (2300 kg/m’)(9.81 m/s?)(0.48 3(7
e O M\ 1000 kg - mis?

(b) When the block is immersed in water, there is the additional force of
FIGURE 3-41 buoyancy acting upward. The force balance in this case gives
Schematic for Example 3—11.

1 kN
Fy = p;gV =(1025 kg/m*)(9.81 m/s%)(0.48 m* (7)=4.8kN
= P&V =( g/m”)( 5°)(0.48 m”) 1000 kg - m/s®

Fr yaer = W — Fz = 10.8 — 4.8 = 6.0 kN

Discussion Note that the weight of the concrete block, and thus the tension
of the rope, decreases by (10.8 — 6.0)/10.8 = 55 percent in water.

Stability of Immersed and Floating Bodies

An important application of the buoyancy concept is the assessment of the
stability of immersed and floating bodies with no external attachments. This
topic is of great importance in the design of ships and submarines (Fig.
3-42). Here we provide some general qualitative discussions on vertical and
rotational stability.

We use the “ball on the floor” analogy to explain the fundamental concepts
of stability and instability. Shown in Fig. 3—43 are three balls at rest on the
floor. Case (a) is stable since any small disturbance (someone moves the ball
to the right or left) generates a restoring force (due to gravity) that returns it
to its initial position. Case () is neutrally stable because if someone moves
the ball to the right or left, it would stay put at its new location. It has no ten-
dency to move back to its original location, nor does it continue to move
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away. Case (c) is a situation in which the ball may be at rest at the moment,
but any disturbance, even an infinitesimal one, causes the ball to roll off the
hill—it does not return to its original position; rather it diverges from it. This
situation is unstable. What about a case where the ball is on an inclined
floor? It is not really appropriate to discuss stability for this case since the
ball is not in a state of equilibrium. In other words, it cannot be at rest and
would roll down the hill even without any disturbance.

For an immersed or floating body in static equilibrium, the weight and the
buoyant force acting on the body balance each other, and such bodies are
inherently stable in the vertical direction. If an immersed neutrally buoyant
body is raised or lowered to a different depth, the body will remain in equi-
librium at that location. If a floating body is raised or lowered somewhat by
a vertical force, the body will return to its original position as soon as the
external effect is removed. Therefore, a floating body possesses vertical sta-
bility, while an immersed neutrally buoyant body is neutrally stable since it
does not return to its original position after a disturbance.

The rotational stability of an immersed body depends on the relative loca-
tions of the center of gravity G of the body and the center of buoyancy B,
which is the centroid of the displaced volume. An immersed body is stable
if the body is bottom-heavy and thus point G is directly below point B (Fig.
3-44). A rotational disturbance of the body in such cases produces a restor-
ing moment to return the body to its original stable position. Thus, a stable
design for a submarine calls for the engines and the cabins for the crew to
be located at the lower half in order to shift the weight to the bottom as
much as possible. Hot-air or helium balloons (which can be viewed as being
immersed in air) are also stable since the cage that carries the load is at the
bottom. An immersed body whose center of gravity G is directly above
point B is unstable, and any disturbance will cause this body to turn upside
down. A body for which G and B coincide is neutrally stable. This is the
case for bodies whose density is constant throughout. For such bodies, there
is no tendency to overturn or right themselves.

What about a case where the center of gravity is not vertically aligned
with the center of buoyancy (Fig. 3-45)? It is not really appropriate to dis-
cuss stability for this case since the body is not in a state of equilibrium. In
other words, it cannot be at rest and would rotate toward its stable state even
without any disturbance. The restoring moment in the case shown in Fig.
3-45 is counterclockwise and causes the body to rotate counterclockwise so
as to align point G vertically with point B. Note that there may be some
oscillation, but eventually the body settles down at its stable equilibrium
state [case (a) of Fig. 3—44]. The stability of the body of Fig. 3—45 is analo-
gous to that of the ball on an inclined floor. Can you predict what would
happen if the weight in the body of Fig. 3-45 were on the opposite side of
the body?

The rotational stability criteria are similar for floating bodies. Again, if the
floating body is bottom-heavy and thus the center of gravity G is directly
below the center of buoyancy B, the body is always stable. But unlike
immersed bodies, a floating body may still be stable when G is directly
above B (Fig. 3-46). This is because the centroid of the displaced volume
shifts to the side to a point B” during a rotational disturbance while the center
of gravity G of the body remains unchanged. If point B’ is sufficiently far,
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For floating bodies such as ships,
stability is an important
consideration for safety.

© Corbis/vol. 96.
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(a) Stable

O

(b) Neutrally stable

(c) Unstable

FIGURE 3-43
Stability is easily understood by
analyzing a ball on the floor.
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FIGURE 3-44

An immersed neutrally buoyant body
is (a) stable if the center of gravity

G is directly below the center of
buoyancy B of the body, (b) neutrally
stable if G and B are coincident, and
(c) unstable if G is directly above B.

Restoring moment

Weight

FIGURE 3-45

When the center of gravity G of an
immersed neutrally buoyant body is
not vertically aligned with the center
of buoyancy B of the body, it is not in
an equilibrium state and would rotate
to its stable state, even without any
disturbance.

FIGURE 3-46

A floating body is stable if the body is
bottom-heavy and thus the center of
gravity G is below the centroid B of
the body, or if the metacenter M is
above point G. However, the body is
unstable if point M is below point G.
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(a) Stable (b) Neutrally stable (c) Unstable

these two forces create a restoring moment and return the body to the origi-
nal position. A measure of stability for floating bodies is the metacentric
height GM, which is the distance between the center of gravity G and the
metacenter M—the intersection point of the lines of action of the buoyant
force through the body before and after rotation. The metacenter may be
considered to be a fixed point for most hull shapes for small rolling angles
up to about 20°. A floating body is stable if point M is above point G, and
thus GM is positive, and unstable if point M is below point G, and thus GM
is negative. In the latter case, the weight and the buoyant force acting on the
tilted body generate an overturning moment instead of a restoring moment,
causing the body to capsize. The length of the metacentric height GM above
G is a measure of the stability: the larger it is, the more stable is the floating
body.

As already discussed, a boat can tilt to some maximum angle without cap-
sizing, but beyond that angle it overturns (and sinks). We make a final anal-
ogy between the stability of floating objects and the stability of a ball
rolling along the floor. Namely, imagine the ball in a trough between two
hills (Fig. 3—47). The ball returns to its stable equilibrium position after
being perturbed—up to a limit. If the perturbation amplitude is too great,
the ball rolls down the opposite side of the hill and does not return to its
equilibrium position. This situation is described as stable up to some limit-
ing level of disturbance, but unstable beyond.

Melacemerw

Overturning

I , Restoring R —
‘ / moment /
(a) Stable (b) Stable (¢) Unstable
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3-8 = FLUIDS IN RIGID-BODY MOTION

We showed in Section 3—1 that pressure at a given point has the same mag-
nitude in all directions, and thus it is a scalar function. In this section we
obtain relations for the variation of pressure in fluids moving like a solid

body with or without acceleration in the absence of any shear stresses (i.e.,
no motion between fluid layers relative to each other).

Many fluids such as milk and gasoline are transported in tankers. In an FIGURE 3-47
accelerating tanker, the fluid rushes to the back, and some initial splashing A ball in a trough between two hills
occurs. But then a new free surface (usually nonhorizontal) is formed, each is stable for small disturbances, but
fluid particle assumes the same acceleration, and the entire fluid moves like unstable for large disturbances.

a rigid body. No shear stresses develop within the fluid body since there is
no deformation and thus no change in shape. Rigid-body motion of a fluid
also occurs when the fluid is contained in a tank that rotates about an axis.

Consider a differential rectangular fluid element of side lengths dx, dy,
and dz in the x-, y-, and z-directions, respectively, with the z-axis being
upward in the vertical direction (Fig. 3—48). Noting that the differential fluid
element behaves like a rigid body, Newton’s second law of motion for this
element can be expressed as

SF=8m - d (3-34)

where 6m = p dV = p dx dy dz is the mass of the fluid element, a is the
acceleration, and 6F is the net force acting on the element.

The forces acting on the fluid element consist of body forces such as
gravity that act throughout the entire body of the element and are propor-
tional to the volume of the body (and also electrical and magnetic forces,
which will not be considered in this text), and surface forces such as the
pressure forces that act on the surface of the element and are proportional to
the surface area (shear stresses are also surface forces, but they do not apply
in this case since the relative positions of fluid elements remain unchanged).
The surface forces appear as the fluid element is isolated from its surround-
ings for analysis, and the effect of the detached body is replaced by a force

at that location. Note that pressure represents the compressive force applied (p +‘f§) dx dy
on the fluid element by the surrounding fluid and is always directed to the _ 9z 2
surface. ig |
Taking the pressure at the center of the element to be P, the pressures at }
the top and bottom surfaces of the element can be expressed as P + (dP/dz) 1 dz
dz/2 and P — (dP/dz) dz/2, respectively. Noting that the pressure force act- } 4 Ploy o
ing on a surface is equal to the average pressure multiplied by the surface pgdedydzy ~ j’;f
area, the net surface force acting on the element in the z-direction is the dif- R
ference between the pressure forces acting on the bottom and top faces, 7 4 dx
Z
d ;
SFS.Z:<P7%%> dxdy7<P+%%> dxdy = 7%dxdydz (3-35) ) - ’ |(P_f;1:d;)dxdy
Similarly, the net surface forces in the x- and y-directions are FIGURE 3-48
The surface and body forces acting
oF .= —Cixayd:  and  oFy, = —Lavdyd: (3-36) on a differential fluid element
' ax Y dy in the vertical direction.
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Then the surface force (which is simply the pressure force) acting on the
entire element can be expressed in vector form as

8F = 8F i + 8Fs ] + OF .k

oP—-> OP— 0P >
=—\—i+—j+—k|dvdydz=—VPdxdydz (3-37)
ax dy 0z
where ; s f, and E are the unit vectors in the x-, y-, and z-directions, respec-
tively, and
2 oP- oP- 0P~
VP=—i+—j+—k (3-38)
ax dy 0z
is the pressure gradient. Note that the V or “del” is a vector operator that is
used to express the gradients of a scalar function compactly in vector form.
Also, the gradient of a scalar function is expressed in a given direction and
thus it is a vector quantity.
The only body force acting on the fluid element is the weight of the ele-

ment acting in the negative z-direction, and it is expressed as 0F . = —gom
= —pg dx dy dz or in vector form as
8;73,2 = —gSmZ = —pgdxdy dzk (3-39)

Then the total force acting on the element becomes
8F = 8F; + 8F, = —(VP + pgk) dx dy dz (3-40)

Substituting into Newton’s second law of motion SF =om-d = pdxdydz
- a and canceling dx dy dz, the general equation of motion for a fluid that
acts as a rigid body (no shear stresses) is determined to be

Rigid-body motion of fluids: VP + ng = *pa (3-41)

Resolving the vectors into their components, this relation can be expressed
more explicitly as
P 9P~

9P - N S - >
i+—j+—k+pgk=—plai+a,j+a.k (3-42)
ox dy 9z ) ’

or, in scalar form in the three orthogonal directions, as
. . P P P
Accelerating fluids: — = —pa,, — = —pa,, and — = —p(g+a,) (343)
’ ax T dy : 0z
where a,, a,, and a, are accelerations in the x-, y-, and z-directions, respec-
tively.

Special Case 1: Fluids at Rest
For fluids at rest or moving on a straight path at constant velocity, all com-
ponents of acceleration are zero, and the relations in Eqgs. 3-43 reduce to

9P o ®_

dP
— =0, 0, and —= —pg (3-44)
dx

Fluids at rest: =
dy dz

which confirm that, in fluids at rest, the pressure remains constant in any
horizontal direction (P is independent of x and y) and varies only in the ver-
tical direction as a result of gravity [and thus P = P(z)]. These relations are
applicable for both compressible and incompressible fluids.
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Special Case 2: Free Fall of a Fluid Body zT ZT
A freely falling body accelerates under the influence of gravity. When the
air resistance is negligible, the acceleration of the body equals the gravita-

tional acceleration, and acceleration in any horizontal direction is zero. P, P,
Therefore, a, = a, = 0 and a, = —g. Then the equations of motion for * *
accelerating fluids (Eqs. 3-43) reduce to
h Liquid, p h Liquid, p
o aP 9P 9P
Free-falling fluids: —=—=—= — P = constant (3-45) o .
dx dy 0z l P,=P, TPZ =P, +2pgh

Therefore, in a frame of reference moving with the fluid, it behaves like it is a,=-g a,=g

in an environment with zero gravity. Also, the gage pressure in a drop of
liquid in free fall is zero throughout. (Actually, the gage pressure is slightly (@ Free fallofa  (b) Upward acceleration
h . . liquid of a liquid with a, = +g

above zero due to surface tension, which holds the drop intact.) :

When the direction of motion is reversed and the fluid is forced to accel- FIGURE 3-49
erate vertically with a, = +g by placing the fluid container in an elevator or
a space vehicle propelled upward by a rocket engine, the pressure gradient
in the z-direction is dP/dz = —2pg. Therefore, the pressure difference across
a fluid layer now doubles relative to the stationary fluid case (Fig. 3—49).

The effect of acceleration on the
pressure of a liquid during free
fall and upward acceleration.

Acceleration on a Straight Path
Consider a container partially filled with a liquid. The container is moving
on a straight path with a constant acceleration. We take the projection of the
path of motion on the horizontal plane to be the x-axis, and the projection
on the vertical plane to be the z-axis, as shown in Fig. 3-50. The x- and z-
components of acceleration are a, and a.. There is no movement in the y-
direction, and thus the acceleration in that direction is zero, a, = 0. Then
the equations of motion for accelerating fluids (Eqs. 3—43) reduce to

opP oP oP

—=—pa, —=0, and — = —p(g+a,) (3-46)

dx dy 0z
Therefore, pressure is independent of y. Then the total differential of P
= P(x, z), which is (0P/dx) dx + (dP/dz) dz, becomes

dP = —pa,dx — p(g + a.) dz (3-47)
For p = constant, the pressure difference between two points 1 and 2 in the
fluid is determined by integration to be g
Free
Py = Py = —pax, — x) — p(g + a)(z, — zy) (3-48) A surface
Taking point 1 to be the origin (x = 0, z = 0) where the pressure is P, and mmi ——————————
point 2 to be any point in the fluid (no subscript), the pressure distribution “
can be expressed as hy Liquid L
Pressure variation: P=Py—pax—p(g+a)z (3-49) S e a x"
The vertical rise (or drop) of the free surface at point 2 relative to point 1 - x
can be determined by choosing both 1 and 2 on the free surface (so that P, b
= P,), and solving Eq. 3-48 for z, — z; (Fig. 3-51),
2 & 2Tt FIGURE 3-50
a, . . L
Vertical rise of surface: Az, =20 =24 = — (X — x7) (3-50) Rigid bO(,ly motion of a 1‘9‘"‘1 na
g+ta, linearly accelerating tank.
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|
2 a.
L S

Constant
pressure
lines

FIGURE 3-51

Lines of constant pressure (which
are the projections of the surfaces of
constant pressure on the xz-plane) in
a linearly accelerating liquid, and the
vertical rise.

80 cm

Water
tank

FIGURE 3-52
Schematic for Example 3—12.

where z, is the z-coordinate of the liquid’s free surface. The equation for
surfaces of constant pressure, called isobars, is obtained from Eq. 3-47 by
setting d P = 0 and replacing z by z;,,» Which is the z-coordinate (the ver-
tical distance) of the surface as a function of x. It gives

(ZZL\UbL\I‘
Surfaces of constant pressure: =

dx _g+a:

= constant (3-51)

Thus we conclude that the isobars (including the free surface) in an incom-
pressible fluid with constant acceleration in linear motion are parallel sur-
faces whose slope in the xz-plane is

dZisobar Ay

Slope = — = — = —tan 6
ope i eta an

Slope of isobars: (3-52)

Obviously, the free surface of such a fluid is a plane surface, and it is
inclined unless a, = 0 (the acceleration is in the vertical direction only).
Also, the conservation of mass together with the assumption of incompress-
ibility (p = constant) requires that the volume of the fluid remain constant
before and during acceleration. Therefore, the rise of fluid level on one side
must be balanced by a drop of fluid level on the other side.

EXAMPLE 3-12 Overflow from a Water Tank During Acceleration

An 80-cm-high fish tank of cross section 2 m X 0.6 m that is initially filled
with water is to be transported on the back of a truck (Fig. 3-52). The truck
accelerates from O to 90 km/h in 10 s. If it is desired that no water spills
during acceleration, determine the allowable initial water height in the tank.
Would you recommend the tank to be aligned with the long or short side par-
allel to the direction of motion?

SOLUTION A fish tank is to be transported on a truck. The allowable water
height to avoid spill of water during acceleration and the proper orientation
are to be determined.

Assumptions 1 The road is horizontal during acceleration so that accelera-
tion has no vertical component (a, = 0). 2 Effects of splashing, braking, dri-
ving over bumps, and climbing hills are assumed to be secondary and are
not considered. 3 The acceleration remains constant.

Analysis We take the x-axis to be the direction of motion, the zaxis to be
the upward vertical direction, and the origin to be the lower left corner of the
tank. Noting that the truck goes from O to 90 km/h in 10 s, the acceleration
of the truck is

AV (90 — 0)km/h/ 1 m/s

%“=Ar = 10s  \3.6kmn

) = 2.5 m/s?

The tangent of the angle the free surface makes with the horizontal is

@, 23

tan 6 = = 0.255 (and thus 6 = 14.3°)

g+a, 981+0




cen72367_ch03.gxd 10/29/04 2:22 PM Page 99
Printed freen POF by LPS

99
CHAPTER 3

The maximum vertical rise of the free surface occurs at the back of the tank,
and the vertical midplane experiences no rise or drop during acceleration
since it is a plane of symmetry. Then the vertical rise at the back of the tank
relative to the midplane for the two possible orientations becomes

Case 1: The long side is parallel to the direction of motion:

Az, = (by/2) tan 6 = [(2 m)/2] X 0.255 = 0.255 m = 25.5 cm

Case 2: The short side is parallel to the direction of motion:

Az = (by2) tan 6 = [(0.6 m)/2] X 0.255 = 0.076 m = 7.6 cm

Therefore, assuming tipping is not a problem, the tank should definitely be
oriented such that its short side is parallel to the direction of motion. Empty-
ing the tank such that its free surface level drops just 7.6 cm in this case
will be adequate to avoid spilling during acceleration.

Discussion Note that the orientation of the tank is important in controlling
the vertical rise. Also, the analysis is valid for any fluid with constant den-
sity, not just water, since we used no information that pertains to water in
the solution.

Rotation in a Cylindrical Container

We know from experience that when a glass filled with water is rotated
about its axis, the fluid is forced outward as a result of the so-called cen-
trifugal force, and the free surface of the liquid becomes concave. This is
known as the forced vortex motion.

Consider a vertical cylindrical container partially filled with a liquid. The
container is now rotated about its axis at a constant angular velocity of w, as
shown in Fig. 3-53. After initial transients, the liquid will move as a rigid
body together with the container. There is no deformation, and thus there
can be no shear stress, and every fluid particle in the container moves with

\
the same angular velocity. @ ¢
This problem is best analyzed in cylindrical coordinates (r, 6, z), with z

taken along the centerline of the container directed from the bottom toward Free ‘
the free surface, since the shape of the container is a cylinder, and the fluid surface \
particles undergo a circular motion. The centripetal acceleration of a fluid ’F* =]
particle rotating with a constant angular velocity of w at a distance r from the

axis of rotation is rw? and is directed radially toward the axis of rotation

(negative r-direction). That is, a, = —rw?. There is symmetry about the z- I
axis, which is the axis of rotation, and thus there is no 6 dependence. Then P

= P(1; 2) and a, = 0. Also, a, = 0 since there is no motion in the z-direction.

Then the equations of motion for rotating fluids (Eqgs. 3—43) reduce to

Axis of
rotation

> _ 2 Q—O and wb_ (3-53)
ar P G T oz P8
Then the total differential of P = P(r, z), which is dP = (dP/dr)dr FIGURE 3-53

+ (9P/6z)dz, becomes Rigid-body motion of a liquid in a

dP = pre* dr — pg dz (3-54) rotating vertical cylindrical container.
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The equation for surfaces of constant pressure is obtained by setting dP = 0
and replacing z by z,,,» Which is the z-value (the vertical distance) of the
surface as a function of r. It gives

a
M

Free : l

surface : . 3 AZisobar _ ﬂz (3-55)
\i‘ s, max P, dr 8
&ﬁ i—’ Integrating, the equation for the surfaces of constant pressure is determined
\\_1 / 4 to be

Ps

\\_/ Pg . w? 5
\\J L/ P Surfaces of constant pressure: Zisobar = e r-+ C, (3-56)
\—— 1" ¢

which is the equation of a parabola. Thus we conclude that the surfaces of
constant pressure, including the free surface, are paraboloids of revolution

FIGURE 3-54 (Fig. 3-54).
Surfaces of constant pressure in a The value of the integration constant C, is different for different parabo-
rotating liquid. loids of constant pressure (i.e., for different isobars). For the free surface,

setting r = 0 in Eq. 3-56 gives z;,(0) = C; = h,, where h_is the distance
of the free surface from the bottom of the container along the axis of rota-
tion (Fig. 3-53). Then the equation for the free surface becomes

2
=224 (3-57)
2g

where z, is the distance of the free surface from the bottom of the container
at radius r. The underlying assumption in this analysis is that there is suffi-
cient liquid in the container so that the entire bottom surface remains cov-
ered with liquid.

The volume of a cylindrical shell element of radius r, height z, and thick-
ness dr is dV = 2arz, dr. Then the volume of the paraboloid formed by the
free surface is

R R (02 (R
V= 2mzordr = 2m —r°+ h.|rdr=mR +h,| (3-58)
2g 4g

r=0 r=0

Since mass is conserved and density is constant, this volume must be equal
to the original volume of the fluid in the container, which is

V = 7R, (3-59)

where hy, is the original height of the fluid in the container with no rotation.
Setting these two volumes equal to each other, the height of the fluid along
the centerline of the cylindrical container becomes

®’R?
hy=hy——— (3-60)
4g

Then the equation of the free surface becomes

3 _ w’ 2
Free surface: z,=hy — 1o (R”—2r%) (3-61)
8

The maximum vertical height occurs at the edge where r = R, and the max-
imum height difference between the edge and the center of the free surface
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is determined by evaluating z; at »r = R and also at r = 0, and taking their

difference,

2

Maximum height difference: Az max = 2,(R) — 2,(0) = ;L R? (3-62)
8

When p = constant, the pressure difference between two points 1 and 2 in
the fluid is determined by integrating dP = prw® dr — pg dz. This yields
2
pw

=N (r3 = rD) — pgza — ) (3-63)

P,— P =
Taking point 1 to be the origin (r = 0, z = 0) where the pressure is P, and
point 2 to be any point in the fluid (no subscript), the pressure distribution
can be expressed as

5

pW
Pressure variation: P=P,+ /T r°— pgz (3-64)

Note that at a fixed radius, the pressure varies hydrostatically in the vertical
direction, as in a fluid at rest. For a fixed vertical distance z, the pressure
varies with the square of the radial distance r, increasing from the centerline
toward the outer edge. In any horizontal plane, the pressure difference
between the center and edge of the container of radius R is AP = pw’R?/2.

: EXAMPLE 3-13 Rising of a Liquid During Rotation

B A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Fig.
: 3-55, is partially filled with 50-cm-high liquid whose density is 850 kg/m3.
R Now the cylinder is rotated at a constant speed. Determine the rotational
m speed at which the liquid will start spilling from the edges of the container.
u
SOLUTION A vertical cylindrical container partially filled with a liquid is
rotated. The angular speed at which the liquid will start spilling is to be
determined.
Assumptions 1 The increase in the rotational speed is very slow so that the |
liquid in the container always acts as a rigid body. 2 The bottom surface of Q) @
the container remains covered with liquid during rotation (no dry spots).
Analysis Taking the center of the bottom surface of the rotating vertical Free
cylinder as the origin (r = 0, z = 0), the equation for the free surface of the surface
liquid is given as

-

2
w
Z,=hy— 4—g(R2 —2r?

h
Then the vertical height of the liquid at the edge of the container where r = !
R becomes
2p2
2R = hy + 2
4g

where h, = 0.5 m is the original height of the liquid before rotation. Just
before the liquid starts spilling, the height of the liquid at the edge of the con-
tainer equals the height of the container, and thus z, (R) = 0.6 m. Solving the FIGURE 3-55

Schematic for Example 3—13.
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last equation for w and substituting, the maximum rotational speed of the
container is determined to be

B \/4g[zx(R) — iyl \/4(9,81 m/s)[(0.6 — 0.5) m]
@ R - 0.1 my’

Noting that one complete revolution corresponds to 27 rad, the rotational
speed of the container can also be expressed in terms of revolutions per

minute (rpm) as
19.
PN 98rad/s(60.s>= 189 rpm
27 2ar rad/rev\1 min

= 19.8 rad/s

Therefore, the rotational speed of this container should be limited to 189
rpm to avoid any spill of liquid as a result of the centrifugal effect.

Discussion Note that the analysis is valid for any liquid since the result is
independent of density or any other fluid property. We should also verify that

our assumption of no dry spots is valid. The liquid height at the center is

ZRZ
2(0) = hy — ‘:— =04m
g

Since z(0) is positive, our assumption is validated.

SUMMARY

The normal force exerted by a fluid per unit area is called
pressure, and its unit is the pascal, 1 Pa = 1 N/m?. The pres-
sure relative to absolute vacuum is called the absolute pres-
sure, and the difference between the absolute pressure and
the local atmospheric pressure is called the gage pressure.
Pressures below atmospheric pressure are called vacuum
pressures. The absolute, gage, and vacuum pressures are
related by

Pgagc = Pabs - Palm

Pvac:Palm_Pabs

The pressure at a point in a fluid has the same magnitude in
all directions. The variation of pressure with elevation in a
fluid at rest is given by

dP

dz
where the positive z-direction is taken to be upward. When
the density of the fluid is constant, the pressure difference
across a fluid layer of thickness Az is

AP =P, — P, = pg Az

P8

The absolute and gage pressures in a static liquid open to the
atmosphere at a depth 4 from the free surface are

P=Pyntpgh —and Py, = pgh

The pressure in a fluid at rest remains constant in the hori-
zontal direction. Pascal’s law states that the pressure applied
to a confined fluid increases the pressure throughout by the
same amount. The atmospheric pressure is measured by a
barometer and is given by

Pym = pgh
where £ is the height of the liquid column.

Fluid statics deals with problems associated with fluids at
rest, and it is called hydrostatics when the fluid is a liquid.
The magnitude of the resultant force acting on a plane sur-
face of a completely submerged plate in a homogeneous fluid
is equal to the product of the pressure P at the centroid of
the surface and the area A of the surface and is expressed as

FR:(P0+pghC)A:PCA:Pach

where h. = y. sin 0 is the vertical distance of the centroid
from the free surface of the liquid. The pressure P, is usually
the atmospheric pressure, which cancels out in most cases
since it acts on both sides of the plate. The point of intersec-
tion of the line of action of the resultant force and the surface
is the center of pressure. The vertical location of the line of
action of the resultant force is given by

I

xx, C

= J’» i
TPV T Py /pg sin 0)1A
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where I,  is the second moment of area about the x-axis
passing through the centroid of the area.

A fluid exerts an upward force on a body immersed in it.
This force is called the buoyant force and is expressed as

Fy=prgV

where \/ is the volume of the body. This is known as
Archimedes’ principle and is expressed as: the buoyant force
acting on a body immersed in a fluid is equal to the weight of
the fluid displaced by the body; it acts upward through the
centroid of the displaced volume. With constant density, the
buoyant force is independent of the distance of the body from
the free surface. For floating bodies, the submerged volume
fraction of the body is equal to the ratio of the average den-
sity of the body to the density of the fluid.

The general equation of motion for a fluid that acts as a
rigid body is

€P + pgz = —pa

When gravity is aligned in the —z-direction, it is expressed in
scalar form as
P aP
T T T pPay P

aP
=-pa, and —=-p(gta)
0x ady i

0z

where a,, a,, and a_ are accelerations in the x-, y-, and z-
directions, respectively. During linearly accelerating motion
in the xz-plane, the pressure distribution is expressed as

P =Py~ pax—p(g+a)z

The surfaces of constant pressure (including the free surface)
in a liquid with constant acceleration in linear motion are
parallel surfaces whose slope in a xz-plane is

dzisobar ay

Slope = — =% = — = —tan 6
ope i cta an

During rigid-body motion of a liquid in a rotating cylinder,
the surfaces of constant pressure are paraboloids of revolu-
tion. The equation for the free surface is

2
w
2, =hy — ” (R* — 2r?)

where z, is the distance of the free surface from the bottom of
the container at radius r and h, is the original height of the
fluid in the container with no rotation. The variation of pres-
sure in the liquid is expressed as
2
P=P0+p7r2—pgz

where P, is the pressure at the origin (r = 0, z = 0).

Pressure is a fundamental property, and it is hard to imag-
ine a significant fluid flow problem that does not involve
pressure. Therefore, you will see this property in all chapters
in the rest of this book. The consideration of hydrostatic
forces acting on plane or curved surfaces, however, is mostly
limited to this chapter.
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PROBLEMS *

Pressure, Manometer, and Barometer

3-1C What is the difference between gage pressure and
absolute pressure?

3-2C Explain why some people experience nose bleeding
and some others experience shortness of breath at high ele-
vations.

3-3C Someone claims that the absolute pressure in a liquid
of constant density doubles when the depth is doubled. Do
you agree? Explain.

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the S| users can ignore them.
Problems with the @ icon are solved using EES, and complete
solutions together with parametric studies are included on the
enclosed DVD. Problems with the B icon are comprehensive in
nature and are intended to be solved with a computer, preferably
using the EES software that accompanies this text.
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3-4C A tiny steel cube is suspended in water by a string. If
the lengths of the sides of the cube are very small, how
would you compare the magnitudes of the pressures on the
top, bottom, and side surfaces of the cube?

3-5C Express Pascal’s law, and give a real-world example
of it.

3-6C Consider two identical fans, one at sea level and the
other on top of a high mountain, running at identical speeds.
How would you compare (a) the volume flow rates and (b)
the mass flow rates of these two fans?

3-7 A vacuum gage connected to a chamber reads 24 kPa
at a location where the atmospheric pressure is 92 kPa.
Determine the absolute pressure in the chamber.

3-8E A manometer is used to measure the air pressure in a
tank. The fluid used has a specific gravity of 1.25, and the
differential height between the two arms of the manometer is
28 in. If the local atmospheric pressure is 12.7 psia, deter-
mine the absolute pressure in the tank for the cases of the
manometer arm with the (a) higher and (b) lower fluid level
being attached to the tank.

3-9 The water in a tank is pressurized by air, and the pres-
sure is measured by a multifluid manometer as shown in Fig.
P3-9. Determine the gage pressure of air in the tank if &,
= 02m, h, = 0.3 m, and h; = 0.46 m. Take the densities of
water, oil, and mercury to be 1000 kg/m?, 850 kg/m?, and
13,600 kg/m?, respectively.

l J—
WATER jl
L B 2
O
2
I |
—
Mercury
FIGURE P3-9

3-10 Determine the atmospheric pressure at a location
where the barometric reading is 750 mmHg. Take the density
of mercury to be 13,600 kg/m?.

3-11 The gage pressure in a liquid at a depth of 3 m is read
to be 28 kPa. Determine the gage pressure in the same liquid
at a depth of 12 m.

3-12 The absolute pressure in water at a depth of 5 m is
read to be 145 kPa. Determine (a) the local atmospheric pres-
sure, and (b) the absolute pressure at a depth of 5 m in a lig-
uid whose specific gravity is 0.85 at the same location.

3-13E  Show that 1 kgf/cm? = 14.223 psi.

3-14E A 200-1b man has a total foot imprint area of 72 in?.
Determine the pressure this man exerts on the ground if (a)
he stands on both feet and (b) he stands on one foot.

3-15 Consider a 70-kg woman who has a total foot imprint
area of 400 cm?. She wishes to walk on the snow, but the
snow cannot withstand pressures greater than 0.5 kPa. Deter-
mine the minimum size of the snowshoes needed (imprint
area per shoe) to enable her to walk on the snow without
sinking.

3-16 A vacuum gage connected to a tank reads 30 kPa at a
location where the barometric reading is 755 mmHg. Determine
the absolute pressure in the tank. Take py, = 13,590 kg/m?.
Answer: 70.6 kPa

3-17E A pressure gage connected to a tank reads 50 psi at a
location where the barometric reading is 29.1 inHg. Determine
the absolute pressure in the tank. Take py, = 843.4 Ibm/ft3,
Answer: 64.29 psia

3-18 A pressure gage connected to a tank reads 500 kPa at
a location where the atmospheric pressure is 94 kPa. Deter-
mine the absolute pressure in the tank.

3-19 The barometer of a mountain hiker reads 930 mbars
at the beginning of a hiking trip and 780 mbars at the end.
Neglecting the effect of altitude on local gravitational accel-
eration, determine the vertical distance climbed. Assume an
average air density of 1.20 kg/m3.  Answer: 1274 m

3-20 The basic barometer can be used to measure the
height of a building. If the barometric readings at the top and
at the bottom of a building are 730 and 755 mmHg, respec-
tively, determine the height of the building. Assume an aver-
age air density of 1.18 kg/m?.

Pigp =730 mmHg

Py =755 mmHg

FIGURE P3-20

3-21 e Solve Prob. 3-20 using EES (or other) software.
e Print out the entire solution, including the

WWW.EHQiﬂOCHr‘% EBooKsPdf.com



cen72367_ch03.gxd 10/29/04 2:22 PM Page 105

o

Frinted frem PDF by LPS ‘

CHAPTER 3

numerical results with proper units, and take the density of
mercury to be 13,600 kg/m?.

3-22 Determine the pressure exerted on a diver at 30 m
below the free surface of the sea. Assume a barometric pres-
sure of 101 kPa and a specific gravity of 1.03 for seawater.
Answer: 404.0 kPa

3-23E Determine the pressure exerted on the surface of a
submarine cruising 300 ft below the free surface of the sea.
Assume that the barometric pressure is 14.7 psia and the spe-
cific gravity of seawater is 1.03.

3-24 A gas is contained in a vertical, frictionless piston—
cylinder device. The piston has a mass of 4 kg and a cross-
sectional area of 35 cm?. A compressed spring above the pis-
ton exerts a force of 60 N on the piston. If the atmospheric
pressure is 95 kPa, determine the pressure inside the cylinder.
Answer: 123.4 kPa

ON ¥ p,. =95kPa

mp=4kg

A =35cm?
P=7?
FIGURE P3-24

3-25 [5al Reconsider Prob. 3-24. Using EES (or other)

software, investigate the effect of the spring
force in the range of 0 to 500 N on the pressure inside the
cylinder. Plot the pressure against the spring force, and dis-
cuss the results.

3-26 %Q/& Both a gage and a manometer are attached to a

gas tank to measure its pressure. If the reading on

P,=80kPa

FIGURE P3-26

the pressure gage is 80 kPa, determine the distance between
the two fluid levels of the manometer if the fluid is (a) mer-
cury (p = 13,600 kg/m?) or (b) water (p = 1000 kg/m?).

3-27 [il Reconsider Prob. 3-26. Using EES (or other)

software, investigate the effect of the manometer
fluid density in the range of 800 to 13,000 kg/m? on the dif-
ferential fluid height of the manometer. Plot the differential
fluid height against the density, and discuss the results.

3-28 A manometer containing oil (p = 850 kg/m®) is
attached to a tank filled with air. If the oil-level difference
between the two columns is 45 cm and the atmospheric pres-
sure is 98 kPa, determine the absolute pressure of the air in
the tank. Answer: 101.75 kPa

3-29 A mercury manometer (p = 13,600 kg/m?) is con-
nected to an air duct to measure the pressure inside. The dif-
ference in the manometer levels is 15 mm, and the atmos-
pheric pressure is 100 kPa. (a) Judging from Fig. P3-29,
determine if the pressure in the duct is above or below the
atmospheric pressure. (b) Determine the absolute pressure in
the duct.

AIR -—
po9 h=15mm
FIGURE P3-29

3-30 Repeat Prob. 3-29 for a differential mercury height of
30 mm.

3-31 Blood pressure is usually measured by wrapping a
closed air-filled jacket equipped with a pressure gage around
the upper arm of a person at the level of the heart. Using a
mercury manometer and a stethoscope, the systolic pressure
(the maximum pressure when the heart is pumping) and the
diastolic pressure (the minimum pressure when the heart is
resting) are measured in mmHg. The systolic and diastolic
pressures of a healthy person are about 120 mmHg and 80
mmHg, respectively, and are indicated as 120/80. Express
both of these gage pressures in kPa, psi, and meter water
column.

3-32 The maximum blood pressure in the upper arm of a
healthy person is about 120 mmHg. If a vertical tube open to
the atmosphere is connected to the vein in the arm of the per-
son, determine how high the blood will rise in the tube. Take
the density of the blood to be 1050 kg/m?.
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FIGURE P3-32

3-33 Consider a 1.8-m-tall man standing vertically in water
and completely submerged in a pool. Determine the differ-
ence between the pressures acting at the head and at the toes
of this man, in kPa.

3-34 Consider a U-tube whose arms are open to the atmo-
sphere. Now water is poured into the U-tube from one arm,
and light oil (p = 790 kg/m?) from the other. One arm con-
tains 70-cm-high water, while the other arm contains both
fluids with an oil-to-water height ratio of 6. Determine the
height of each fluid in that arm.

Oil
70
o Water

FIGURE P3-34

3-35 The hydraulic lift in a car repair shop has an output
diameter of 30 cm and is to lift cars up to 2000 kg. Deter-
mine the fluid gage pressure that must be maintained in the
reservoir.

3-36 Freshwater and seawater flowing in parallel horizontal
pipelines are connected to each other by a double U-tube

Air
Fresh- 40 cm
water
70 cm
| —Mercury
FIGURE P3-36

o

manometer, as shown in Fig. P3-36. Determine the pressure
difference between the two pipelines. Take the density of sea-
water at that location to be p = 1035 kg/m>. Can the air col-
umn be ignored in the analysis?

3-37 Repeat Prob. 3-36 by replacing the air with oil whose
specific gravity is 0.72.

3-38E The pressure in a natural gas pipeline is measured by
the manometer shown in Fig. P3-38E with one of the arms
open to the atmosphere where the local atmospheric pressure
is 14.2 psia. Determine the absolute pressure in the pipeline.

+—H
Air 2in
Natural 10in
Gas
L 25 in
f
6in
Mercury
SG=13.6
Water

FIGURE P3-38E

3-39E Repeat Prob. 3-38E by replacing air by oil with a
specific gravity of 0.69.

3-40 The gage pressure of the air in the tank shown in Fig.
P3-40 is measured to be 65 kPa. Determine the differential
height & of the mercury column.

L —Oil

65 kPa SG=0.72

| —Mercury
SG=13.6

FIGURE P3-40
3-41 Repeat Prob. 3—40 for a gage pressure of 45 kPa.

3-42 The top part of a water tank is divided into two com-
partments, as shown in Fig. P3-42. Now a fluid with an
unknown density is poured into one side, and the water level
rises a certain amount on the other side to compensate for
this effect. Based on the final fluid heights shown on the fig-
ure, determine the density of the fluid added. Assume the lig-
uid does not mix with water.
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the two arms is 32 in, determine the pressure difference

between the two tanks. The densities of oil and mercury are
45 1bm/ft> and 848 Ibm/ft?, respectively.

3-45 Pressure is often given in terms of a liquid column
and is expressed as “pressure head.” Express the standard
atmospheric pressure in terms of (a) mercury (SG = 13.6),
(b) water (SG = 1.0), and (¢) glycerin (SG = 1.26) columns.
95 cm Explain why we usually use mercury in manometers.

4]

WATER

50.cm 3-46 A simple experiment has long been used to demon-

strate how negative pressure prevents water from being

L spilled out of an inverted glass. A glass that is fully filled by

water and covered with a thin paper is inverted, as shown in

FIGURE P3—42 Fig. P3-46. Determine the pressure at the bottom of the
glass, and explain why water does not fall out.

3-43 The 500-kg load on the hydraulic lift shown in Fig.
P3-43 is to be raised by pouring oil (p = 780 kg/m?) into a -

Gl
thin tube. Determine how high 4 should be in order to begin o
to raise the weight.
T 10 cm
h Water
LOAD
500 kg
‘A piece
12m Tem—] f— of paper
FIGURE P3-46
3-47 Two chambers with the same fluid at their base are
separated by a piston whose weight is 25 N, as shown in Fig.
P3-47. Calculate the gage pressures in chambers A and B.
FIGURE P3-43
. Piston
3-44E Two oil tanks are connected to each other through a
manometer. If the difference between the mercury levels in
A B
Air Air o |
50 cm
c | o 'f
30cm 25 cm
£ 30em [ ] vy
Water
Mercury 90 cm
FIGURE P3—44E FIGURE P3-47
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3-48 Consider a double-fluid manometer attached to an air
pipe shown in Fig. P3-48. If the specific gravity of one fluid
is 13.55, determine the specific gravity of the other fluid for
the indicated absolute pressure of air. Take the atmospheric
Answer: 5.0

pressure to be 100 kPa.

SG,

SG, = 1355

FIGURE P3-48

3-49 The pressure difference between an oil pipe and water
pipe is measured by a double-fluid manometer, as shown in
Fig. P3-49. For the given fluid heights and specific gravities,
calculate the pressure difference AP = P, — P,.

A
Glycerin
Water SG=1.26
SG=1.0
60 cm
15 cm'
20 cm
Mercury
SG=135

FIGURE P3-49

o
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3-50 Consider the system shown in Fig. P3-50. If a change
of 0.7 kPa in the pressure of air causes the brine-mercury
interface in the right column to drop by 5 mm in the brine
level in the right column while the pressure in the brine pipe
remains constant, determine the ratio of A,/A;.

Air

Area, A,

FIGURE P3-50

3-51 Two water tanks are connected to each other through
a mercury manometer with inclined tubes, as shown in Fig.
P3-51. If the pressure difference between the two tanks is
20 kPa, calculate a and 6.

Mercury
SG=13.6

FIGURE P3-51

3-52 A multifluid container is connected to a U-tube, as
shown in Fig. P3-52. For the given specific gravities and
fluid column heights, determine the gage pressure at A. Also
determine the height of a mercury column that would create
the same pressure at A.  Answers: 0.471 kPa, 0.353 cm
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70 cm

30 cm

FIGURE P3-52

Fluid Statics: Hydrostatic Forces on Plane
and Curved Surfaces

3-53C Define the resultant hydrostatic force acting on a
submerged surface, and the center of pressure.

3-54C Someone claims that she can determine the magni-
tude of the hydrostatic force acting on a plane surface sub-
merged in water regardless of its shape and orientation if she
knew the vertical distance of the centroid of the surface from
the free surface and the area of the surface. Is this a valid
claim? Explain.

3-55C A submerged horizontal flat plate is suspended in
water by a string attached at the centroid of its upper surface.
Now the plate is rotated 45° about an axis that passes through
its centroid. Discuss the change on the hydrostatic force act-
ing on the top surface of this plate as a result of this rotation.
Assume the plate remains submerged at all times.

3-56C You may have noticed that dams are much thicker at
the bottom. Explain why dams are built that way.

3-57C Consider a submerged curved surface. Explain how
you would determine the horizontal component of the hydro-
static force acting on this surface.

3-58C Consider a submerged curved surface. Explain how
you would determine the vertical component of the hydrosta-
tic force acting on this surface.

3-59C Consider a circular surface subjected to hydrostatic
forces by a constant density liquid. If the magnitudes of the
horizontal and vertical components of the resultant hydrosta-
tic force are determined, explain how you would find the line
of action of this force.

3-60 Consider a heavy car submerged in water in a lake
with a flat bottom. The driver’s side door of the car is 1.1 m
high and 0.9 m wide, and the top edge of the door is 8 m
below the water surface. Determine the net force acting on
the door (normal to its surface) and the location of the pres-

sure center if (a) the car is well-sealed and it contains air at
atmospheric pressure and (b) the car is filled with water.

3-61E A long, solid cylinder of radius 2 ft hinged at point
A is used as an automatic gate, as shown in Fig. P3-61E.
When the water level reaches 15 ft, the cylindrical gate opens
by turning about the hinge at point A. Determine (a) the
hydrostatic force acting on the cylinder and its line of action
when the gate opens and (b) the weight of the cylinder per ft
length of the cylinder.

<

15 ft
2 ft

FIGURE P3-61E

3-62 Consider a 4-m-long, 4-m-wide, and 1.5-m-high
aboveground swimming pool that is filled with water to the
rim. (a) Determine the hydrostatic force on each wall and the
distance of the line of action of this force from the ground.
(b) If the height of the walls of the pool is doubled and the
pool is filled, will the hydrostatic force on each wall double
or quadruple? Why?  Answer: (a) 44.1 kN

3-63E Consider a 200-ft-high, 1200-ft-wide dam filled to
capacity. Determine (a) the hydrostatic force on the dam and
(b) the force per unit area of the dam near the top and near
the bottom.

3-64 A room in the lower level of a cruise ship has a
30-cm-diameter circular window. If the midpoint of the win-
dow is 5 m below the water surface, determine the hydro-
static force acting on the window, and the pressure center.
Take the specific gravity of seawater to be 1.025. Answers:
3554 N, 5.001 m

FIGURE P3-64
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3-65 The water side of the wall of a 100-m-long dam is a
quarter circle with a radius of 10 m. Determine the hydro-
static force on the dam and its line of action when the dam is
filled to the rim.

3-66 A 4-m-high, 5-m-wide rectangular plate blocks the
end of a 4-m-deep freshwater channel, as shown in Fig.
P3-66. The plate is hinged about a horizontal axis along its
upper edge through a point A and is restrained from opening
by a fixed ridge at point B. Determine the force exerted on
the plate by the ridge.

4
i
I'm
AvA 3
4m
B
FIGURE P3-66

3-67 7ol Reconsider Prob. 3-66. Using EES (or other)

software, investigate the effect of water depth on
the force exerted on the plate by the ridge. Let the water
depth vary from 0 m to 5 m in increments of 0.5 m. Tabulate
and plot your results.

3-68E The flow of water from a reservoir is controlled by a
5-ft-wide L-shaped gate hinged at point A, as shown in Fig.
P3-68E. If it is desired that the gate open when the water
height is 12 ft, determine the mass of the required weight W.
Answer: 30,900 Ibm

) ft—»‘

/<{ B_

A

T — Gate 15 ft

12 ft

.

FIGURE P3-68E

<

3-69E Repeat Prob. 3—68E for a water height of 8 ft.

3-70 A water trough of semicircular cross section of radius
0.5 m consists of two symmetric parts hinged to each other at
the bottom, as shown in Fig. P3-70. The two parts are held

together by a cable and turnbuckle placed every 3 m along
the length of the trough. Calculate the tension in each cable
when the trough is filled to the rim.

1]
,—— Cable

D

=

Hinge
FIGURE P3-70

3-71 The two sides of a V-shaped water trough are hinged
to each other at the bottom where they meet, as shown in Fig.
P3-71, making an angle of 45° with the ground from both
sides. Each side is 0.75 m wide, and the two parts are held
together by a cable and turnbuckle placed every 6 m along
the length of the trough. Calculate the tension in each cable
when the trough is filled to the rim.  Answer: 5510 N

Cable

0.75m
45° 0K 45°
\>/ \Hinge
FIGURE P3-71

3-72  Repeat Prob. 3-71 for the case of a partially filled
trough with a water height of 0.4 m directly above the hinge.

3-73 A retaining wall against a mud slide is to be con-
structed by placing 0.8-m-high and 0.2-m-wide rectangular
concrete blocks (p = 2700 kg/m?) side by side, as shown in
Fig. P3-73. The friction coefficient between the ground and
the concrete blocks is f = 0.3, and the density of the mud is
about 1800 kg/m?. There is concern that the concrete blocks
may slide or tip over the lower left edge as the mud level
rises. Determine the mud height at which (a) the blocks will

0.2m
T b
0.8 m Mud T
P ’l‘
FIGURE P3-73
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overcome friction and start sliding and (b) the blocks will tip
over.

3-74 Repeat Prob. 3-73 for 0.4-m-wide concrete blocks.

3-75 %@;’ A 4-m-long quarter-circular gate of radius 3 m

and of negligible weight is hinged about its
upper edge A, as shown in Fig. P3-75. The gate controls the
flow of water over the ledge at B, where the gate is pressed
by a spring. Determine the minimum spring force required to
keep the gate closed when the water level rises to A at the
upper edge of the gate.

FIGURE P3-75

3-76 Repeat Prob. 3-75 for a radius of 4 m for the gate.
Answer: 314 kN

Buoyancy

3-77C What is buoyant force? What causes it? What is the
magnitude of the buoyant force acting on a submerged body
whose volume is V? What are the direction and the line of
action of the buoyant force?

3-78C Consider two identical spherical balls submerged in
water at different depths. Will the buoyant forces acting on
these two balls be the same or different? Explain.

3-79C Consider two 5-cm-diameter spherical balls—one
made of aluminum, the other of iron—submerged in water.
Will the buoyant forces acting on these two balls be the same
or different? Explain.

3-80C Consider a 3-kg copper cube and a 3-kg copper ball
submerged in a liquid. Will the buoyant forces acting on
these two bodies be the same or different? Explain.

3-81C Discuss the stability of (a) a submerged and (b) a
floating body whose center of gravity is above the center of
buoyancy.

3-82 The density of a liquid is to be determined by an old
1-cm-diameter cylindrical hydrometer whose division marks
are completely wiped out. The hydrometer is first dropped in
water, and the water level is marked. The hydrometer is then
dropped into the other liquid, and it is observed that the mark
for water has risen 0.5 cm above the liquid—air interface. If
the height of the water mark is 10 cm, determine the density
of the liquid.

—

Mark for
water

1
IO.S cm

Unknown
liquid 10em
N
FIGURE P3-82

3-83E A crane is used to lower weights into a lake for an
underwater construction project. Determine the tension in the
rope of the crane due to a 3-ft-diameter spherical steel block
(density = 494 1bm/ft®) when it is (a) suspended in the air
and (b) completely immersed in water.

3-84 The volume and the average density of an irregularly
shaped body are to be determined by using a spring scale.
The body weighs 7200 N in air and 4790 N in water. Deter-
mine the volume and the density of the body. State your
assumptions.

3-85 Consider a large cubic ice block floating in seawater.
The specific gravities of ice and seawater are 0.92 and 1.025,
respectively. If a 10-cm-high portion of the ice block extends
above the surface of the water, determine the height of the ice
block below the surface. Answer: 87.6 cm

IIO cm

B Cubic
ice block h
FIGURE P3-85

3-86 A 170-kg granite rock (p = 2700 kg/m?) is dropped
into a lake. A man dives in and tries to lift the rock. Deter-
mine how much force the man needs to apply to lift it from
the bottom of the lake. Do you think he can do it?

3-87 It is said that Archimedes discovered his principle
during a bath while thinking about how he could determine if
King Hiero’s crown was actually made of pure gold. While in
the bathtub, he conceived the idea that he could determine
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the average density of an irregularly shaped object by weigh-
ing it in air and also in water. If the crown weighed 3.20 kgf
(= 31.4 N) in air and 2.95 kgf (= 28.9 N) in water, deter-
mine if the crown is made of pure gold. The density of gold
is 19,300 kg/m3. Discuss how you can solve this problem
without weighing the crown in water but by using an ordi-
nary bucket with no calibration for volume. You may weigh
anything in air.

3-88 One of the common procedures in fitness programs is
to determine the fat-to-muscle ratio of the body. This is based
on the principle that the muscle tissue is denser than the fat
tissue, and, thus, the higher the average density of the body,
the higher is the fraction of muscle tissue. The average density
of the body can be determined by weighing the person in air
and also while submerged in water in a tank. Treating all tis-
sues and bones (other than fat) as muscle with an equivalent
density of p, e obtain a relation for the volume fraction of
body fat xg,. Answer: X, = (Pruscie = Pave)Pruscie — Prat)-

Submerged
person

FIGURE P3-88E

3-89 The hull of a boat has a volume of 150 m?, and the
total mass of the boat when empty is 8560 kg. Determine
how much load this boat can carry without sinking (a) in a
lake and (b) in seawater with a specific gravity of 1.03.

Fluids in Rigid-Body Motion

3-90C Under what conditions can a moving body of fluid
be treated as a rigid body?

3-91C Consider a glass of water. Compare the water pres-
sures at the bottom surface for the following cases: the glass
is (a) stationary, (b) moving up at constant velocity, (¢) mov-
ing down at constant velocity, and (d) moving horizontally at
constant velocity.

3-92C Consider two identical glasses of water, one station-
ary and the other moving on a horizontal plane with constant
acceleration. Assuming no splashing or spilling occurs, which
glass will have a higher pressure at the (a) front, (b) mid-
point, and (c) back of the bottom surface?

3-93C Consider a vertical cylindrical container partially
filled with water. Now the cylinder is rotated about its axis at
a specified angular velocity, and rigid-body motion is estab-
lished. Discuss how the pressure will be affected at the mid-
point and at the edges of the bottom surface due to rotation.

3-94 A water tank is being towed by a truck on a level
road, and the angle the free surface makes with the horizontal
is measured to be 15°. Determine the acceleration of the
truck.

3-95 Consider two water tanks filled with water. The first
tank is 8 m high and is stationary, while the second tank is 2
m high and is moving upward with an acceleration of 5 m/s.
Which tank will have a higher pressure at the bottom?

3-96 A water tank is being towed on an uphill road that
makes 20° with the horizontal with a constant acceleration of
5 m/s? in the direction of motion. Determine the angle the
free surface of water makes with the horizontal. What would
your answer be if the direction of motion were downward on
the same road with the same acceleration?

3-97E A 2-ft-diameter vertical cylindrical tank open to the
atmosphere contains 1-ft-high water. The tank is now rotated
about the centerline, and the water level drops at the center
while it rises at the edges. Determine the angular velocity at
which the bottom of the tank will first be exposed. Also
determine the maximum water height at this moment.

FIGURE P3-97E

3-98 A 60-cm-high, 40-cm-diameter cylindrical water tank
is being transported on a level road. The highest acceleration
anticipated is 4 m/s?. Determine the allowable initial water
height in the tank if no water is to spill out during accelera-
tion. Answer: 51.8 cm

3-99 A 40-cm-diameter, 90-cm-high vertical cylindrical
container is partially filled with 60-cm-high water. Now the
cylinder is rotated at a constant angular speed of 120 rpm.
Determine how much the liquid level at the center of the
cylinder will drop as a result of this rotational motion.

3-100 A fish tank that contains 40-cm-high water is moved
in the cabin of an elevator. Determine the pressure at the bot-
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tom of the tank when the elevator is (a) stationary, (b) mov-
ing up with an upward acceleration of 3 m/s?, and (c) moving
down with a downward acceleration of 3 m/s>.

3-101 A 3-m-diameter vertical cylindrical milk tank rotates
at a constant rate of 12 rpm. If the pressure at the center of
the bottom surface is 130 kPa, determine the pressure at the
edge of the bottom surface of the tank. Take the density of
the milk to be 1030 kg/m.

3-102 Milk with a density of 1020 kg/m? is transported on
a level road in a 7-m-long, 3-m-diameter cylindrical tanker.
The tanker is completely filled with milk (no air space), and
it accelerates at 2.5 m/s?. If the minimum pressure in the
tanker is 100 kPa, determine the maximum pressure and its
location.  Answer: 47.9 kPa

FIGURE P3-102

3-103 Repeat Prob. 3-102 for a deceleration of 2.5 m/s.

3-104 The distance between the centers of the two arms of
a U-tube open to the atmosphere is 25 cm, and the U-tube
contains 20-cm-high alcohol in both arms. Now the U-tube is
rotated about the left arm at 4.2 rad/s. Determine the eleva-
tion difference between the fluid surfaces in the two arms.

Qo

20 cm

25 cm

FIGURE P3-104

3-105 A 1.2-m-diameter, 3-m-high sealed vertical cylinder
is completely filled with gasoline whose density is 740 kg/m?.
The tank is now rotated about its vertical axis at a rate of
70 rpm. Determine (a) the difference between the pressures

o
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at the centers of the bottom and top surfaces and (b) the dif-
ference between the pressures at the center and the edge of

the bottom surface.
|

1.20 m 3m

FIGURE P3-105

3-106 3 Reconsider Prob. 3-105. Using EES (or other)

Sal software, investigate the effect of rotational
speed on the pressure difference between the center and the
edge of the bottom surface of the cylinder. Let the rotational
speed vary from O rpm to 500 rpm in increments of 50 rpm.
Tabulate and plot your results.

3-107E A 20-ft-long, 8-ft-high rectangular tank open to the
atmosphere is towed by a truck on a level road. The tank is
filled with water to a depth of 6 ft. Determine the maximum
acceleration or deceleration allowed if no water is to spill
during towing.

3-108E An 8-ft-long tank open to the atmosphere initially
contains 3-ft-high water. It is being towed by a truck on a
level road. The truck driver applies the brakes and the water
level at the front rises 0.5 ft above the initial level. Determine
the deceleration of the truck. Answer: 4.08 ft/s?

‘Water

| 8 ft

FIGURE P3-108E
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3-109 A 3-m-diameter, 7-m-long cylindrical tank is com-
pletely filled with water. The tank is pulled by a truck on a
level road with the 7-m-long axis being horizontal. Deter-
mine the pressure difference between the front and back ends
of the tank along a horizontal line when the truck (a) acceler-
ates at 3 m/s? and (b) decelerates at 4 m/s2.

Review Probhlems

3-110 An air-conditioning system requires a 20-m-long
section of 15-cm-diameter ductwork to be laid underwater.
Determine the upward force the water will exert on the duct.
Take the densities of air and water to be 1.3 kg/m? and 1000
kg/m?, respectively.

3-111 Balloons are often filled with helium gas because it
weighs only about one-seventh of what air weighs under
identical conditions. The buoyancy force, which can be
expressed as F, = p_i.gVj 1100 Will push the balloon upward.
If the balloon has a diameter of 10 m and carries two people,
70 kg each, determine the acceleration of the balloon when it
is first released. Assume the density of air is p = 1.16 kg/m?,
and neglect the weight of the ropes and the cage. Answer:
16.5 m/s?

HELIUM
D=10m
PHe :%pair

m=140 kg

FIGURE P3-111

3-112 i Reconsider Prob. 3—111. Using EES (or other)

S software, investigate the effect of the number
of people carried in the balloon on acceleration. Plot the
acceleration against the number of people, and discuss the
results.

3-113 Determine the maximum amount of load, in kg, the
balloon described in Prob. 3-111 can carry. Answer:
520.6 kg

3-114E The pressure in a steam boiler is given to be 75
kgf/cm?. Express this pressure in psi, kPa, atm, and bars.

3-115 The basic barometer can be used as an altitude-
measuring device in airplanes. The ground control reports a
barometric reading of 753 mmHg while the pilot’s reading is
690 mmHg. Estimate the altitude of the plane from ground
level if the average air density is 1.20 kg/m3.  Answer: 714 m

3-116 The lower half of a 10-m-high cylindrical container
is filled with water (p = 1000 kg/m?) and the upper half with
oil that has a specific gravity of 0.85. Determine the pressure
difference between the top and bottom of the cylinder.
Answer: 90.7 kPa

WATER

FIGURE P3-116

3-117 A vertical, frictionless piston—cylinder device con-
tains a gas at 500 kPa. The atmospheric pressure outside is
100 kPa, and the piston area is 30 cm?. Determine the mass
of the piston.

3-118 A pressure cooker cooks a lot faster than an ordinary
pan by maintaining a higher pressure and temperature inside.
The lid of a pressure cooker is well sealed, and steam can
escape only through an opening in the middle of the lid. A
separate metal piece, the petcock, sits on top of this opening

P, =101 kPa
Petcock

A =4 mm?

L

PRESSURE
COOKER

——— i

FIGURE P3-118
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and prevents steam from escaping until the pressure force
overcomes the weight of the petcock. The periodic escape of
the steam in this manner prevents any potentially dangerous
pressure buildup and keeps the pressure inside at a constant
value. Determine the mass of the petcock of a pressure
cooker whose operation pressure is 100 kPa gage and has an
opening cross-sectional area of 4 mm? Assume an atmos-
pheric pressure of 101 kPa, and draw the free-body diagram
of the petcock. Answer: 40.8 g

3-119 A glass tube is attached to a water pipe, as shown in
Fig. P3-119. If the water pressure at the bottom of the tube is
115 kPa and the local atmospheric pressure is 92 kPa, deter-
mine how high the water will rise in the tube, in m. Assume
g = 9.8 m/s? at that location and take the density of water to
be 1000 kg/m>.

Pym=92 kPa

atm

=
1}
)

Water

FIGURE P3-119

3-120 The average atmospheric pressure on earth is
approximated as a function of altitude by the relation P,
= 101.325 (1 — 0.022562)>*®, where P,,,, is the atmospheric
pressure in kPa and z is the altitude in km with z = 0 at sea
level. Determine the approximate atmospheric pressures at
Atlanta (z = 306 m), Denver (z = 1610 m), Mexico City (z
= 2309 m), and the top of Mount Everest (z = 8848 m).

3-121 When measuring small pressure differences with a
manometer, often one arm of the manometer is inclined to
improve the accuracy of reading. (The pressure difference is
still proportional to the vertical distance and not the actual
length of the fluid along the tube.) The air pressure in a cir-

Air

FIGURE P3-121

cular duct is to be measured using a manometer whose open
arm is inclined 35° from the horizontal, as shown in Fig.
P3-121. The density of the liquid in the manometer is 0.81
kg/L, and the vertical distance between the fluid levels in the
two arms of the manometer is 8 cm. Determine the gage
pressure of air in the duct and the length of the fluid column
in the inclined arm above the fluid level in the vertical arm.

3-122E Consider a U-tube whose arms are open to the
atmosphere. Now equal volumes of water and light oil (p
= 49.3 Ibm/ft®) are poured from different arms. A person
blows from the oil side of the U-tube until the contact surface
of the two fluids moves to the bottom of the U-tube, and thus

FIGURE P3-122E

the liquid levels in the two arms are the same. If the fluid
height in each arm is 30 in, determine the gage pressure the
person exerts on the oil by blowing.

3-123 Intravenous infusions are usually driven by gravity
by hanging the fluid bottle at sufficient height to counteract
the blood pressure in the vein and to force the fluid into the
body. The higher the bottle is raised, the higher the flow rate
of the fluid will be. (a) If it is observed that the fluid and the
blood pressures balance each other when the bottle is 1.2 m
above the arm level, determine the gage pressure of the
blood. (b) If the gage pressure of the fluid at the arm level
needs to be 20 kPa for sufficient flow rate, determine how
high the bottle must be placed. Take the density of the fluid
to be 1020 kg/m>.

FIGURE P3-123
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3-124 A gasoline line is connected to a pressure gage
through a double-U manometer, as shown in Fig. P3-124. If
the reading of the pressure gage is 370 kPa, determine the
gage pressure of the gasoline line.

0il SG=0.79

Gasoline SG=0.70

FIGURE P3-124

3-125 Repeat Prob. 3-124 for a pressure gage reading of
240 kPa.

3-126E A water pipe is connected to a double-U manome-
ter as shown in Fig. P3—1026E at a location where the local
atmospheric pressure is 14.2 psia. Determine the absolute
pressure at the center of the pipe.

FIGURE P3-126E

3-127 The pressure of water flowing through a pipe is mea-
sured by the arrangement shown in Fig. P3—127. For the val-
ues given, calculate the pressure in the pipe.

o
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Py=30kPa

FIGURE P3-127

3-128 Consider a U-tube filled with mercury except the
18-cm-high portion at the top, as shown in Fig. P3—128. The
diameter of the right arm of the U-tube is D = 2 c¢m, and the
diameter of the left arm is twice that. Oil with a specific
gravity of 2.72 is poured into the left arm, forcing some mer-
cury from the left arm into the right one. Determine the max-
imum amount of oil that can be added into the left arm.
Answer: 0.256 L

oil
SG=2.72 \

18 cm

2D D=2cm

Mercury
SG=13.6

FIGURE P3-128
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3-129 A teapot with a brewer at the top is used to brew tea,
as shown in Fig. P3-129. The brewer may partially block the
vapor from escaping, causing the pressure in the teapot to
rise and an overflow from the service tube to occur. Disre-
garding thermal expansion and the variation in the amount of
water in the service tube to be negligible relative to the
amount of water in the teapot, determine the maximum cold-
water height that would not cause an overflow at gage pres-
sures of up to 0.32 kPa for the vapor.

P, <0.32 kPa (gage)
Vapor

40° 12 cm

4 cm

A A A A A A 4
VR g ¥

FIGURE P3-129

3-130 Repeat Prob. 3—-129 by taking the thermal expansion
of water into consideration as it is heated from 20°C to the
boiling temperature of 100°C.

3-131 It is well known that the temperature of the atmo-
sphere varies with altitude. In the troposphere, which extends
to an altitude of 11 km, for example, the variation of temper-
ature can be approximated by 7' = T;, — Bz, where T}, is the
temperature at sea level, which can be taken to be 288.15 K,
and B = 0.0065 K/m. The gravitational acceleration also
changes with altitude as g(z) = g/(1 + 2/6,370,320)> where
g = 9.807 m/s? and z is the elevation from sea level in m.
Obtain a relation for the variation of pressure in the tropo-
sphere (a) by ignoring and (b) by considering the variation of
g with altitude.

3-132 The variation of pressure with density in a thick gas
layer is given by P = Cp", where C and n are constants. Not-

ing that the pressure change across a differential fluid layer
of thickness dz in the vertical z-direction is given as dP
= —pg dz, obtain a relation for pressure as a function of ele-
vation z. Take the pressure and density at z = 0 to be P, and
Po» respectively.

3-133 Pressure transducers are commonly used to measure
pressure by generating analog signals usually in the range of
4 mA to 20 mA or 0 V-dc to 10 V-dc in response to applied
pressure. The system whose schematic is shown in Fig.
P3-133 can be used to calibrate pressure transducers. A rigid
container is filled with pressurized air, and pressure is mea-
sured by the manometer attached. A valve is used to regulate
the pressure in the container. Both the pressure and the elec-
tric signal are measured simultaneously for various settings,
and the results are tabulated. For the given set of measure-
ments, obtain the calibration curve in the form of P = al
+ b, where a and b are constants, and calculate the pressure
that corresponds to a signal of 10 mA.

Ah, mm 28.0 181.5 297.8 413.1 765.9
I, mA 4.21 5.78 6.97 8.15 11.76
Ah, mm 1027 1149 1362 1458 1536
I, mA 14.43 15.68 17.86 18.84 19.64
Multimeter
nnnnn
uuuuy
Pressure
transducer
Pressurized
air, P
Rigid container Afl
— —Manometer
Mercury
SG=13.56

FIGURE P3-133
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3-134 A system is equipped with two pressure gages and a
manometer, as shown in Fig. P3—-134. For Ak = 8§ cm, deter-
mine the pressure difference AP = P, — P,.

Air

Manometer
fluid

Oil
SG =0.87

FIGURE P3-134

3-135 An oil pipeline and a 1.3-m? rigid air tank are con-
nected to each other by a manometer, as shown in Fig.
P3-135. If the tank contains 15 kg of air at 80°C, determine
(a) the absolute pressure in the pipeline and () the change in
Ah when the temperature in the tank drops to 20°C. Assume
the pressure in the oil pipeline to remain constant, and the air
volume in the manometer to be negligible relative to the vol-
ume of the tank.

1.3m?
Air, 80°C

FIGURE P3-135

3-136 The density of a floating body can be determined by
tying weights to the body until both the body and the weights
are completely submerged, and then weighing them sepa-

rately in air. Consider a wood log that weighs 1540 N in air.
If it takes 34 kg of lead (p = 11,300 kg/m®) to completely
sink the log and the lead in water, determine the average den-
sity of the log.  Answer: 835 kg/m®

3-137 %7& The 200-kg, 5-m-wide rectangular gate shown

in Fig. P3—137 is hinged at B and leans against
the floor at A making an angle of 45° with the horizontal.
The gate is to be opened from its lower edge by applying a
normal force at its center. Determine the minimum force F
required to open the water gate. Answer: 520 kN

‘Water

45°

A

FIGURE P3-137

3-138 Repeat Prob. 3-137 for a water height of 1.2 m
above the hinge at B.

3-139 A 3-m-high, 6-m-wide rectangular gate is hinged at
the top edge at A and is restrained by a fixed ridge at B.
Determine the hydrostatic force exerted on the gate by the
5-m-high water and the location of the pressure center.

<1

il

Water ‘ A
3m ||~ Gate
e

FIGURE P3-139

3-140 Repeat Prob. 3-139 for a total water height of 2 m.

3-141E A semicircular 30-ft-diameter tunnel is to be built
under a 150-ft-deep, 800-ft-long lake, as shown in Fig.
P3-141E. Determine the total hydrostatic force acting on the
roof of the tunnel.
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3-144 A U-tube contains water in the right arm, and
Water another liquid in the left arm. It is observed that when the U-
tube rotates at 30 rpm about an axis that is 15 cm from the
150 ft right arm and 5 cm from the left arm, the liquid levels in both
arms become the same. Determine the density of the fluid in
Tunnel the left arm.

I

30— Q)
FIGURE P3-141E

3-142 A 50-ton, 6-m-diameter hemispherical dome on a
level surface is filled with water, as shown in Fig. P3-142.
Someone claims that he can lift this dome by making use of
Pascal’s law by attaching a long tube to the top and filling it
with water. Determine the required height of water in the
tube to lift the dome. Disregard the weight of the tube and
the water in it.  Answer: 0.77 m T

‘._,.—+
5cm 15 cm

j FIGURE P3-144
h 3-145 A l-m-diameter, 2-m-high vertical cylinder is com-
pletely filled with gasoline whose density is 740 kg/m?. The
tank is now rotated about its vertical axis at a rate of 90 rpm,
while being accelerated upward at 5 m/s”. Determine (a) the
50 ton difference between the pressures at the centers of the bottom
Water J/ and top surfaces and (b) the difference between the pressures
at the center and the edge of the bottom surface.

e 6m ——

!
FIGURE P3-142 @

5 m/s?
3-143 The water in a 25-m-deep reservoir is kept inside by —_

a 150-m-wide wall whose cross section is an equilateral tri-
angle, as shown in Fig. P3-143. Determine (a) the total force
(hydrostatic + atmospheric) acting on the inner surface of
the wall and its line of action and (b) the magnitude of the
horizontal component of this force. Take P,,, = 100 kPa. I'm 2m

10 cm

Water T

|

25m ‘

FIGURE P3-145
60° 60°

3-146 A 5-m-long, 4-m-high tank contains 2.5-m-deep
water when not in motion and is open to the atmosphere
FIGURE P3-143 through a vent in the middle. The tank is now accelerated to
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FLUID MECHANICS

the right on a level surface at 2 m/s?. Determine the maxi-  3-149 [7ioll Reconsider Prob. 3-148. Using EES (or other)

mum pressure in the tank relative to the atmospheric pres- software, investigate the effect of air pressure
sure. Answer: 29.5 kPa above water on the cable force. Let this pressure vary from 0.1
MPa to 10 MPa. Plot the cable force versus the air pressure.
Vent 3-150 The average density of icebergs is about 917 kg/m?.
15 mI (a) Determine the percentage of the total volume of an ice-
—1 berg submerged in seawater of density 1042 kg/m3. (b)
5 Water 2 m/s2 Although icebergs are mostly submerged, they are observed
=m tank to turn over. Explain how this can happen. (Hint: Consider
the temperatures of icebergs and seawater.)
S 3-151 A cylindrical container whose weight is 79 N is
m

inverted and pressed into the water, as shown in Fig. P3—151.
FIGURE P3-146 Determine the differential height. h of the manometer and the
force F needed to hold the container at the position shown.

3-147 [7M Reconsider Prob. 3—146. Using EES (or other)

software, investigate the effect of acceleration
on the slope of the free surface of water in the tank. Let the
acceleration vary from 0 m/s? to 5 m/s? in increments of 0.5
m/s2. Tabulate and plot your results.

3-148 An elastic air balloon having a diameter of 30 cm is
attached to the base of a container partially filled with water L J

=

at +4°C, as shown in Fig. P3-148. If the pressure of air

above water is gradually increased from 100 kPa to 1.6 MPa, Manometer fluid

will the force on the cable change? If so, what is the percent Air SG=21
change in the force? Assume the pressure on the free surface

and the diameter of the balloon are related by P = CD", D =30cm

where C is a constant and n = —2. The weight of the balloon v

and the air in it is negligible. Answer: 98.4 percent
20 cm Water

FIGURE P3-151

P, = 100 kPa

20 cm

Design and Essay Problems

3-152  Shoes are to be designed to enable people of up to

80 kg to walk on freshwater or seawater. The shoes are to be
50 cm made of blown plastic in the shape of a sphere, a (American)

football, or a loaf of French bread. Determine the equivalent

diameter of each shoe and comment on the proposed shapes

from the stability point of view. What is your assessment of
i A the marketability of these shoes?

‘ 50 cm ‘ 3-153 The volume of a rock is to be determined without
using any volume measurement devices. Explain how you
FIGURE P3-148 would do this with a waterproof spring scale.
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CHAPTER

PRESSURE AND
FLUID STATICS

motion. The fluid property responsible for those forces is pressure, OBJECTIVES

which is a normal force exerted by a fluid per unit area. We start this When you finish reading this chapter, you
should be able to

This chapter deals with forces applied by fluids at rest or in rigid-body

chapter with a detailed discussion of pressure, including absolute and gage

pressures, the pressure at a point, the variation of pressure with depth in a u Determine the variation of

gravitational field, the manometer, the barometer, and pressure measure- pressure in a fluid at rest

ment devices. This is followed by a discussion of the hydrostatic forces Calculate the forces exerted by a

applied on submerged bodies with plane or curved surfaces. We then con- fluid at rest on plane or curved

sider the buoyant force applied by fluids on submerged or floating bodies, STTETERIAERES

and discuss the stability of such bodies. Finally, we apply Newton’s second Anz_alyz_e the rig_id-body motiqn of

law of motion to a body of fluid in motion that acts as a rigid body and ana- fluids in gontalners QUrlng linear
acceleration or rotation

lyze the variation of pressure in fluids that undergo linear acceleration and

in rotating containers. This chapter makes extensive use of force balances

for bodies in static equilibrium, and it will be helpful if the relevant topics

from statics are first reviewed.
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3-1 - PRESSURE

Pressure is defined as a normal force exerted by a fluid per unit area. We
speak of pressure only when we deal with a gas or a liquid. The counterpart
of pressure in solids is normal stress. Since pressure is defined as force per
unit area, it has the unit of newtons per square meter (N/m?), which is called
a pascal (Pa). That is,

1Pa=1Nm?

The pressure unit pascal is too small for pressures encountered in prac-
tice. Therefore, its multiples kilopascal (1 kPa = 103 Pa) and megapascal
(1 MPa = 10° Pa) are commonly used. Three other pressure units com-
monly used in practice, especially in Europe, are bar, standard atmosphere,
and kilogram-force per square centimeter:

1 bar = 10° Pa = 0.1 MPa = 100 kPa
1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bars
1 kgf/em® = 9.807 N/cm? = 9.807 X 10* N/m* = 9.807 X 10* Pa
= 0.9807 bar
= 0.9679 atm

300 pounds

Note the pressure units bar, atm, and kgf/cm? are almost equivalent to each
other. In the English system, the pressure unit is pound-force per square
inch (Ibf/in?, or psi), and 1 atm = 14.696 psi. The pressure units kgf/cm?
and Ibf/in? are also denoted by kg/cm? and Ib/in?, respectively, and they are
commonly used in tire gages. It can be shown that 1 kgf/cm? = 14.223 psi.

Pressure is also used for solids as synonymous to normal stress, which is

ﬁﬁ force acting perpendicular to the surface per unit area. For example, a 150-
P=6psi pound person with a total foot imprint area of 50 in” exerts a pressure of
g o W _ 150 lbzf - 150 1bf/50 in?> = 3.0 psi on the floor (Fig. 3-1). If the person stands on one

foot, the pressure doubles. If the person gains excessive weight, he or she is
likely to encounter foot discomfort because of the increased pressure on the

FIGURE 3-1 foot (the size of the foot does not change with weight gain). This also
The normal stress (or “pressure”) explains how a person can walk on fresh snow without sinking by wearing
on the feet of a chubby person is large snowshoes, and how a person cuts with little effort when using a sharp
much greater than on the feet of knife.

a slim person. The actual pressure at a given position is called the absolute pressure,

and it is measured relative to absolute vacuum (i.e., absolute zero pressure).
Most pressure-measuring devices, however, are calibrated to read zero in the

atmosphere (Fig. 3-2), and so they indicate the difference between the
(n absolute pressure and the local atmospheric pressure. This difference is
J.J‘_'_:"" '_ l/ | called the gage pressure. Pressures below atmospheric pressure are called
T e P vacuum pressures and are measured by vacuum gages that indicate the dif-
I""‘"ﬂ-..: . o Q:U ference between the atmospheric pressure and the absolute pressure.
Absolute, gage, and vacuum pressures are all positive quantities and are

w related to each other by
FIGURE 3-2 Pyage = Paos = P @1
Two basic pressure gages. P, =Py — P (3-2)

Dresser Instruments, Dresser, Inc. Used by oL . .
permission. This is illustrated in Fig. 3-3.
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Absolute Absolute FIGURE 3-3
vacuum : vacuum Absolute, gage, and vacuum pressures.

Like other pressure gages, the gage used to measure the air pressure in an
automobile tire reads the gage pressure. Therefore, the common reading of
32 psi (2.25 kgf/cm?) indicates a pressure of 32 psi above the atmospheric
pressure. At a location where the atmospheric pressure is 14.3 psi, for exam-
ple, the absolute pressure in the tire is 32 + 14.3 = 46.3 psi.

In thermodynamic relations and tables, absolute pressure is almost always
used. Throughout this text, the pressure P will denote absolute pressure
unless specified otherwise. Often the letters “a” (for absolute pressure) and
“g” (for gage pressure) are added to pressure units (such as psia and psig) to
clarify what is meant.

: EXAMPLE 3-1 Absolute Pressure of a Vacuum Chamber

® A vacuum gage connected to a chamber reads 5.8 psi at a location where
m the atmospheric pressure is 14.5 psi. Determine the absolute pressure in the
m Chamber.
u
SOLUTION The gage pressure of a vacuum chamber is given. The absolute
pressure in the chamber is to be determined.
Analysis The absolute pressure is easily determined from Eq. 3-2 to be

Pos = Py — Pype = 14.5 — 5.8 = 8.7 psi

Discussion Note that the /ocal value of the atmospheric pressure is used
when determining the absolute pressure.

Pressure at a Point

Pressure is the compressive force per unit area, and it gives the impression
of being a vector. However, pressure at any point in a fluid is the same in all
directions. That is, it has magnitude but not a specific direction, and thus it
is a scalar quantity. This can be demonstrated by considering a small
wedge-shaped fluid element of unit length (into the page) in equilibrium, as
shown in Fig. 3—4. The mean pressures at the three surfaces are P, P,, and
P;, and the force acting on a surface is the product of mean pressure and the
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FIGURE 34
Forces acting on a wedge-shaped fluid

. e (Ay=1)
element in equilibrium. x

surface area. From Newton’s second law, a force balance in the x- and z-
directions gives

2 F,=ma,=0: Py Az — Pslsinf =0 (3-3a)

1
EE._:maZZO: PZAx*P3lc059*§pgAxAz:0 (3-3h)

where p is the density and W = mg = pg Ax Az/2 is the weight of the fluid
element. Noting that the wedge is a right triangle, we have Ax = [ cos 6 and
Az = [ sin 6. Substituting these geometric relations and dividing Eq. 3-3a
by Az and Eq. 3-3b by Ax gives

P,—Py=0 (3-42)
1
PZ—P3—§pg Az=0 (3-4h)

The last term in Eq. 3-4b drops out as Az — 0 and the wedge becomes
infinitesimal, and thus the fluid element shrinks to a point. Then combining
the results of these two relations gives

P=P,=P;=P (3-5)

regardless of the angle 6. We can repeat the analysis for an element in the
xz-plane and obtain a similar result. Thus we conclude that the pressure at a
point in a fluid has the same magnitude in all directions. It can be shown in
the absence of shear forces that this result is applicable to fluids in motion
as well as fluids at rest.

Variation of Pressure with Depth

It will come as no surprise to you that pressure in a fluid at rest does not
change in the horizontal direction. This can be shown easily by considering
a thin horizontal layer of fluid and doing a force balance in any horizontal
direction. However, this is not the case in the vertical direction in a gravity
field. Pressure in a fluid increases with depth because more fluid rests on
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v

deeper layers, and the effect of this “extra weight” on a deeper layer is bal-
anced by an increase in pressure (Fig. 3-5).

To obtain a relation for the variation of pressure with depth, consider a
rectangular fluid element of height Az, length Ax, and unit depth (into the
page) in equilibrium, as shown in Fig. 3-6. Assuming the density of the
fluid p to be constant, a force balance in the vertical z-direction gives

EFz:maZ:O: Py Ax — P, Ax — pg AxAz =0 (3-6)

where W = mg = pg Ax Az is the weight of the fluid element. Dividing by
Ax and rearranging gives

AP =P, — P, =pgAz=1v,Az G-7 FIGURE 3-5
The pressure of a fluid at rest

increases with depth (as a result
of added weight).

where vy, = pg is the specific weight of the fluid. Thus, we conclude that the
pressure difference between two points in a constant density fluid is propor-
tional to the vertical distance Az between the points and the density p of the
fluid. In other words, pressure in a fluid increases linearly with depth. This |
is what a diver experiences when diving deeper in a lake. For a given fluid,
the vertical distance Az is sometimes used as a measure of pressure, and it is
called the pressure head. P,
We also conclude from Eq. 3-7 that for small to moderate distances, the l l l l l l l l l l l
variation of pressure with height is negligible for gases because of their low
density. The pressure in a tank containing a gas, for example, can be consid-
ered to be uniform since the weight of the gas is too small to make a signif- —| Az l —
w

icant difference. Also, the pressure in a room filled with air can be assumed
to be constant (Fig. 3-7). ‘ ‘ { ‘

If we take point 1 to be at the free surface of a liquid open to the atmo-
sphere (Fig. 3-8), where the pressure is the atmospheric pressure P,
the pressure at a depth 4 from the free surface becomes

then

atm®

P = P, + pgh or Pyoee = pgh (3-8 O *

Liquids are essentially incompressible substances, and thus the variation FIGURE 3-6
of density with depth is negligible. This is also the case for gases when the Free-body diagram of a rectangular
elevation change is not very large. The variation of density of liquids or fluid element in equilibrium.
gases with temperature can be significant, however, and may need to be
considered when high accuracy is desired. Also, at great depths such as
those encountered in oceans, the change in the density of a liquid can be
significant because of the compression by the tremendous amount of liquid
weight above.

The gravitational acceleration g varies from 9.807 m/s? at sea level to P, =1atm
9.764 m/s? at an elevation of 14,000 m where large passenger planes cruise.

This is a change of just 0.4 percent in this extreme case. Therefore, g can be
assumed to be constant with negligible error.

For fluids whose density changes significantly with elevation, a relation
for the variation of pressure with elevation can be obtained by dividing Eq.

AIR
(A 5-m-high room)

3-6 by Ax Az, and taking the limit as Az — 0. It gives Proom = 1006 2tm
dP
e = —pg (3-9)
FIGURE 3-7
The negative sign is due to our taking the positive z direction to be upward In a room filled with a gas, the
so that dP is negative when dz is positive since pressure decreases in an variation of pressure with height
upward direction. When the variation of density with elevation is known, is negligible.
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the pressure difference between points 1 and 2 can be determined by inte-

gration to be
Pl = Pa!m

@

2
v AP=P,— P = ,J pg dz (3-10)
‘ I
h

For constant density and constant gravitational acceleration, this relation
reduces to Eq. 3-7, as expected.
PP 4ok Pressurg in a fluid at resF is indepegdent Qf the shape or cross section (_)f
@ P2=Pun+ 8 the container. It changes with the vertical distance, but remains constant in
other directions. Therefore, the pressure is the same at all points on a hori-
zontal plane in a given fluid. The Dutch mathematician Simon Stevin
(1548-1620) published in 1586 the principle illustrated in Fig. 3-9. Note
that the pressures at points A, B, C, D, E, F, and G are the same since they
are at the same depth, and they are interconnected by the same static fluid.
However, the pressures at points A and / are not the same since these two
points cannot be interconnected by the same fluid (i.e., we cannot draw a
curve from point / to point H while remaining in the same fluid at all
times), although they are at the same depth. (Can you tell at which point the
pressure is higher?) Also, the pressure force exerted by the fluid is always
normal to the surface at the specified points.

A consequence of the pressure in a fluid remaining constant in the hori-
zontal direction is that the pressure applied to a confined fluid increases the
pressure throughout by the same amount. This is called Pascal’s law, after
Blaise Pascal (1623-1662). Pascal also knew that the force applied by a
fluid is proportional to the surface area. He realized that two hydraulic
cylinders of different areas could be connected, and the larger could be used
to exert a proportionally greater force than that applied to the smaller. “Pas-
cal’s machine” has been the source of many inventions that are a part of our
daily lives such as hydraulic brakes and lifts. This is what enables us to lift

FIGURE 3-8

Pressure in a liquid at rest increases
linearly with distance from the free
surface.

atm

If<1

Water

Py=Pp=Pc=Pp=Pp=Pp=Pg=Pyy+pgh
Py#P;

FIGURE 3-9
The pressure is the same at all points on a horizontal plane in a given fluid regardless of geometry, provided that the
points are interconnected by the same fluid.
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a car easily by one arm, as shown in Fig. 3—-10. Noting that P, = P, since Fy=PyA,
both pistons are at the same level (the effect of small height differences is

negligible, especially at high pressures), the ratio of output force to input Fr=Pd,
force is determined to be *
F F. F, A
p=pP, - L= 5 222 (3-11)
A A F A
The area ratio A,/A, is called the ideal mechanical advantage of the hydraulic A A
lift. Using a hydraulic car jack with a piston area ratio of A,/A; = 10, for O P, P @
example, a person can lift a 1000-kg car by applying a force of just 100 kgf
(= 908 N).

3-2 = THE MANOMETER FIGURE 3-10

Lifting of a large weight by
We notice from Eq. 3-7 that an elevation change of Az in a fluid at rest cor- a small force by the application
responds to AP/pg, which suggests that a fluid column can be used to mea- of Pascal’s law.
sure pressure differences. A device based on this principle is called a
manometer, and it is commonly used to measure small and moderate pres-
sure differences. A manometer mainly consists of a glass or plastic U-tube
containing one or more fluids such as mercury, water, alcohol, or oil. To
keep the size of the manometer to a manageable level, heavy fluids such as
mercury are used if large pressure differences are anticipated.

Consider the manometer shown in Fig. 3—11 that is used to measure the
pressure in the tank. Since the gravitational effects of gases are negligible,
the pressure anywhere in the tank and at position 1 has the same value. Fur-
thermore, since pressure in a fluid does not vary in the horizontal direction
within a fluid, the pressure at point 2 is the same as the pressure at point 1,
P, =P,

The differential fluid column of height 4 is in static equilibrium, and it is
open to the atmosphere. Then the pressure at point 2 is determined directly
from Eq. 3-8 to be

Py = Py + pgh (3-12) FIGURE 3-11

where p is the density of the fluid in the tube. Note that the cross-sectional The basic manometer.

area of the tube has no effect on the differential height 4, and thus the pres-
sure exerted by the fluid. However, the diameter of the tube should be large
enough (more than a few millimeters) to ensure that the surface tension

effect and thus the capillary rise is negligible. b —96Pa

atm

: EXAMPLE 3-2 Measuring Pressure with a Manometer

® A manometer is used to measure the pressure in a tank. The fluid used has
: a specific gravity of 0.85, and the manometer column height is 55 cm, as
m shown in Fig. 3-12. If the local atmospheric pressure is 96 kPa, determine
m the absolute pressure within the tank.
u
SOLUTION The reading of a manometer attached to a tank and the
atmospheric pressure are given. The absolute pressure in the tank is to be

determined.
Assumptions The fluid in the tank is a gas whose density is much lower FIGURE 3-12
than the density of manometer fluid. Schematic for Example 3-2.
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Properties The specific gravity of the manometer fluid is given to be 0.85.
We take the standard density of water to be 1000 kg/m?.

Analysis The density of the fluid is obtained by multiplying its specific
gravity by the density of water, which is taken to be 1000 kg/m3:

p = SG (pu,0) = (0.85)(1000 kg/m*) = 850 kg/m’
Then from Eq. 3-12,
P =Py, + pgh

IN 1 kP
= 96 kPa + (850 kg/m’)(9.81 m/s%)(0.55 m)( 2)( 2 z)
1 kg - m/s=/ \1000 N/m

= 100.6 kPa

Discussion Note that the gage pressure in the tank is 4.6 kPa.

Many engineering problems and some manometers involve multiple

immiscible fluids of different densities stacked on top of each other. Such

atm systems can be analyzed easily by remembering that (1) the pressure change

across a fluid column of height & is AP = pgh, (2) pressure increases down-

ward in a given fluid and decreases upward (i.e., Pyyom > Pyp)> and (3) two

points at the same elevation in a continuous fluid at rest are at the same
pressure.

The last principle, which is a result of Pascal’s law, allows us to “jump”
from one fluid column to the next in manometers without worrying about
pressure change as long as we don’t jump over a different fluid, and the
fluid is at rest. Then the pressure at any point can be determined by starting
with a point of known pressure and adding or subtracting pgh terms as we
FIGURE 3-13 advance toward the point of interest. For example, the pressure at the bot-
In stacked-up fluid layers, the pressure  tom of the tank in Fig. 3-13 can be determined by starting at the free sur-
change across a fluid layer of density face where the pressure is P,,,, moving downward until we reach point 1 at

atm?®

p and height & is pgh. the bottom, and setting the result equal to P,. It gives

Fluid 1

Fluid 2

Fluid 3

D =

A

Pym + p1ghy + paghs + psghs = P,

A flow section In the special case of all fluids having the same density, this relation reduces

or flow device to Eq. 3-12, as expected.
Fluid | A======= 5 Manometers are particularly well-suited to measure pressure drops across
- : == a horizontal flow section between two specified points due to the presence
I | of a device such as a valve or heat exchanger or any resistance to flow. This
(O] B = is done by connecting the two legs of the manometer to these two points, as

L shown in Fig. 3—14. The working fluid can be either a gas or a liquid whose
1 density is p;. The density of the manometer fluid is p,, and the differential
;Tl fluid height is A.
b

P A relation for the pressure difference P, — P, can be obtained by starting
A B at point 1 with P, moving along the tube by adding or subtracting the pgh
P terms until we reach point 2, and setting the result equal to P,:
FIGURE 3-14 Pl + p]g(a + h) - ngh - p8a = PZ (3-13)

Measuring the pressure drop across a Note that we jumped from point A horizontally to point B and ignored the

flow section or a flow device by a part underneath since the pressure at both points is the same. Simplifying,
differential manometer.

Py —= Py =(py — pgh (3-14)
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Note that the distance a has no effect on the result, but must be included in
the analysis. Also, when the fluid flowing in the pipe is a gas, then p, << p,
and the relation in Eq. 3—14 simplifies to P, — P, = p,gh.

| | . A . . .
EXAMPLE 3-3  Measuring Pressure with a Multifluid Manometer /\ oil
| | 7N
AIR (ﬁi‘

® The water in a tank is pressurized by air, and the pressure is measured by a

R multifluid manometer as shown in Fig. 3-15. The tank is located on a moun- 1
m tain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. ° T
m Determine the air pressure in the tank if h; = 0.1 m, h, = 0.2 m, and h; = WATER "

B 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3,
: 850 kg/m3, and 13,600 kg/m3, respectively. -+

SOLUTION The pressure in a pressurized water tank is measured by a multi-
fluid manometer. The air pressure in the tank is to be determined.
Assumption The air pressure in the tank is uniform (i.e., its variation with
elevation is negligible due to its low density), and thus we can determine the ||
pressure at the air-water interface. —
Properties The densities of water, oil, and mercury are given to be Mercury
1000 kg/m3, 850 kg/m3, and 13,600 kg/m?3, respectively.

Analysis Starting with the pressure at point 1 at the air-water interface,

——

moving along the tube by adding or subtracting the pgh terms until we reach ) FIGURE 3‘_15
point 2, and setting the result equal to P, since the tube is open to the Schematic for Example 3-3; drawing
atmosphere gives not to scale.

Pl + pwaterghl + poilghz - pmercurygh3 = Palm
Solving for P, and substituting,
Py = Py = pwaterghl - poilth + pmercurygh3
= Palm + g(pmerculth - pwalerhl - poith)
= 85.6 kPa + (9.81 m/s?)[(13,600 kg/m?)(0.35 m) — (1000 kg/m*)(0.1 m)

— (850 ke/m’)(0.2 m)]( IN )( 1 kPa )
1kg -

m/s?/ \1000 N/m?
= 130 kPa

Discussion Note that jumping horizontally from one tube to the next and
realizing that pressure remains the same in the same fluid simplifies the
analysis considerably. Also note that mercury is a toxic fluid, and mercury
manometers and thermometers are being replaced by ones with safer fluids
because of the risk of exposure to mercury vapor during an accident.

EXAMPLE 34 Analyzing a Multifluid Manometer with EES

Reconsider the multifluid manometer discussed in Example 3-3. Determine
the air pressure in the tank using EES. Also determine what the differential
fluid height h; would be for the same air pressure if the mercury in the last
column were replaced by seawater with a density of 1030 kg/m3.

SOLUTION The pressure in a water tank is measured by a multifluid
manometer. The air pressure in the tank and the differential fluid height A5
if mercury is replaced by seawater are to be determined using EES.
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Analysis We start the EES program by double-clicking on its icon, open a
new file, and type the following on the blank screen that appears (we express
the atmospheric pressure in Pa for unit consistency):

g=9.81
Patm= 85600
h1=0.1; h2=0.2; h3=0.35
rw=1000; roil=850; rm=13600
P1+rw*g*hl+roil*g*h2 —rm*g*h3=Patm
Here P1 is the only unknown, and it is determined by EES to be
P, = 129647 Pa = 130 kPa

which is identical to the result obtained in Example 3-3. The height of the
fluid column h; when mercury is replaced by seawater is determined easily by
replacing “h3=0.35" by “P1=129647" and “rm=13600" by “rm=1030,”
and clicking on the calculator symbol. It gives

hy =4.62m

Discussion Note that we used the screen like a paper pad and wrote down
the relevant information together with the applicable relations in an orga-
nized manner. EES did the rest. Equations can be written on separate lines
or on the same line by separating them by semicolons, and blank or com-
ment lines can be inserted for readability. EES makes it very easy to ask
“what if” questions and to perform parametric studies, as explained in
Appendix 3 on the DVD.

A Other Pressure Measurement Devices
Another type of commonly used mechanical pressure measurement device
is the Bourdon tube, named after the French engineer and inventor Eugene
=0y Bourdon (1808-1884), which consists of a hollow metal tube bent like a

hook whose end is closed and connected to a dial indicator needle (Fig.
3-16). When the tube is open to the atmosphere, the tube is undeflected,
and the needle on the dial at this state is calibrated to read zero (gage pres-
sure). When the fluid inside the tube is pressurized, the tube stretches and

-~
moves the needle in proportion to the pressure applied.

Electronics have made their way into every aspect of life, including pres-
sure measurement devices. Modern pressure sensors, called pressure trans-
ducers, use various techniques to convert the pressure effect to an electrical
effect such as a change in voltage, resistance, or capacitance. Pressure trans-
ducers are smaller and faster, and they can be more sensitive, reliable, and

Twisted tube precise than their mechanical counterparts. They can measure pressures
Helical from less than a millionth of 1 atm to several thousands of atm.

A wide variety of pressure transducers is available to measure gage,

absolute, and differential pressures in a wide range of applications. Gage

Tube oross section pressure transducers use the atmospheric pressure as a reference by venting
the back side of the pressure-sensing diaphragm to the atmosphere, and they

FIGURE 3-16 give a zero signal output at atmospheric pressure regardless of altitude. The
Various types of Bourdon tubes used absolute pressure transducers are calibrated to have a zero signal output at

to measure pressure. full vacuum. Differential pressure transducers measure the pressure difference
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between two locations directly instead of using two pressure transducers
and taking their difference.

Strain-gage pressure transducers work by having a diaphragm deflect
between two chambers open to the pressure inputs. As the diaphragm
stretches in response to a change in pressure difference across it, the strain
gage stretches and a Wheatstone bridge circuit amplifies the output. A
capacitance transducer works similarly, but capacitance change is measured
instead of resistance change as the diaphragm stretches.

Piezoelectric transducers, also called solid-state pressure transducers,
work on the principle that an electric potential is generated in a crystalline
substance when it is subjected to mechanical pressure. This phenomenon,
first discovered by brothers Pierre and Jacques Curie in 1880, is called the
piezoelectric (or press-electric) effect. Piezoelectric pressure transducers
have a much faster frequency response compared to the diaphragm units and I
are very suitable for high-pressure applications, but they are generally not as
sensitive as the diaphragm-type transducers.

3-3 = THE BAROMETER AND h 0
ATMOSPHERIC PRESSURE W=pghA l

Atmospheric pressure is measured by a device called a barometer; thus, the v — ﬁ-

atmospheric pressure is often referred to as the barometric pressure. . |8 —t
The Italian Evangelista Torricelli (1608—1647) was the first to conclu- \ Mercury / _H_

sively prove that the atmospheric pressure can be measured by inverting a P

mercury-filled tube into a mercury container that is open to the atmosphere,

as shown in Fig. 3-17. The pressure at point B is equal to the atmospheric FIGURE 3-17

pressure, and the pressure at C can be taken to be zero since there is only The basic barometer.

mercury vapor above point C and the pressure is very low relative to P,

and can be neglected to an excellent approximation. Writing a force balance

in the vertical direction gives M
Py = pgh (3-15) ~

where p is the density of mercury, g is the local gravitational acceleration, ()
and £ is the height of the mercury column above the free surface. Note that — — —
the length and the cross-sectional area of the tube have no effect on the
height of the fluid column of a barometer (Fig. 3-18).

A frequently used pressure unit is the standard atmosphere, which is Az A, 2 2 A,
defined as the pressure produced by a column of mercury 760 mm in height
at 0°C (py, = 13,595 kg/m?) under standard gravitational acceleration A T
(g = 9.807 m/s?). If water instead of mercury were used to measure the
standard atmospheric pressure, a water column of about 10.3 m would be
needed. Pressure is sometimes expressed (especially by weather forecasters)
in terms of the height of the mercury column. The standard atmospheric
pressure, for example, is 760 mmHg (29.92 inHg) at 0°C. The unit mmHg FIGURE 3-18
is also called the torr in honor of Torricelli. Therefore, 1 atm = 760 torr  The length or the cross-sectional area
and 1 torr = 133.3 Pa. of the tube has no effect on the height

The standard atmospheric pressure P, changes from 101.325 kPa at sea of the fluid column of a barometer,
level to 89.88, 79.50, 54.05, 26.5, and 5.53 kPa at altitudes of 1000, 2000, provided that the tube diameter is
5000, 10,000, and 20,000 meters, respectively. The standard atmospheric large enough to avoid surface tension
pressure in Denver (elevation = 1610 m), for example, is 83.4 kPa. (capillary) effects.
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FIGURE 3-19

At high altitudes, a car engine
generates less power and a person
gets less oxygen because of the
lower density of air.
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Remember that the atmospheric pressure at a location is simply the
weight of the air above that location per unit surface area. Therefore, it
changes not only with elevation but also with weather conditions.

The decline of atmospheric pressure with elevation has far-reaching rami-
fications in daily life. For example, cooking takes longer at high altitudes
since water boils at a lower temperature at lower atmospheric pressures.
Nose bleeding is a common experience at high altitudes since the difference
between the blood pressure and the atmospheric pressure is larger in this
case, and the delicate walls of veins in the nose are often unable to with-
stand this extra stress.

For a given temperature, the density of air is lower at high altitudes, and
thus a given volume contains less air and less oxygen. So it is no surprise
that we tire more easily and experience breathing problems at high altitudes.
To compensate for this effect, people living at higher altitudes develop more
efficient lungs. Similarly, a 2.0-L car engine will act like a 1.7-L car engine
at 1500 m altitude (unless it is turbocharged) because of the 15 percent drop
in pressure and thus 15 percent drop in the density of air (Fig. 3—-19). A fan
or compressor will displace 15 percent less air at that altitude for the same
volume displacement rate. Therefore, larger cooling fans may need to be
selected for operation at high altitudes to ensure the specified mass flow
rate. The lower pressure and thus lower density also affects lift and drag:
airplanes need a longer runway at high altitudes to develop the required lift,
and they climb to very high altitudes for cruising for reduced drag and thus
better fuel efficiency.

EXAMPLE 3-5 Measuring Atmospheric Pressure with a
Barometer

Determine the atmospheric pressure at a location where the barometric read-
ing is 740 mm Hg and the gravitational acceleration is g = 9.81 m/s2.
Assume the temperature of mercury to be 10°C, at which its density is
13,570 kg/m3.

SOLUTION The barometric reading at a location in height of mercury col-
umn is given. The atmospheric pressure is to be determined.

Assumptions The temperature of mercury is assumed to be 10°C.

Properties The density of mercury is given to be 13,570 kg/m3.

Analysis From Eq. 3-15, the atmospheric pressure is determined to be

Pym = pgh

1IN 1 kP
= (13,570 kg/m*)(9.81 m/s?)(0.74 m)( 2)( y 2)
1 kg - m/s7/ \1000 N/m

= 98.5 kPa

Discussion Note that density changes with temperature, and thus this effect
should be considered in calculations.

EXAMPLE 3-6 Effect of Piston Weight on Pressure in a Cylinder

The piston of a vertical piston—cylinder device containing a gas has a mass
of 60 kg and a cross-sectional area of 0.04 m2, as shown in Fig. 3-20. The
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® jocal atmospheric pressure is 0.97 bar, and the gravitational acceleration is P - 097 bar
m 9.81 m/s?. (a) Determine the pressure inside the cylinder. (b) If some heat is “‘f’fr‘l;ﬁ(') ke P,
m transferred to the gas and its volume is doubled, do you expect the pressure l
m inside the cylinder to change? (
]
SOLUTION A gas is contained in a vertical cylinder with a heavy piston. The A=0.04m Hm
pressure inside the cylinder and the effect of volume change on pressure are p=2
to be determined.
Assumptions Friction between the piston and the cylinder is negligible. W=mg
Analysis (a) The gas pressure in the piston—cylinder device depends on the
atmospheric pressure and the weight of the piston. Drawing the free-body FIGURE 3-20
diagram of the piston as shown in Fig. 3-20 and balancing the vertical Schematic for Example 3-6, and the
forces yield free-body diagram of the piston.

PA=P,, A+ W

Solving for P and substituting,
mg

P:Palm+j

60 kg)(9.81 m/s’
=0.97bar+( 2)( s)( IN )( lbar)

0.04 m? 1 kg - m/s*/\10° N/m*
= 1.12 bars

(b) The volume change will have no effect on the free-body diagram drawn in
part (a), and therefore the pressure inside the cylinder will remain the same.
Discussion If the gas behaves as an ideal gas, the absolute temperature
doubles when the volume is doubled at constant pressure.

EXAMPLE 3-7 Hydrostatic Pressure in a Solar Pond
with Variable Density

|
|

|

: Solar ponds are small artificial lakes of a few meters deep that are used to
m store solar energy. The rise of heated (and thus less dense) water to the sur-
m face is prevented by adding salt at the pond bottom. In a typical salt gradi-
B ent solar pond, the density of water increases in the gradient zone, as shown
: in Fig. 3-21, and the density can be expressed as
|
|
|
|
|
|

/ T 2
= 1 + tan?| — =
P = Py an(4 )

where p, is the density on the water surface, z is the vertical distance mea-
sured downward from the top of the gradient zone, and H is the thickness of

Sun
Increasing salinity
ﬁ and density

po = 1040 kg/m?

Ik

\_Surface zone

|
H=4m &adient zone

FIGURE 3-21
Schematic for Example 3-7.
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FIGURE 3-22

The variation of gage pressure with
depth in the gradient zone of the
solar pond.
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the gradient zone. For H = 4 m, p, = 1040 kg/m3, and a thickness of 0.8
m for the surface zone, calculate the gage pressure at the bottom of the gra-
dient zone.

SOLUTION The variation of density of saline water in the gradient zone of a
solar pond with depth is given. The gage pressure at the bottom of the gradi-
ent zone is to be determined.

Assumptions The density in the surface zone of the pond is constant.
Properties The density of brine on the surface is given to be 1040 kg/m3.
Analysis We label the top and the bottom of the gradient zone as 1 and 2,
respectively. Noting that the density of the surface zone is constant, the gage
pressure at the bottom of the surface zone (which is the top of the gradient
zone) is

1 kN
Py = pghy = (1040 keg/m*)(9.81 m/s?)(0.8 (7)=8.16kP
1 = pghy = (1040 kg/mr)( OB 1000 kg - mis? ¢

since 1 kKN/m?2 = 1 kPa. The differential change in hydrostatic pressure
across a vertical distance of dz is given by

dP = pg dz

Integrating from the top of the gradient zone (point 1 where z = 0) to any
location z in the gradient zone (no subscript) gives

z z
P—P1=[pgdz - P=P1+mel1+tan2<li)gdz
b b 4 H

Performing the integration gives the variation of gage pressure in the gradi-
ent zone to be

P=P + 4 s'nh"(tanﬂ- Z)
- 22 4 S
1T P 4H

Then the pressure at the bottom of the gradient zone (z = H = 4 m)
becomes

4(4 4 1 kN
P, = 8.16 kPa + (1040 kg/m*)(9.81 m/s?) (4 m) sinh_1<tanz*><72)
T 1000 kg - m/s

= 54.0 kPa (gage)

Discussion The variation of gage pressure in the gradient zone with depth is
plotted in Fig. 3-22. The dashed line indicates the hydrostatic pressure for
the case of constant density at 1040 kg/m? and is given for reference. Note
that the variation of pressure with depth is not linear when density varies
with depth.

3-4 - INTRODUCTION TO FLUID STATICS

Fluid statics deals with problems associated with fluids at rest. The fluid
can be either gaseous or liquid. Fluid statics is generally referred to as
hydrostatics when the fluid is a liquid and as aerostatics when the fluid is a
gas. In fluid statics, there is no relative motion between adjacent fluid lay-
ers, and thus there are no shear (tangential) stresses in the fluid trying to
deform it. The only stress we deal with in fluid statics is the normal stress,
which is the pressure, and the variation of pressure is due only to the weight
of the fluid. Therefore, the topic of fluid statics has significance only in
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gravity fields, and the force relations developed naturally involve the gravi-
tational acceleration g. The force exerted on a surface by a fluid at rest is
normal to the surface at the point of contact since there is no relative motion
between the fluid and the solid surface, and thus no shear forces can act par-
allel to the surface.

Fluid statics is used to determine the forces acting on floating or sub-
merged bodies and the forces developed by devices like hydraulic presses
and car jacks. The design of many engineering systems such as water dams
and liquid storage tanks requires the determination of the forces acting on
the surfaces using fluid statics. The complete description of the resultant
hydrostatic force acting on a submerged surface requires the determination
of the magnitude, the direction, and the line of action of the force. In Sec-
tions 3-5 and 3-6, we consider the forces acting on both plane and curved
surfaces of submerged bodies due to pressure.

3-5 = HYDROSTATIC FORCES ON
SUBMERGED PLANE SURFACES

A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liq-
uid storage tank, or the hull of a ship at rest, is subjected to fluid pressure
distributed over its surface (Fig. 3-23). On a plane surface, the hydrostatic
forces form a system of parallel forces, and we often need to determine the
magnitude of the force and its point of application, which is called the cen-
ter of pressure. In most cases, the other side of the plate is open to the
atmosphere (such as the dry side of a gate), and thus atmospheric pressure
acts on both sides of the plate, yielding a zero resultant. In such cases, it is
convenient to subtract atmospheric pressure and work with the gage pres-
sure only (Fig. 3-24). For example, P,,,. = pgh at the bottom of the lake.
Consider the top surface of a flat plate of arbitrary shape completely sub-
merged in a liquid, as shown in Fig. 3-25 together with its top view. The
plane of this surface (normal to the page) intersects the horizontal free sur-
face with an angle 6, and we take the line of intersection to be the x-axis.
The absolute pressure above the liquid is P,, which is the local atmospheric
pressure P, if the liquid is open to the atmosphere (but P, may be different

FIGURE 3-23
Hoover Dam.

Courtesy United States Department of the Interior,
Bureau of Reclamation-Lower Colorado Region.

1N

FIGURE 3-24

When analyzing hydrostatic forces on
submerged surfaces, the atmospheric
Py + pgh pgh pressure can be subtracted for
simplicity when it acts on both
sides of the structure.

(a) P,

atm

considered (b) P,

um Subtracted
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Pe=P

g P=P,+pgysinf Pressure
ave 0 &) Av4 / distribution

Pressure prism

-
of volume V
z
P=P,+ pgh
ot pe \ \ Plane surface
dA

V=[av=[Par=F,

Center of pressure
Plane surface

of area A

FIGURE 3-25
Hydrostatic force on an inclined plane surface completely submerged in a liquid.

than P, if the space above the liquid is evacuated or pressurized). Then the
absolute pressure at any point on the plate is

P =P, + pgh=Py,+ pgysin6 (3-16)

where h is the vertical distance of the point from the free surface and y is
the distance of the point from the x-axis (from point O in Fig. 3-25). The
resultant hydrostatic force F; acting on the surface is determined by inte-
grating the force P dA acting on a differential area dA over the entire sur-
face area,

Fr= JPdA: J (P0+pgysinG)dA:POA+pgsin0JydA (3-17)
A A A

But the first moment of area J ydA is related to the y-coordinate of the
A
centroid (or center) of the surface by

Yo = % Ly dA (3-18)
Substituting,
Pim / Free surface Fr=(Py+ pgycsin0)A = (Py + pghc)A = PcA = P, A (3-19)
= t where P. = P, + pgh, is the pressure at the centroid of the surface, which

is equivalent to the average pressure on the surface, and A = y. sin 0 is the
vertical distance of the centroid from the free surface of the liquid (Fig.
3-26). Thus we conclude that:

Pave=PC=Palm+pghC

Centroid The magnitude of the resultant force acting on a plane surface of a

of surface completely submerged plate in a homogeneous (constant density) fluid
is equal to the product of the pressure P, at the centroid of the surface
and the area A of the surface (Fig. 3-27).

FIGURE 3-26

The pressure at the centroid of a The pressure P, is usually atmospheric pressure, which can be ignored in
surface is equivalent to the average most cases since it acts on both sides of the plate. When this is not the case,
pressure on the surface. a practical way of accounting for the contribution of P, to the resultant

WWW. Enqinocnr% EBOOKS Pdf.com



cen72367_ch03.gxd 10/29/04 2:21 PM Page 81

o

force is simply to add an equivalent depth h.;, = Py/pg to h¢; that is, to
assume the presence of an additional liquid layer of thickness & on top
of the liquid with absolute vacuum above.

Next we need to determine the line of action of the resultant force Fj.
Two parallel force systems are equivalent if they have the same magnitude
and the same moment about any point. The line of action of the resultant
hydrostatic force, in general, does not pass through the centroid of the sur-
face—it lies underneath where the pressure is higher. The point of intersec-
tion of the line of action of the resultant force and the surface is the center
of pressure. The vertical location of the line of action is determined by
equating the moment of the resultant force to the moment of the distributed
pressure force about the x-axis. It gives

equiv

ypFr = JdeA= Jy(P0+pgysin0)dA =P0JydA +pgsin0Jysz
A

A A A
or

yplr =PoycA + pgsin 01, o (3-20)

where y, is the distance of the center of pressure from the x-axis (point O in

Fig. 3-27) and I, , = J' y? dA is the second moment of area (also called
A

the area moment of inertia) about the x-axis. The second moments of area

are widely available for common shapes in engineering handbooks, but they

are usually given about the axes passing through the centroid of the area.

Fortunately, the second moments of area about two parallel axes are related

to each other by the parallel axis theorem, which in this case is expressed as

Loo=1,c+ YA (3-21)

where I,  is the second moment of area about the x-axis passing through
the centroid of the area and y. (the y-coordinate of the centroid) is the dis-
tance between the two parallel axes. Substituting the F, relation from Eq.
3-19 and the I, relation from Eq. 3-21 into Eq. 3-20 and solving for y,
gives

Ly c

_———— 3-22
[ye + Po/(pg sin 0)A @-222)

yp=yct
For P, = 0, which is usually the case when the atmospheric pressure is
ignored, it simplifies to
Irx.C

Yp=yc+ VoA (3-22h)
Knowing y,, the vertical distance of the center of pressure from the free sur-
face is determined from &, = y, sin 6.

The I, . values for some common areas are given in Fig. 3-28. For these
and other areas that possess symmetry about the y-axis, the center of pres-
sure lies on the y-axis directly below the centroid. The location of the center
of pressure in such cases is simply the point on the surface of the vertical
plane of symmetry at a distance &, from the free surface.

Pressure acts normal to the surface, and the hydrostatic forces acting on a
flat plate of any shape form a volume whose base is the plate area and
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v Line of action
A4 0
N 6

Fp=PrA P

Center of

ressure .
P Centroid

of area

FIGURE 3-27

The resultant force acting on a plane
surface is equal to the product of the
pressure at the centroid of the surface
and the surface area, and its line of
action passes through the center of
pressure.
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(a) Rectangle (b) Circle (c) Ellipse
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(d) Triangle (e) Semicircle (f) Semiellipse
FIGURE 3-28

The centroid and the centroidal moments of inertia for some common geometries.

whose height is the linearly varying pressure, as shown in Fig. 3-29. This
virtual pressure prism has an interesting physical interpretation: its volume
is equal to the magnitude of the resultant hydrostatic force acting on the
plate since V = [ P dA, and the line of action of this force passes through
the centroid of this homogeneous prism. The projection of the centroid on
the plate is the pressure center. Therefore, with the concept of pressure
prism, the problem of describing the resultant hydrostatic force on a plane
surface reduces to finding the volume and the two coordinates of the cen-
troid of this pressure prism.

Special Case: Submerged Rectangular Plate

Consider a completely submerged rectangular flat plate of height » and
width a tilted at an angle 6 from the horizontal and whose top edge is hori-
zontal and is at a distance s from the free surface along the plane of the
plate, as shown in Fig. 3-30a. The resultant hydrostatic force on the upper
surface is equal to the average pressure, which is the pressure at the mid-
point of the surface, times the surface area A. That is,

Tilted rectangular plate: Fyx = P-A =[P, + pg(s + b/2) sin Olab (3-23)
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The force acts at a vertical distance of &, = yp sin 0 from the free surface
directly beneath the centroid of the plate where, from Eq. 3-22a,

b ab’/12
yp=s+t -+ -
2 [s+ b2 + Py/(pg sin 0)]ab
b b?
=s+-+ (3-24)

2 12[s + b2 + P, /(pg sin 0)]

When the upper edge of the plate is at the free surface and thus s = 0, Eq.
3-23 reduces to

Tilted rectangular plate (s = 0): Fr =[Py + pg(b sin 0)/2)ab (3-25)

Pressure
prism

Surface
a

e ) FIGURE 3-29
————————— The hydrostatic forces acting on a
plane surface form a volume whose
R base (left face) is the surface and
| -~ P whose height is the pressure.
0 P, 0 P, P,
< 6 (
s ¥ J
R ),
h
Fp = (P, + pgh)ab
b D
\ _g y
I a 1
Fg =[Py + pg(s + b/2) sin O]ab Fp =[Py + pg(s + bl2)]ab
(a) Tilted plate (b) Vertical plate (c) Horizontal plate

FIGURE 3-30
Hydrostatic force acting on the top surface of a submerged rectangular plate for tilted, vertical, and horizontal cases.
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For a completely submerged vertical plate (6 = 90°) whose top edge is hori-
zontal, the hydrostatic force can be obtained by setting sin 6 = 1 (Fig. 3-30b)

Vertical rectangular plate: Fr =[Py + pg(s + b/2)]ab (3-26)
Vertical rectangular plate (s = 0): Fr = (P, + pgb/2)ab (3-27)

When the effect of P, is ignored since it acts on both sides of the plate, the
hydrostatic force on a vertical rectangular surface of height b whose top
edge is horizontal and at the free surface is Fr = pgab*?2 acting at a dis-
tance of 2b/3 from the free surface directly beneath the centroid of the plate.

The pressure distribution on a submerged horizontal surface is uniform,
and its magnitude is P = P, + pgh, where h is the distance of the surface
from the free surface. Therefore, the hydrostatic force acting on a horizontal
rectangular surface is

Horizontal rectangular plate:  Fr = (P, + pgh)ab (3-28)
and it acts through the midpoint of the plate (Fig. 3-30c).

EXAMPLE 3-8 Hydrostatic Force Acting on the Door
of a Submerged Car

A heavy car plunges into a lake during an accident and lands at the bottom
of the lake on its wheels (Fig. 3-31). The door is 1.2 m high and 1 m wide,
and the top edge of the door is 8 m below the free surface of the water.
Determine the hydrostatic force on the door and the location of the pressure
center, and discuss if the driver can open the door.

SOLUTION A car is submerged in water. The hydrostatic force on the door
is to be determined, and the likelihood of the driver opening the door is to
be assessed.

Assumptions 1 The bottom surface of the lake is horizontal. 2 The passen-
ger cabin is well-sealed so that no water leaks inside. 3 The door can be
approximated as a vertical rectangular plate. 4 The pressure in the passenger
cabin remains at atmospheric value since there is no water leaking in, and

Sh

2 m

1 m—

FIGURE 3-31
Schematic for Example 3-8.
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thus no compression of the air inside. Therefore, atmospheric pressure can-
cels out in the calculations since it acts on both sides of the door. 5 The
weight of the car is larger than the buoyant force acting on it.

Properties We take the density of lake water to be 1000 kg/m?3 throughout.
Analysis The average pressure on the door is the pressure value at the cen-
troid (midpoint) of the door and is determined to be

Py = Pc = pghce = pg(s + b/2)

1 kN
= (1000 kg/m?)(9.81 m/s)(8 + 1.2/2 (7)
( g/m) X ™\ 1000 kg - m/s®

= 84.4 kN/m?
Then the resultant hydrostatic force on the door becomes
Fr = P,.A = (844 kN/m* (1 m X 1.2 m) = 101.3 kN

The pressure center is directly under the midpoint of the door, and its dis-
tance from the surface of the lake is determined from Eq. 3-24 by setting
Py = 0 to be

2 2
yP=s+é+b7=8+£+L=8.6lm
2 12(s + b/2) 2 12(8 + 1.2/2)
Discussion A strong person can lift 100 kg, whose weight is 981 N or about
1 kN. Also, the person can apply the force at a point farthest from the
hinges (1 m farther) for maximum effect and generate a moment of 1 kN - m.
The resultant hydrostatic force acts under the midpoint of the door, and thus a
distance of 0.5 m from the hinges. This generates a moment of 50.6 kN - m,
which is about 50 times the moment the driver can possibly generate. There-
fore, it is impossible for the driver to open the door of the car. The driver’s
best bet is to let some water in (by rolling the window down a little, for
example) and to keep his or her head close to the ceiling. The driver should
be able to open the door shortly before the car is filled with water since at
that point the pressures on both sides of the door are nearly the same and
opening the door in water is almost as easy as opening it in air.

3-6 = HYDROSTATIC FORCES ON
SUBMERGED CURVED SURFACES

For a submerged curved surface, the determination of the resultant hydrosta-
tic force is more involved since it typically requires the integration of the
pressure forces that change direction along the curved surface. The concept
of the pressure prism in this case is not much help either because of the
complicated shapes involved.

The easiest way to determine the resultant hydrostatic force F acting on
a two-dimensional curved surface is to determine the horizontal and vertical
components F;; and F, separately. This is done by considering the free-body
diagram of the liquid block enclosed by the curved surface and the two
plane surfaces (one horizontal and one vertical) passing through the two
ends of the curved surface, as shown in Fig. 3-32. Note that the vertical sur-
face of the liquid block considered is simply the projection of the curved
surface on a vertical plane, and the horizontal surface is the projection of
the curved surface on a horizontal plane. The resultant force acting on the
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FIGURE 3-32

Determination of the hydrostatic force acting on a submerged curved surface.

curved solid surface is then equal and opposite to the force acting on the
curved liquid surface (Newton’s third law).

The force acting on the imaginary horizontal or vertical plane surface and
its line of action can be determined as discussed in Section 3-5. The weight
of the enclosed liquid block of volume V is simply W = pgV/, and it acts
downward through the centroid of this volume. Noting that the fluid block
is in static equilibrium, the force balances in the horizontal and vertical
directions give

Horizontal force component on curved surface: Fy=F, (3-29)
Vertical force component on curved surface: Fy=F+W (3-30)

where the summation Fy + W is a vector addition (i.e., add magnitudes if

both act in the same direction and subtract if they act in opposite directions).
Thus, we conclude that

Curved 1. The horizontal component of the hydrostatic force acting on a curved
surface

surface is equal (in both magnitude and the line of action) to the
hydrostatic force acting on the vertical projection of the curved surface.

2. The vertical component of the hydrostatic force acting on a curved
surface is equal to the hydrostatic force acting on the horizontal
projection of the curved surface, plus (minus, if acting in the opposite
direction) the weight of the fluid block.

The magnitude of the resultant hydrostatic force acting on the curved sur-
face is Fy = VF% + F?, and the tangent of the angle it makes with the hori-
zontal is tan o = F,/Fy. The exact location of the line of action of the resul-
tant force (e.g., its distance from one of the end points of the curved surface)
FIGURE 3-33 can be determined by taking a moment about an appropriate point. These
When a curved surface is above the discussions are valid for all curved surfaces regardless of whether they are
liquid, the weight of the liquid and the  above or below the liquid. Note that in the case of a curved surface above a
vertical component of the hydrostatic liquid, the weight of the liquid is subtracted from the vertical component of
force act in the opposite directions. the hydrostatic force since they act in opposite directions (Fig. 3-33).
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When the curved surface is a circular arc (full circle or any part of it), the
resultant hydrostatic force acting on the surface always passes through
the center of the circle. This is because the pressure forces are normal to the
surface, and all lines normal to the surface of a circle pass through the cen-
ter of the circle. Thus, the pressure forces form a concurrent force system at
the center, which can be reduced to a single equivalent force at that point
(Fig. 3-34).

Finally, hydrostatic forces acting on a plane or curved surface submerged
in a multilayered fluid of different densities can be determined by consid-
ering different parts of surfaces in different fluids as different surfaces, find-
ing the force on each part, and then adding them using vector addition. For
a plane surface, it can be expressed as (Fig. 3-35)

Fr= EFR,IZ EPCJAi

where P ; = Py + p;ghc ; is the pressure at the centroid of the portion of
the surface in fluid i and A, is the area of the plate in that fluid. The line of
action of this equivalent force can be determined from the requirement that
the moment of the equivalent force about any point is equal to the sum of
the moments of the individual forces about the same point.

Plane surface in a multilayered fluid: (3-31)

: EXAMPLE 3-9 A Gravity-Controlled Cylindrical Gate

: A long solid cylinder of radius 0.8 m hinged at point A is used as an auto-
m matic gate, as shown in Fig. 3-36. When the water level reaches 5 m, the
m gate opens by turning about the hinge at point A. Determine (a) the hydro-
B static force acting on the cylinder and its line of action when the gate opens
: and (b) the weight of the cylinder per m length of the cylinder.

SOLUTION The height of a water reservoir is controlled by a cylindrical gate
hinged to the reservoir. The hydrostatic force on the cylinder and the weight
of the cylinder per m length are to be determined.

Assumptions 1 Friction at the hinge is negligible. 2 Atmospheric pressure
acts on both sides of the gate, and thus it cancels out.

Properties We take the density of water to be 1000 kg/m? throughout.
Analysis (a) We consider the free-body diagram of the liquid block enclosed
by the circular surface of the cylinder and its vertical and horizontal projec-
tions. The hydrostatic forces acting on the vertical and horizontal plane sur-
faces as well as the weight of the liquid block are determined as

Horizontal force on vertical surface:

Fy = F, = Py A= pghcA= pg(s + R/I2)A

1 kN
= (1000 kg/m®)(9.81 m/s%)(4.2 + 0.8/2m)(0.8 m X 1 m)(m)
= 36.1 kN
Vertical force on horizontal surface (upward):
F, =Py .A= pghcA= pghygiomA
= (1000 kg/m*)(9.81 nv/s*)(5 m)(0.8 m X 1 m)(&)
1000 kg - m/s

=392 kN
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The hydrostatic force acting on a
circular surface always passes
through the center of the circle since
the pressure forces are normal to the
surface and they all pass through

the center.
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FIGURE 3-35

The hydrostatic force on a surface
submerged in a multilayered fluid can
be determined by considering parts of

the surface in different fluids as
different surfaces.
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FIGURE 3-36

Schematic for Example 3-9 and
the free-body diagram of the fluid
underneath the cylinder. y

Weight of fluid block per m length (downward):
W = mg = pgV = pg(R*> — wR*/4)(1 m)

1 kN
= (1000 kg/m*)(9.81 m/s%)(0.8 m)*(1 — 7r/4)(1 (7>
( g/m”)(9 $(0.8 m)~(1 — 7/4)(1 m) 1000 ke - m/s®

= 1.3kN
Therefore, the net upward vertical force is
Fy=F, —W=392-13=379kN

Then the magnitude and direction of the hydrostatic force acting on the
cylindrical surface become

Fr= VF3 + F2 = \V/36.1 + 37.92 = 523 kN
tan 0 = F\/F, = 37.9/36.1 = 1.05 — 6 = 46.4°

Therefore, the magnitude of the hydrostatic force acting on the cylinder is
52.3 kN per m length of the cylinder, and its line of action passes through
the center of the cylinder making an angle 46.4° with the horizontal.

(b) When the water level is 5 m high, the gate is about to open and thus the
reaction force at the bottom of the cylinder is zero. Then the forces other
than those at the hinge acting on the cylinder are its weight, acting through
the center, and the hydrostatic force exerted by water. Taking a moment
about point A at the location of the hinge and equating it to zero gives

R=0 — W, = Fgsin0 = (523 kN) sin 46.4° = 37.9 kN

Discussion The weight of the cylinder per m length is determined to be
37.9 kN. It can be shown that this corresponds to a mass of 3863 kg per m
length and to a density of 1921 kg/m3 for the material of the cylinder.

FyR sin 0 — Wy,
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3-7 = BUOYANCY AND STABILITY

It is a common experience that an object feels lighter and weighs less in a
liquid than it does in air. This can be demonstrated easily by weighing a
heavy object in water by a waterproof spring scale. Also, objects made of
wood or other light materials float on water. These and other observations
suggest that a fluid exerts an upward force on a body immersed in it. This
force that tends to lift the body is called the buoyant force and is denoted
by Fj.

The buoyant force is caused by the increase of pressure in a fluid with
depth. Consider, for example, a flat plate of thickness & submerged in a lig-
uid of density p; parallel to the free surface, as shown in Fig. 3-37. The area
of the top (and also bottom) surface of the plate is A, and its distance to the
free surface is 5. The pressures at the top and bottom surfaces of the plate
are p,gs and p,g(s + h), respectively. Then the hydrostatic force F,,, = p;gsA
acts downward on the top surface, and the larger force Fygyon = pp8(s + MA
acts upward on the bottom surface of the plate. The difference between
these two forces is a net upward force, which is the buoyant force,

Fp = Footom — Fiop = ps8(s + WA — pygsA = p;ghA = prgV (3-32)

where V = hA is the volume of the plate. But the relation p;gV/ is simply the
weight of the liquid whose volume is equal to the volume of the plate. Thus,
we conclude that the buoyant force acting on the plate is equal to the weight
of the liquid displaced by the plate. Note that the buoyant force is indepen-
dent of the distance of the body from the free surface. It is also independent
of the density of the solid body.

The relation in Eq. 3-32 is developed for a simple geometry, but it is valid
for any body regardless of its shape. This can be shown mathematically by a
force balance, or simply by this argument: Consider an arbitrarily shaped
solid body submerged in a fluid at rest and compare it to a body of fluid of
the same shape indicated by dotted lines at the same distance from the free
surface (Fig. 3-38). The buoyant forces acting on these two bodies are the
same since the pressure distributions, which depend only on depth, are the
same at the boundaries of both. The imaginary fluid body is in static equilib-
rium, and thus the net force and net moment acting on it are zero. Therefore,
the upward buoyant force must be equal to the weight of the imaginary fluid
body whose volume is equal to the volume of the solid body. Further, the
weight and the buoyant force must have the same line of action to have a
zero moment. This is known as Archimedes’ principle, after the Greek
mathematician Archimedes (287-212 BC), and is expressed as

The buoyant force acting on a body immersed in a fluid is equal to the weight
of the fluid displaced by the body, and it acts upward through the centroid of
the displaced volume.

For floating bodies, the weight of the entire body must be equal to the
buoyant force, which is the weight of the fluid whose volume is equal to the
volume of the submerged portion of the floating body. That is,

Vsuh Pave, body

Vlulul pf

Fy=W = pigVup = Pave. body& Viorr — (3-33)
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A flat plate of uniform thickness &
submerged in a liquid parallel to the
free surface.

Fluid

FIGURE 3-38

The buoyant forces acting on a solid
body submerged in a fluid and on a
fluid body of the same shape at the
same depth are identical. The buoyant
force Fy acts upward through the
centroid C of the displaced volume
and is equal in magnitude to the
weight W of the displaced fluid, but
is opposite in direction. For a solid
of uniform density, its weight W
also acts through the centroid, but its
magnitude is not necessarily equal
to that of the fluid it displaces. (Here
W, > W and thus W, > F; this solid
body would sink.)
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FIGURE 3-39

A solid body dropped into a fluid will o Eilzlking
sink, float, or remain at rest at any point % g 4 0%y
in the fluid, depending on its density
relative to the density of the fluid.

Therefore, the submerged volume fraction of a floating body is equal to the
ratio of the average density of the body to the density of the fluid. Note that
when the density ratio is equal to or greater than one, the floating body
becomes completely submerged.

It follows from these discussions that a body immersed in a fluid (1) remains
at rest at any point in the fluid when its density is equal to the density of the
fluid, (2) sinks to the bottom when its density is greater than the density of
the fluid, and (3) rises to the surface of the fluid and floats when the density
of the body is less than the density of the fluid (Fig. 3-39).

The buoyant force is proportional to the density of the fluid, and thus we
might think that the buoyant force exerted by gases such as air is negligible.
This is certainly the case in general, but there are significant exceptions. For
example, the volume of a person is about 0.1 m?, and taking the density of
air to be 1.2 kg/m?, the buoyant force exerted by air on the person is

Fy = p;gV = (1.2 kg/m*)(9.81 m/s?)(0.1 m*) = 1.2 N

The weight of an 80-kg person is 80 X 9.81 = 788 N. Therefore, ignoring
the buoyancy in this case results in an error in weight of just 0.15 percent,
which is negligible. But the buoyancy effects in gases dominate some impor-
tant natural phenomena such as the rise of warm air in a cooler environment
and thus the onset of natural convection currents, the rise of hot-air or helium
balloons, and air movements in the atmosphere. A helium balloon, for exam-
ple, rises as a result of the buoyancy effect until it reaches an altitude where
the density of air (which decreases with altitude) equals the density of
helium in the balloon—assuming the balloon does not burst by then, and
ignoring the weight of the balloon’s skin.

Archimedes’ principle is also used in modern geology by considering the
continents to be floating on a sea of magma.

EXAMPLE 3-10 Measuring Specific Gravity by a Hydrometer

If you have a seawater aquarium, you have probably used a small cylindrical
glass tube with some lead-weight at its bottom to measure the salinity of the
water by simply watching how deep the tube sinks. Such a device that floats
in a vertical position and is used to measure the specific gravity of a liquid
is called a hydrometer (Fig. 3-40). The top part of the hydrometer extends
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above the liquid surface, and the divisions on it allow one to read the spe-
cific gravity directly. The hydrometer is calibrated such that in pure water it
reads exactly 1.0 at the air—-water interface. (a) Obtain a relation for the spe-
cific gravity of a liquid as a function of distance Az from the mark corre-
sponding to pure water and (b) determine the mass of lead that must be
poured into a 1-cm-diameter, 20-cm-long hydrometer if it is to float halfway
(the 10-cm mark) in pure water.

SOLUTION The specific gravity of a liquid is to be measured by a hydrome-
ter. A relation between specific gravity and the vertical distance from the ref-
erence level is to be obtained, and the amount of lead that needs to be
added into the tube for a certain hydrometer is to be determined.
Assumptions 1 The weight of the glass tube is negligible relative to the
weight of the lead added. 2 The curvature of the tube bottom is disregarded.
Properties We take the density of pure water to be 1000 kg/m3.

Analysis (a) Noting that the hydrometer is in static equilibrium, the buoyant
force Fg exerted by the liquid must always be equal to the weight W of the
hydrometer. In pure water, let the vertical distance between the bottom of
the hydrometer and the free surface of water be z,. Setting Fz = W in this
case gives

Whydro = FB‘W = pwgvsub = ngAZo (1)

where A is the cross-sectional area of the tube, and p,, is the density of pure
water.

In a fluid lighter than water (p; < p,), the hydrometer will sink deeper, and
the liquid level will be a distance of Az above z,. Again setting Fz = W gives

Wayaro = Fp.r = pr&Vaw = prgA(zo + Az) (2)

This relation is also valid for fluids heavier than water by taking the Az below
7, to be a negative quantity. Setting Egs. (1) and (2) here equal to each
other since the weight of the hydrometer is constant and rearranging gives
Pr 2o

w8AZo = prgA(zg + A7) —>  SG=—=
Pgong(o ) fpw 20 + Az

which is the relation between the specific gravity of the fluid and Az. Note
that z, is constant for a given hydrometer and Az is negative for fluids heav-
ier than pure water.

(b) Disregarding the weight of the glass tube, the amount of lead that needs
to be added to the tube is determined from the requirement that the weight
of the lead be equal to the buoyant force. When the hydrometer is floating
with half of it submerged in water, the buoyant force acting on it is
FB = pwgvsub

Equating Fz to the weight of lead gives

W=mg=p,8Vu
Solving for m and substituting, the mass of lead is determined to be
m = p,Vap, = pu(TR*hyy) = (1000 kg/m®)[7(0.005 m)*(0.1 m)] = 0.00785 kg

Discussion Note that if the hydrometer were required to sink only 5 cm in
water, the required mass of lead would be one-half of this amount. Also, the
assumption that the weight of the glass tube is negligible needs to be
checked since the mass of lead is only 7.85 g.
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Schematic for Example 3—10.
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Air EXAMPLE 3-11 Weight Loss of an Object in Seawater

A crane is used to lower weights into the sea (density = 1025 kg/m3) for an
underwater construction project (Fig. 3-41). Determine the tension in the
rope of the crane due to a rectangular 0.4-m X 0.4-m X 3-m concrete block
(density = 2300 kg/m3) when it is (a) suspended in the air and (b) com-
pletely immersed in water.
Concrete
block SOLUTION A concrete block is lowered into the sea. The tension in the
rope is to be determined before and after the block is in water.
Assumptions 1 The buoyancy of air is negligible. 2 The weight of the ropes
is negligible.
Properties The densities are given to be 1025 kg/m3 for seawater and
2300 kg/m3 for concrete.
Analysis (a) Consider the free-body diagram of the concrete block. The
Water forces acting on the concrete block in air are its weight and the upward pull
action (tension) by the rope. These two forces must balance each other, and
thus the tension in the rope must be equal to the weight of the block:

V= (04 m)(0.4 m)(3m) =048 m>

FT, air = W = pcnncrelegv

LkN ) = 10.8 kN

— (2300 kg/m’)(9.81 m/s?)(0.48 3(7
e O M\ 1000 kg - mis?

(b) When the block is immersed in water, there is the additional force of
FIGURE 3-41 buoyancy acting upward. The force balance in this case gives
Schematic for Example 3—11.

1 kN
Fy = p;gV =(1025 kg/m*)(9.81 m/s%)(0.48 m* (7)=4.8kN
= P&V =( g/m”)( 5°)(0.48 m”) 1000 kg - m/s®

Fr yaer = W — Fz = 10.8 — 4.8 = 6.0 kN

Discussion Note that the weight of the concrete block, and thus the tension
of the rope, decreases by (10.8 — 6.0)/10.8 = 55 percent in water.

Stability of Immersed and Floating Bodies

An important application of the buoyancy concept is the assessment of the
stability of immersed and floating bodies with no external attachments. This
topic is of great importance in the design of ships and submarines (Fig.
3-42). Here we provide some general qualitative discussions on vertical and
rotational stability.

We use the “ball on the floor” analogy to explain the fundamental concepts
of stability and instability. Shown in Fig. 3—43 are three balls at rest on the
floor. Case (a) is stable since any small disturbance (someone moves the ball
to the right or left) generates a restoring force (due to gravity) that returns it
to its initial position. Case () is neutrally stable because if someone moves
the ball to the right or left, it would stay put at its new location. It has no ten-
dency to move back to its original location, nor does it continue to move
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away. Case (c) is a situation in which the ball may be at rest at the moment,
but any disturbance, even an infinitesimal one, causes the ball to roll off the
hill—it does not return to its original position; rather it diverges from it. This
situation is unstable. What about a case where the ball is on an inclined
floor? It is not really appropriate to discuss stability for this case since the
ball is not in a state of equilibrium. In other words, it cannot be at rest and
would roll down the hill even without any disturbance.

For an immersed or floating body in static equilibrium, the weight and the
buoyant force acting on the body balance each other, and such bodies are
inherently stable in the vertical direction. If an immersed neutrally buoyant
body is raised or lowered to a different depth, the body will remain in equi-
librium at that location. If a floating body is raised or lowered somewhat by
a vertical force, the body will return to its original position as soon as the
external effect is removed. Therefore, a floating body possesses vertical sta-
bility, while an immersed neutrally buoyant body is neutrally stable since it
does not return to its original position after a disturbance.

The rotational stability of an immersed body depends on the relative loca-
tions of the center of gravity G of the body and the center of buoyancy B,
which is the centroid of the displaced volume. An immersed body is stable
if the body is bottom-heavy and thus point G is directly below point B (Fig.
3-44). A rotational disturbance of the body in such cases produces a restor-
ing moment to return the body to its original stable position. Thus, a stable
design for a submarine calls for the engines and the cabins for the crew to
be located at the lower half in order to shift the weight to the bottom as
much as possible. Hot-air or helium balloons (which can be viewed as being
immersed in air) are also stable since the cage that carries the load is at the
bottom. An immersed body whose center of gravity G is directly above
point B is unstable, and any disturbance will cause this body to turn upside
down. A body for which G and B coincide is neutrally stable. This is the
case for bodies whose density is constant throughout. For such bodies, there
is no tendency to overturn or right themselves.

What about a case where the center of gravity is not vertically aligned
with the center of buoyancy (Fig. 3-45)? It is not really appropriate to dis-
cuss stability for this case since the body is not in a state of equilibrium. In
other words, it cannot be at rest and would rotate toward its stable state even
without any disturbance. The restoring moment in the case shown in Fig.
3-45 is counterclockwise and causes the body to rotate counterclockwise so
as to align point G vertically with point B. Note that there may be some
oscillation, but eventually the body settles down at its stable equilibrium
state [case (a) of Fig. 3—44]. The stability of the body of Fig. 3—45 is analo-
gous to that of the ball on an inclined floor. Can you predict what would
happen if the weight in the body of Fig. 3-45 were on the opposite side of
the body?

The rotational stability criteria are similar for floating bodies. Again, if the
floating body is bottom-heavy and thus the center of gravity G is directly
below the center of buoyancy B, the body is always stable. But unlike
immersed bodies, a floating body may still be stable when G is directly
above B (Fig. 3-46). This is because the centroid of the displaced volume
shifts to the side to a point B” during a rotational disturbance while the center
of gravity G of the body remains unchanged. If point B’ is sufficiently far,
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For floating bodies such as ships,
stability is an important
consideration for safety.
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(b) Neutrally stable

(c) Unstable

FIGURE 3-43
Stability is easily understood by
analyzing a ball on the floor.
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FIGURE 3-44

An immersed neutrally buoyant body
is (a) stable if the center of gravity

G is directly below the center of
buoyancy B of the body, (b) neutrally
stable if G and B are coincident, and
(c) unstable if G is directly above B.

Restoring moment

Weight

FIGURE 3-45

When the center of gravity G of an
immersed neutrally buoyant body is
not vertically aligned with the center
of buoyancy B of the body, it is not in
an equilibrium state and would rotate
to its stable state, even without any
disturbance.

FIGURE 3-46

A floating body is stable if the body is
bottom-heavy and thus the center of
gravity G is below the centroid B of
the body, or if the metacenter M is
above point G. However, the body is
unstable if point M is below point G.
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(a) Stable (b) Neutrally stable (c) Unstable

these two forces create a restoring moment and return the body to the origi-
nal position. A measure of stability for floating bodies is the metacentric
height GM, which is the distance between the center of gravity G and the
metacenter M—the intersection point of the lines of action of the buoyant
force through the body before and after rotation. The metacenter may be
considered to be a fixed point for most hull shapes for small rolling angles
up to about 20°. A floating body is stable if point M is above point G, and
thus GM is positive, and unstable if point M is below point G, and thus GM
is negative. In the latter case, the weight and the buoyant force acting on the
tilted body generate an overturning moment instead of a restoring moment,
causing the body to capsize. The length of the metacentric height GM above
G is a measure of the stability: the larger it is, the more stable is the floating
body.

As already discussed, a boat can tilt to some maximum angle without cap-
sizing, but beyond that angle it overturns (and sinks). We make a final anal-
ogy between the stability of floating objects and the stability of a ball
rolling along the floor. Namely, imagine the ball in a trough between two
hills (Fig. 3—47). The ball returns to its stable equilibrium position after
being perturbed—up to a limit. If the perturbation amplitude is too great,
the ball rolls down the opposite side of the hill and does not return to its
equilibrium position. This situation is described as stable up to some limit-
ing level of disturbance, but unstable beyond.

Melacemerw

Overturning

I , Restoring R —
‘ / moment /
(a) Stable (b) Stable (¢) Unstable
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3-8 = FLUIDS IN RIGID-BODY MOTION

We showed in Section 3—1 that pressure at a given point has the same mag-
nitude in all directions, and thus it is a scalar function. In this section we
obtain relations for the variation of pressure in fluids moving like a solid

body with or without acceleration in the absence of any shear stresses (i.e.,
no motion between fluid layers relative to each other).

Many fluids such as milk and gasoline are transported in tankers. In an FIGURE 3-47
accelerating tanker, the fluid rushes to the back, and some initial splashing A ball in a trough between two hills
occurs. But then a new free surface (usually nonhorizontal) is formed, each is stable for small disturbances, but
fluid particle assumes the same acceleration, and the entire fluid moves like unstable for large disturbances.

a rigid body. No shear stresses develop within the fluid body since there is
no deformation and thus no change in shape. Rigid-body motion of a fluid
also occurs when the fluid is contained in a tank that rotates about an axis.

Consider a differential rectangular fluid element of side lengths dx, dy,
and dz in the x-, y-, and z-directions, respectively, with the z-axis being
upward in the vertical direction (Fig. 3—48). Noting that the differential fluid
element behaves like a rigid body, Newton’s second law of motion for this
element can be expressed as

SF=8m - d (3-34)

where 6m = p dV = p dx dy dz is the mass of the fluid element, a is the
acceleration, and 6F is the net force acting on the element.

The forces acting on the fluid element consist of body forces such as
gravity that act throughout the entire body of the element and are propor-
tional to the volume of the body (and also electrical and magnetic forces,
which will not be considered in this text), and surface forces such as the
pressure forces that act on the surface of the element and are proportional to
the surface area (shear stresses are also surface forces, but they do not apply
in this case since the relative positions of fluid elements remain unchanged).
The surface forces appear as the fluid element is isolated from its surround-
ings for analysis, and the effect of the detached body is replaced by a force

at that location. Note that pressure represents the compressive force applied (p +‘f§) dx dy
on the fluid element by the surrounding fluid and is always directed to the _ 9z 2
surface. ig |
Taking the pressure at the center of the element to be P, the pressures at }
the top and bottom surfaces of the element can be expressed as P + (dP/dz) 1 dz
dz/2 and P — (dP/dz) dz/2, respectively. Noting that the pressure force act- } 4 Ploy o
ing on a surface is equal to the average pressure multiplied by the surface pgdedydzy ~ j’;f
area, the net surface force acting on the element in the z-direction is the dif- R
ference between the pressure forces acting on the bottom and top faces, 7 4 dx
Z
d ;
SFS.Z:<P7%%> dxdy7<P+%%> dxdy = 7%dxdydz (3-35) ) - ’ |(P_f;1:d;)dxdy
Similarly, the net surface forces in the x- and y-directions are FIGURE 3-48
The surface and body forces acting
oF .= —Cixayd:  and  oFy, = —Lavdyd: (3-36) on a differential fluid element
' ax Y dy in the vertical direction.
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Then the surface force (which is simply the pressure force) acting on the
entire element can be expressed in vector form as

8F = 8F i + 8Fs ] + OF .k

oP—-> OP— 0P >
=—\—i+—j+—k|dvdydz=—VPdxdydz (3-37)
ax dy 0z
where ; s f, and E are the unit vectors in the x-, y-, and z-directions, respec-
tively, and
2 oP- oP- 0P~
VP=—i+—j+—k (3-38)
ax dy 0z
is the pressure gradient. Note that the V or “del” is a vector operator that is
used to express the gradients of a scalar function compactly in vector form.
Also, the gradient of a scalar function is expressed in a given direction and
thus it is a vector quantity.
The only body force acting on the fluid element is the weight of the ele-

ment acting in the negative z-direction, and it is expressed as 0F . = —gom
= —pg dx dy dz or in vector form as
8;73,2 = —gSmZ = —pgdxdy dzk (3-39)

Then the total force acting on the element becomes
8F = 8F; + 8F, = —(VP + pgk) dx dy dz (3-40)

Substituting into Newton’s second law of motion SF =om-d = pdxdydz
- a and canceling dx dy dz, the general equation of motion for a fluid that
acts as a rigid body (no shear stresses) is determined to be

Rigid-body motion of fluids: VP + ng = *pa (3-41)

Resolving the vectors into their components, this relation can be expressed
more explicitly as
P 9P~

9P - N S - >
i+—j+—k+pgk=—plai+a,j+a.k (3-42)
ox dy 9z ) ’

or, in scalar form in the three orthogonal directions, as
. . P P P
Accelerating fluids: — = —pa,, — = —pa,, and — = —p(g+a,) (343)
’ ax T dy : 0z
where a,, a,, and a, are accelerations in the x-, y-, and z-directions, respec-
tively.

Special Case 1: Fluids at Rest
For fluids at rest or moving on a straight path at constant velocity, all com-
ponents of acceleration are zero, and the relations in Eqgs. 3-43 reduce to

9P o ®_

dP
— =0, 0, and —= —pg (3-44)
dx

Fluids at rest: =
dy dz

which confirm that, in fluids at rest, the pressure remains constant in any
horizontal direction (P is independent of x and y) and varies only in the ver-
tical direction as a result of gravity [and thus P = P(z)]. These relations are
applicable for both compressible and incompressible fluids.
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Special Case 2: Free Fall of a Fluid Body zT ZT
A freely falling body accelerates under the influence of gravity. When the
air resistance is negligible, the acceleration of the body equals the gravita-

tional acceleration, and acceleration in any horizontal direction is zero. P, P,
Therefore, a, = a, = 0 and a, = —g. Then the equations of motion for * *
accelerating fluids (Eqs. 3-43) reduce to
h Liquid, p h Liquid, p
o aP 9P 9P
Free-falling fluids: —=—=—= — P = constant (3-45) o .
dx dy 0z l P,=P, TPZ =P, +2pgh

Therefore, in a frame of reference moving with the fluid, it behaves like it is a,=-g a,=g

in an environment with zero gravity. Also, the gage pressure in a drop of
liquid in free fall is zero throughout. (Actually, the gage pressure is slightly (@ Free fallofa  (b) Upward acceleration
h . . liquid of a liquid with a, = +g

above zero due to surface tension, which holds the drop intact.) :

When the direction of motion is reversed and the fluid is forced to accel- FIGURE 3-49
erate vertically with a, = +g by placing the fluid container in an elevator or
a space vehicle propelled upward by a rocket engine, the pressure gradient
in the z-direction is dP/dz = —2pg. Therefore, the pressure difference across
a fluid layer now doubles relative to the stationary fluid case (Fig. 3—49).

The effect of acceleration on the
pressure of a liquid during free
fall and upward acceleration.

Acceleration on a Straight Path
Consider a container partially filled with a liquid. The container is moving
on a straight path with a constant acceleration. We take the projection of the
path of motion on the horizontal plane to be the x-axis, and the projection
on the vertical plane to be the z-axis, as shown in Fig. 3-50. The x- and z-
components of acceleration are a, and a.. There is no movement in the y-
direction, and thus the acceleration in that direction is zero, a, = 0. Then
the equations of motion for accelerating fluids (Eqs. 3—43) reduce to

opP oP oP

—=—pa, —=0, and — = —p(g+a,) (3-46)

dx dy 0z
Therefore, pressure is independent of y. Then the total differential of P
= P(x, z), which is (0P/dx) dx + (dP/dz) dz, becomes

dP = —pa,dx — p(g + a.) dz (3-47)
For p = constant, the pressure difference between two points 1 and 2 in the
fluid is determined by integration to be g
Free
Py = Py = —pax, — x) — p(g + a)(z, — zy) (3-48) A surface
Taking point 1 to be the origin (x = 0, z = 0) where the pressure is P, and mmi ——————————
point 2 to be any point in the fluid (no subscript), the pressure distribution “
can be expressed as hy Liquid L
Pressure variation: P=Py—pax—p(g+a)z (3-49) S e a x"
The vertical rise (or drop) of the free surface at point 2 relative to point 1 - x
can be determined by choosing both 1 and 2 on the free surface (so that P, b
= P,), and solving Eq. 3-48 for z, — z; (Fig. 3-51),
2 & 2Tt FIGURE 3-50
a, . . L
Vertical rise of surface: Az, =20 =24 = — (X — x7) (3-50) Rigid bO(,ly motion of a 1‘9‘"‘1 na
g+ta, linearly accelerating tank.
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|
2 a.
L S

Constant
pressure
lines

FIGURE 3-51

Lines of constant pressure (which
are the projections of the surfaces of
constant pressure on the xz-plane) in
a linearly accelerating liquid, and the
vertical rise.

80 cm

Water
tank

FIGURE 3-52
Schematic for Example 3—12.

where z, is the z-coordinate of the liquid’s free surface. The equation for
surfaces of constant pressure, called isobars, is obtained from Eq. 3-47 by
setting d P = 0 and replacing z by z;,,» Which is the z-coordinate (the ver-
tical distance) of the surface as a function of x. It gives

(ZZL\UbL\I‘
Surfaces of constant pressure: =

dx _g+a:

= constant (3-51)

Thus we conclude that the isobars (including the free surface) in an incom-
pressible fluid with constant acceleration in linear motion are parallel sur-
faces whose slope in the xz-plane is

dZisobar Ay

Slope = — = — = —tan 6
ope i eta an

Slope of isobars: (3-52)

Obviously, the free surface of such a fluid is a plane surface, and it is
inclined unless a, = 0 (the acceleration is in the vertical direction only).
Also, the conservation of mass together with the assumption of incompress-
ibility (p = constant) requires that the volume of the fluid remain constant
before and during acceleration. Therefore, the rise of fluid level on one side
must be balanced by a drop of fluid level on the other side.

EXAMPLE 3-12 Overflow from a Water Tank During Acceleration

An 80-cm-high fish tank of cross section 2 m X 0.6 m that is initially filled
with water is to be transported on the back of a truck (Fig. 3-52). The truck
accelerates from O to 90 km/h in 10 s. If it is desired that no water spills
during acceleration, determine the allowable initial water height in the tank.
Would you recommend the tank to be aligned with the long or short side par-
allel to the direction of motion?

SOLUTION A fish tank is to be transported on a truck. The allowable water
height to avoid spill of water during acceleration and the proper orientation
are to be determined.

Assumptions 1 The road is horizontal during acceleration so that accelera-
tion has no vertical component (a, = 0). 2 Effects of splashing, braking, dri-
ving over bumps, and climbing hills are assumed to be secondary and are
not considered. 3 The acceleration remains constant.

Analysis We take the x-axis to be the direction of motion, the zaxis to be
the upward vertical direction, and the origin to be the lower left corner of the
tank. Noting that the truck goes from O to 90 km/h in 10 s, the acceleration
of the truck is

AV (90 — 0)km/h/ 1 m/s

%“=Ar = 10s  \3.6kmn

) = 2.5 m/s?

The tangent of the angle the free surface makes with the horizontal is

@, 23

tan 6 = = 0.255 (and thus 6 = 14.3°)

g+a, 981+0
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The maximum vertical rise of the free surface occurs at the back of the tank,
and the vertical midplane experiences no rise or drop during acceleration
since it is a plane of symmetry. Then the vertical rise at the back of the tank
relative to the midplane for the two possible orientations becomes

Case 1: The long side is parallel to the direction of motion:

Az, = (by/2) tan 6 = [(2 m)/2] X 0.255 = 0.255 m = 25.5 cm

Case 2: The short side is parallel to the direction of motion:

Az = (by2) tan 6 = [(0.6 m)/2] X 0.255 = 0.076 m = 7.6 cm

Therefore, assuming tipping is not a problem, the tank should definitely be
oriented such that its short side is parallel to the direction of motion. Empty-
ing the tank such that its free surface level drops just 7.6 cm in this case
will be adequate to avoid spilling during acceleration.

Discussion Note that the orientation of the tank is important in controlling
the vertical rise. Also, the analysis is valid for any fluid with constant den-
sity, not just water, since we used no information that pertains to water in
the solution.

Rotation in a Cylindrical Container

We know from experience that when a glass filled with water is rotated
about its axis, the fluid is forced outward as a result of the so-called cen-
trifugal force, and the free surface of the liquid becomes concave. This is
known as the forced vortex motion.

Consider a vertical cylindrical container partially filled with a liquid. The
container is now rotated about its axis at a constant angular velocity of w, as
shown in Fig. 3-53. After initial transients, the liquid will move as a rigid
body together with the container. There is no deformation, and thus there
can be no shear stress, and every fluid particle in the container moves with

\
the same angular velocity. @ ¢
This problem is best analyzed in cylindrical coordinates (r, 6, z), with z

taken along the centerline of the container directed from the bottom toward Free ‘
the free surface, since the shape of the container is a cylinder, and the fluid surface \
particles undergo a circular motion. The centripetal acceleration of a fluid ’F* =]
particle rotating with a constant angular velocity of w at a distance r from the

axis of rotation is rw? and is directed radially toward the axis of rotation

(negative r-direction). That is, a, = —rw?. There is symmetry about the z- I
axis, which is the axis of rotation, and thus there is no 6 dependence. Then P

= P(1; 2) and a, = 0. Also, a, = 0 since there is no motion in the z-direction.

Then the equations of motion for rotating fluids (Eqgs. 3—43) reduce to

Axis of
rotation

> _ 2 Q—O and wb_ (3-53)
ar P G T oz P8
Then the total differential of P = P(r, z), which is dP = (dP/dr)dr FIGURE 3-53

+ (9P/6z)dz, becomes Rigid-body motion of a liquid in a

dP = pre* dr — pg dz (3-54) rotating vertical cylindrical container.
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The equation for surfaces of constant pressure is obtained by setting dP = 0
and replacing z by z,,,» Which is the z-value (the vertical distance) of the
surface as a function of r. It gives

a
M

Free : l

surface : . 3 AZisobar _ ﬂz (3-55)
\i‘ s, max P, dr 8
&ﬁ i—’ Integrating, the equation for the surfaces of constant pressure is determined
\\_1 / 4 to be

Ps

\\_/ Pg . w? 5
\\J L/ P Surfaces of constant pressure: Zisobar = e r-+ C, (3-56)
\—— 1" ¢

which is the equation of a parabola. Thus we conclude that the surfaces of
constant pressure, including the free surface, are paraboloids of revolution

FIGURE 3-54 (Fig. 3-54).
Surfaces of constant pressure in a The value of the integration constant C, is different for different parabo-
rotating liquid. loids of constant pressure (i.e., for different isobars). For the free surface,

setting r = 0 in Eq. 3-56 gives z;,(0) = C; = h,, where h_is the distance
of the free surface from the bottom of the container along the axis of rota-
tion (Fig. 3-53). Then the equation for the free surface becomes

2
=224 (3-57)
2g

where z, is the distance of the free surface from the bottom of the container
at radius r. The underlying assumption in this analysis is that there is suffi-
cient liquid in the container so that the entire bottom surface remains cov-
ered with liquid.

The volume of a cylindrical shell element of radius r, height z, and thick-
ness dr is dV = 2arz, dr. Then the volume of the paraboloid formed by the
free surface is

R R (02 (R
V= 2mzordr = 2m —r°+ h.|rdr=mR +h,| (3-58)
2g 4g

r=0 r=0

Since mass is conserved and density is constant, this volume must be equal
to the original volume of the fluid in the container, which is

V = 7R, (3-59)

where hy, is the original height of the fluid in the container with no rotation.
Setting these two volumes equal to each other, the height of the fluid along
the centerline of the cylindrical container becomes

®’R?
hy=hy——— (3-60)
4g

Then the equation of the free surface becomes

3 _ w’ 2
Free surface: z,=hy — 1o (R”—2r%) (3-61)
8

The maximum vertical height occurs at the edge where r = R, and the max-
imum height difference between the edge and the center of the free surface
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is determined by evaluating z; at »r = R and also at r = 0, and taking their

difference,

2

Maximum height difference: Az max = 2,(R) — 2,(0) = ;L R? (3-62)
8

When p = constant, the pressure difference between two points 1 and 2 in
the fluid is determined by integrating dP = prw® dr — pg dz. This yields
2
pw

=N (r3 = rD) — pgza — ) (3-63)

P,— P =
Taking point 1 to be the origin (r = 0, z = 0) where the pressure is P, and
point 2 to be any point in the fluid (no subscript), the pressure distribution
can be expressed as

5

pW
Pressure variation: P=P,+ /T r°— pgz (3-64)

Note that at a fixed radius, the pressure varies hydrostatically in the vertical
direction, as in a fluid at rest. For a fixed vertical distance z, the pressure
varies with the square of the radial distance r, increasing from the centerline
toward the outer edge. In any horizontal plane, the pressure difference
between the center and edge of the container of radius R is AP = pw’R?/2.

: EXAMPLE 3-13 Rising of a Liquid During Rotation

B A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Fig.
: 3-55, is partially filled with 50-cm-high liquid whose density is 850 kg/m3.
R Now the cylinder is rotated at a constant speed. Determine the rotational
m speed at which the liquid will start spilling from the edges of the container.
u
SOLUTION A vertical cylindrical container partially filled with a liquid is
rotated. The angular speed at which the liquid will start spilling is to be
determined.
Assumptions 1 The increase in the rotational speed is very slow so that the |
liquid in the container always acts as a rigid body. 2 The bottom surface of Q) @
the container remains covered with liquid during rotation (no dry spots).
Analysis Taking the center of the bottom surface of the rotating vertical Free
cylinder as the origin (r = 0, z = 0), the equation for the free surface of the surface
liquid is given as

-

2
w
Z,=hy— 4—g(R2 —2r?

h
Then the vertical height of the liquid at the edge of the container where r = !
R becomes
2p2
2R = hy + 2
4g

where h, = 0.5 m is the original height of the liquid before rotation. Just
before the liquid starts spilling, the height of the liquid at the edge of the con-
tainer equals the height of the container, and thus z, (R) = 0.6 m. Solving the FIGURE 3-55

Schematic for Example 3—13.
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last equation for w and substituting, the maximum rotational speed of the
container is determined to be

B \/4g[zx(R) — iyl \/4(9,81 m/s)[(0.6 — 0.5) m]
@ R - 0.1 my’

Noting that one complete revolution corresponds to 27 rad, the rotational
speed of the container can also be expressed in terms of revolutions per

minute (rpm) as
19.
PN 98rad/s(60.s>= 189 rpm
27 2ar rad/rev\1 min

= 19.8 rad/s

Therefore, the rotational speed of this container should be limited to 189
rpm to avoid any spill of liquid as a result of the centrifugal effect.

Discussion Note that the analysis is valid for any liquid since the result is
independent of density or any other fluid property. We should also verify that

our assumption of no dry spots is valid. The liquid height at the center is

ZRZ
2(0) = hy — ‘:— =04m
g

Since z(0) is positive, our assumption is validated.

SUMMARY

The normal force exerted by a fluid per unit area is called
pressure, and its unit is the pascal, 1 Pa = 1 N/m?. The pres-
sure relative to absolute vacuum is called the absolute pres-
sure, and the difference between the absolute pressure and
the local atmospheric pressure is called the gage pressure.
Pressures below atmospheric pressure are called vacuum
pressures. The absolute, gage, and vacuum pressures are
related by

Pgagc = Pabs - Palm

Pvac:Palm_Pabs

The pressure at a point in a fluid has the same magnitude in
all directions. The variation of pressure with elevation in a
fluid at rest is given by

dP

dz
where the positive z-direction is taken to be upward. When
the density of the fluid is constant, the pressure difference
across a fluid layer of thickness Az is

AP =P, — P, = pg Az

P8

The absolute and gage pressures in a static liquid open to the
atmosphere at a depth 4 from the free surface are

P=Pyntpgh —and Py, = pgh

The pressure in a fluid at rest remains constant in the hori-
zontal direction. Pascal’s law states that the pressure applied
to a confined fluid increases the pressure throughout by the
same amount. The atmospheric pressure is measured by a
barometer and is given by

Pym = pgh
where £ is the height of the liquid column.

Fluid statics deals with problems associated with fluids at
rest, and it is called hydrostatics when the fluid is a liquid.
The magnitude of the resultant force acting on a plane sur-
face of a completely submerged plate in a homogeneous fluid
is equal to the product of the pressure P at the centroid of
the surface and the area A of the surface and is expressed as

FR:(P0+pghC)A:PCA:Pach

where h. = y. sin 0 is the vertical distance of the centroid
from the free surface of the liquid. The pressure P, is usually
the atmospheric pressure, which cancels out in most cases
since it acts on both sides of the plate. The point of intersec-
tion of the line of action of the resultant force and the surface
is the center of pressure. The vertical location of the line of
action of the resultant force is given by

I

xx, C

= J’» i
TPV T Py /pg sin 0)1A
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where I,  is the second moment of area about the x-axis
passing through the centroid of the area.

A fluid exerts an upward force on a body immersed in it.
This force is called the buoyant force and is expressed as

Fy=prgV

where \/ is the volume of the body. This is known as
Archimedes’ principle and is expressed as: the buoyant force
acting on a body immersed in a fluid is equal to the weight of
the fluid displaced by the body; it acts upward through the
centroid of the displaced volume. With constant density, the
buoyant force is independent of the distance of the body from
the free surface. For floating bodies, the submerged volume
fraction of the body is equal to the ratio of the average den-
sity of the body to the density of the fluid.

The general equation of motion for a fluid that acts as a
rigid body is

€P + pgz = —pa

When gravity is aligned in the —z-direction, it is expressed in
scalar form as
P aP
T T T pPay P

aP
=-pa, and —=-p(gta)
0x ady i

0z

where a,, a,, and a_ are accelerations in the x-, y-, and z-
directions, respectively. During linearly accelerating motion
in the xz-plane, the pressure distribution is expressed as

P =Py~ pax—p(g+a)z

The surfaces of constant pressure (including the free surface)
in a liquid with constant acceleration in linear motion are
parallel surfaces whose slope in a xz-plane is

dzisobar ay

Slope = — =% = — = —tan 6
ope i cta an

During rigid-body motion of a liquid in a rotating cylinder,
the surfaces of constant pressure are paraboloids of revolu-
tion. The equation for the free surface is

2
w
2, =hy — ” (R* — 2r?)

where z, is the distance of the free surface from the bottom of
the container at radius r and h, is the original height of the
fluid in the container with no rotation. The variation of pres-
sure in the liquid is expressed as
2
P=P0+p7r2—pgz

where P, is the pressure at the origin (r = 0, z = 0).

Pressure is a fundamental property, and it is hard to imag-
ine a significant fluid flow problem that does not involve
pressure. Therefore, you will see this property in all chapters
in the rest of this book. The consideration of hydrostatic
forces acting on plane or curved surfaces, however, is mostly
limited to this chapter.
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PROBLEMS *

Pressure, Manometer, and Barometer

3-1C What is the difference between gage pressure and
absolute pressure?

3-2C Explain why some people experience nose bleeding
and some others experience shortness of breath at high ele-
vations.

3-3C Someone claims that the absolute pressure in a liquid
of constant density doubles when the depth is doubled. Do
you agree? Explain.

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the S| users can ignore them.
Problems with the @ icon are solved using EES, and complete
solutions together with parametric studies are included on the
enclosed DVD. Problems with the B icon are comprehensive in
nature and are intended to be solved with a computer, preferably
using the EES software that accompanies this text.
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3-4C A tiny steel cube is suspended in water by a string. If
the lengths of the sides of the cube are very small, how
would you compare the magnitudes of the pressures on the
top, bottom, and side surfaces of the cube?

3-5C Express Pascal’s law, and give a real-world example
of it.

3-6C Consider two identical fans, one at sea level and the
other on top of a high mountain, running at identical speeds.
How would you compare (a) the volume flow rates and (b)
the mass flow rates of these two fans?

3-7 A vacuum gage connected to a chamber reads 24 kPa
at a location where the atmospheric pressure is 92 kPa.
Determine the absolute pressure in the chamber.

3-8E A manometer is used to measure the air pressure in a
tank. The fluid used has a specific gravity of 1.25, and the
differential height between the two arms of the manometer is
28 in. If the local atmospheric pressure is 12.7 psia, deter-
mine the absolute pressure in the tank for the cases of the
manometer arm with the (a) higher and (b) lower fluid level
being attached to the tank.

3-9 The water in a tank is pressurized by air, and the pres-
sure is measured by a multifluid manometer as shown in Fig.
P3-9. Determine the gage pressure of air in the tank if &,
= 02m, h, = 0.3 m, and h; = 0.46 m. Take the densities of
water, oil, and mercury to be 1000 kg/m?, 850 kg/m?, and
13,600 kg/m?, respectively.

l J—
WATER jl
L B 2
O
2
I |
—
Mercury
FIGURE P3-9

3-10 Determine the atmospheric pressure at a location
where the barometric reading is 750 mmHg. Take the density
of mercury to be 13,600 kg/m?.

3-11 The gage pressure in a liquid at a depth of 3 m is read
to be 28 kPa. Determine the gage pressure in the same liquid
at a depth of 12 m.

3-12 The absolute pressure in water at a depth of 5 m is
read to be 145 kPa. Determine (a) the local atmospheric pres-
sure, and (b) the absolute pressure at a depth of 5 m in a lig-
uid whose specific gravity is 0.85 at the same location.

3-13E  Show that 1 kgf/cm? = 14.223 psi.

3-14E A 200-1b man has a total foot imprint area of 72 in?.
Determine the pressure this man exerts on the ground if (a)
he stands on both feet and (b) he stands on one foot.

3-15 Consider a 70-kg woman who has a total foot imprint
area of 400 cm?. She wishes to walk on the snow, but the
snow cannot withstand pressures greater than 0.5 kPa. Deter-
mine the minimum size of the snowshoes needed (imprint
area per shoe) to enable her to walk on the snow without
sinking.

3-16 A vacuum gage connected to a tank reads 30 kPa at a
location where the barometric reading is 755 mmHg. Determine
the absolute pressure in the tank. Take py, = 13,590 kg/m?.
Answer: 70.6 kPa

3-17E A pressure gage connected to a tank reads 50 psi at a
location where the barometric reading is 29.1 inHg. Determine
the absolute pressure in the tank. Take py, = 843.4 Ibm/ft3,
Answer: 64.29 psia

3-18 A pressure gage connected to a tank reads 500 kPa at
a location where the atmospheric pressure is 94 kPa. Deter-
mine the absolute pressure in the tank.

3-19 The barometer of a mountain hiker reads 930 mbars
at the beginning of a hiking trip and 780 mbars at the end.
Neglecting the effect of altitude on local gravitational accel-
eration, determine the vertical distance climbed. Assume an
average air density of 1.20 kg/m3.  Answer: 1274 m

3-20 The basic barometer can be used to measure the
height of a building. If the barometric readings at the top and
at the bottom of a building are 730 and 755 mmHg, respec-
tively, determine the height of the building. Assume an aver-
age air density of 1.18 kg/m?.

Pigp =730 mmHg

Py =755 mmHg

FIGURE P3-20

3-21 e Solve Prob. 3-20 using EES (or other) software.
e Print out the entire solution, including the

WWW.EHQiﬂOCHr‘% EBooKsPdf.com



cen72367_ch03.gxd 10/29/04 2:22 PM Page 105

o

Frinted frem PDF by LPS ‘

CHAPTER 3

numerical results with proper units, and take the density of
mercury to be 13,600 kg/m?.

3-22 Determine the pressure exerted on a diver at 30 m
below the free surface of the sea. Assume a barometric pres-
sure of 101 kPa and a specific gravity of 1.03 for seawater.
Answer: 404.0 kPa

3-23E Determine the pressure exerted on the surface of a
submarine cruising 300 ft below the free surface of the sea.
Assume that the barometric pressure is 14.7 psia and the spe-
cific gravity of seawater is 1.03.

3-24 A gas is contained in a vertical, frictionless piston—
cylinder device. The piston has a mass of 4 kg and a cross-
sectional area of 35 cm?. A compressed spring above the pis-
ton exerts a force of 60 N on the piston. If the atmospheric
pressure is 95 kPa, determine the pressure inside the cylinder.
Answer: 123.4 kPa

ON ¥ p,. =95kPa

mp=4kg

A =35cm?
P=7?
FIGURE P3-24

3-25 [5al Reconsider Prob. 3-24. Using EES (or other)

software, investigate the effect of the spring
force in the range of 0 to 500 N on the pressure inside the
cylinder. Plot the pressure against the spring force, and dis-
cuss the results.

3-26 %Q/& Both a gage and a manometer are attached to a

gas tank to measure its pressure. If the reading on

P,=80kPa

FIGURE P3-26

the pressure gage is 80 kPa, determine the distance between
the two fluid levels of the manometer if the fluid is (a) mer-
cury (p = 13,600 kg/m?) or (b) water (p = 1000 kg/m?).

3-27 [il Reconsider Prob. 3-26. Using EES (or other)

software, investigate the effect of the manometer
fluid density in the range of 800 to 13,000 kg/m? on the dif-
ferential fluid height of the manometer. Plot the differential
fluid height against the density, and discuss the results.

3-28 A manometer containing oil (p = 850 kg/m®) is
attached to a tank filled with air. If the oil-level difference
between the two columns is 45 cm and the atmospheric pres-
sure is 98 kPa, determine the absolute pressure of the air in
the tank. Answer: 101.75 kPa

3-29 A mercury manometer (p = 13,600 kg/m?) is con-
nected to an air duct to measure the pressure inside. The dif-
ference in the manometer levels is 15 mm, and the atmos-
pheric pressure is 100 kPa. (a) Judging from Fig. P3-29,
determine if the pressure in the duct is above or below the
atmospheric pressure. (b) Determine the absolute pressure in
the duct.

AIR -—
po9 h=15mm
FIGURE P3-29

3-30 Repeat Prob. 3-29 for a differential mercury height of
30 mm.

3-31 Blood pressure is usually measured by wrapping a
closed air-filled jacket equipped with a pressure gage around
the upper arm of a person at the level of the heart. Using a
mercury manometer and a stethoscope, the systolic pressure
(the maximum pressure when the heart is pumping) and the
diastolic pressure (the minimum pressure when the heart is
resting) are measured in mmHg. The systolic and diastolic
pressures of a healthy person are about 120 mmHg and 80
mmHg, respectively, and are indicated as 120/80. Express
both of these gage pressures in kPa, psi, and meter water
column.

3-32 The maximum blood pressure in the upper arm of a
healthy person is about 120 mmHg. If a vertical tube open to
the atmosphere is connected to the vein in the arm of the per-
son, determine how high the blood will rise in the tube. Take
the density of the blood to be 1050 kg/m?.
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FIGURE P3-32

3-33 Consider a 1.8-m-tall man standing vertically in water
and completely submerged in a pool. Determine the differ-
ence between the pressures acting at the head and at the toes
of this man, in kPa.

3-34 Consider a U-tube whose arms are open to the atmo-
sphere. Now water is poured into the U-tube from one arm,
and light oil (p = 790 kg/m?) from the other. One arm con-
tains 70-cm-high water, while the other arm contains both
fluids with an oil-to-water height ratio of 6. Determine the
height of each fluid in that arm.

Oil
70
o Water

FIGURE P3-34

3-35 The hydraulic lift in a car repair shop has an output
diameter of 30 cm and is to lift cars up to 2000 kg. Deter-
mine the fluid gage pressure that must be maintained in the
reservoir.

3-36 Freshwater and seawater flowing in parallel horizontal
pipelines are connected to each other by a double U-tube

Air
Fresh- 40 cm
water
70 cm
| —Mercury
FIGURE P3-36

o

manometer, as shown in Fig. P3-36. Determine the pressure
difference between the two pipelines. Take the density of sea-
water at that location to be p = 1035 kg/m>. Can the air col-
umn be ignored in the analysis?

3-37 Repeat Prob. 3-36 by replacing the air with oil whose
specific gravity is 0.72.

3-38E The pressure in a natural gas pipeline is measured by
the manometer shown in Fig. P3-38E with one of the arms
open to the atmosphere where the local atmospheric pressure
is 14.2 psia. Determine the absolute pressure in the pipeline.

+—H
Air 2in
Natural 10in
Gas
L 25 in
f
6in
Mercury
SG=13.6
Water

FIGURE P3-38E

3-39E Repeat Prob. 3-38E by replacing air by oil with a
specific gravity of 0.69.

3-40 The gage pressure of the air in the tank shown in Fig.
P3-40 is measured to be 65 kPa. Determine the differential
height & of the mercury column.

L —Oil

65 kPa SG=0.72

| —Mercury
SG=13.6

FIGURE P3-40
3-41 Repeat Prob. 3—40 for a gage pressure of 45 kPa.

3-42 The top part of a water tank is divided into two com-
partments, as shown in Fig. P3-42. Now a fluid with an
unknown density is poured into one side, and the water level
rises a certain amount on the other side to compensate for
this effect. Based on the final fluid heights shown on the fig-
ure, determine the density of the fluid added. Assume the lig-
uid does not mix with water.
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the two arms is 32 in, determine the pressure difference

between the two tanks. The densities of oil and mercury are
45 1bm/ft> and 848 Ibm/ft?, respectively.

3-45 Pressure is often given in terms of a liquid column
and is expressed as “pressure head.” Express the standard
atmospheric pressure in terms of (a) mercury (SG = 13.6),
(b) water (SG = 1.0), and (¢) glycerin (SG = 1.26) columns.
95 cm Explain why we usually use mercury in manometers.

4]

WATER

50.cm 3-46 A simple experiment has long been used to demon-

strate how negative pressure prevents water from being

L spilled out of an inverted glass. A glass that is fully filled by

water and covered with a thin paper is inverted, as shown in

FIGURE P3—42 Fig. P3-46. Determine the pressure at the bottom of the
glass, and explain why water does not fall out.

3-43 The 500-kg load on the hydraulic lift shown in Fig.
P3-43 is to be raised by pouring oil (p = 780 kg/m?) into a -

Gl
thin tube. Determine how high 4 should be in order to begin o
to raise the weight.
T 10 cm
h Water
LOAD
500 kg
‘A piece
12m Tem—] f— of paper
FIGURE P3-46
3-47 Two chambers with the same fluid at their base are
separated by a piston whose weight is 25 N, as shown in Fig.
P3-47. Calculate the gage pressures in chambers A and B.
FIGURE P3-43
. Piston
3-44E Two oil tanks are connected to each other through a
manometer. If the difference between the mercury levels in
A B
Air Air o |
50 cm
c | o 'f
30cm 25 cm
£ 30em [ ] vy
Water
Mercury 90 cm
FIGURE P3—44E FIGURE P3-47
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3-48 Consider a double-fluid manometer attached to an air
pipe shown in Fig. P3-48. If the specific gravity of one fluid
is 13.55, determine the specific gravity of the other fluid for
the indicated absolute pressure of air. Take the atmospheric
Answer: 5.0

pressure to be 100 kPa.

SG,

SG, = 1355

FIGURE P3-48

3-49 The pressure difference between an oil pipe and water
pipe is measured by a double-fluid manometer, as shown in
Fig. P3-49. For the given fluid heights and specific gravities,
calculate the pressure difference AP = P, — P,.

A
Glycerin
Water SG=1.26
SG=1.0
60 cm
15 cm'
20 cm
Mercury
SG=135

FIGURE P3-49

o
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3-50 Consider the system shown in Fig. P3-50. If a change
of 0.7 kPa in the pressure of air causes the brine-mercury
interface in the right column to drop by 5 mm in the brine
level in the right column while the pressure in the brine pipe
remains constant, determine the ratio of A,/A;.

Air

Area, A,

FIGURE P3-50

3-51 Two water tanks are connected to each other through
a mercury manometer with inclined tubes, as shown in Fig.
P3-51. If the pressure difference between the two tanks is
20 kPa, calculate a and 6.

Mercury
SG=13.6

FIGURE P3-51

3-52 A multifluid container is connected to a U-tube, as
shown in Fig. P3-52. For the given specific gravities and
fluid column heights, determine the gage pressure at A. Also
determine the height of a mercury column that would create
the same pressure at A.  Answers: 0.471 kPa, 0.353 cm
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70 cm

30 cm

FIGURE P3-52

Fluid Statics: Hydrostatic Forces on Plane
and Curved Surfaces

3-53C Define the resultant hydrostatic force acting on a
submerged surface, and the center of pressure.

3-54C Someone claims that she can determine the magni-
tude of the hydrostatic force acting on a plane surface sub-
merged in water regardless of its shape and orientation if she
knew the vertical distance of the centroid of the surface from
the free surface and the area of the surface. Is this a valid
claim? Explain.

3-55C A submerged horizontal flat plate is suspended in
water by a string attached at the centroid of its upper surface.
Now the plate is rotated 45° about an axis that passes through
its centroid. Discuss the change on the hydrostatic force act-
ing on the top surface of this plate as a result of this rotation.
Assume the plate remains submerged at all times.

3-56C You may have noticed that dams are much thicker at
the bottom. Explain why dams are built that way.

3-57C Consider a submerged curved surface. Explain how
you would determine the horizontal component of the hydro-
static force acting on this surface.

3-58C Consider a submerged curved surface. Explain how
you would determine the vertical component of the hydrosta-
tic force acting on this surface.

3-59C Consider a circular surface subjected to hydrostatic
forces by a constant density liquid. If the magnitudes of the
horizontal and vertical components of the resultant hydrosta-
tic force are determined, explain how you would find the line
of action of this force.

3-60 Consider a heavy car submerged in water in a lake
with a flat bottom. The driver’s side door of the car is 1.1 m
high and 0.9 m wide, and the top edge of the door is 8 m
below the water surface. Determine the net force acting on
the door (normal to its surface) and the location of the pres-

sure center if (a) the car is well-sealed and it contains air at
atmospheric pressure and (b) the car is filled with water.

3-61E A long, solid cylinder of radius 2 ft hinged at point
A is used as an automatic gate, as shown in Fig. P3-61E.
When the water level reaches 15 ft, the cylindrical gate opens
by turning about the hinge at point A. Determine (a) the
hydrostatic force acting on the cylinder and its line of action
when the gate opens and (b) the weight of the cylinder per ft
length of the cylinder.

<

15 ft
2 ft

FIGURE P3-61E

3-62 Consider a 4-m-long, 4-m-wide, and 1.5-m-high
aboveground swimming pool that is filled with water to the
rim. (a) Determine the hydrostatic force on each wall and the
distance of the line of action of this force from the ground.
(b) If the height of the walls of the pool is doubled and the
pool is filled, will the hydrostatic force on each wall double
or quadruple? Why?  Answer: (a) 44.1 kN

3-63E Consider a 200-ft-high, 1200-ft-wide dam filled to
capacity. Determine (a) the hydrostatic force on the dam and
(b) the force per unit area of the dam near the top and near
the bottom.

3-64 A room in the lower level of a cruise ship has a
30-cm-diameter circular window. If the midpoint of the win-
dow is 5 m below the water surface, determine the hydro-
static force acting on the window, and the pressure center.
Take the specific gravity of seawater to be 1.025. Answers:
3554 N, 5.001 m

FIGURE P3-64
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3-65 The water side of the wall of a 100-m-long dam is a
quarter circle with a radius of 10 m. Determine the hydro-
static force on the dam and its line of action when the dam is
filled to the rim.

3-66 A 4-m-high, 5-m-wide rectangular plate blocks the
end of a 4-m-deep freshwater channel, as shown in Fig.
P3-66. The plate is hinged about a horizontal axis along its
upper edge through a point A and is restrained from opening
by a fixed ridge at point B. Determine the force exerted on
the plate by the ridge.

4
i
I'm
AvA 3
4m
B
FIGURE P3-66

3-67 7ol Reconsider Prob. 3-66. Using EES (or other)

software, investigate the effect of water depth on
the force exerted on the plate by the ridge. Let the water
depth vary from 0 m to 5 m in increments of 0.5 m. Tabulate
and plot your results.

3-68E The flow of water from a reservoir is controlled by a
5-ft-wide L-shaped gate hinged at point A, as shown in Fig.
P3-68E. If it is desired that the gate open when the water
height is 12 ft, determine the mass of the required weight W.
Answer: 30,900 Ibm

) ft—»‘

/<{ B_

A

T — Gate 15 ft

12 ft

.

FIGURE P3-68E

<

3-69E Repeat Prob. 3—68E for a water height of 8 ft.

3-70 A water trough of semicircular cross section of radius
0.5 m consists of two symmetric parts hinged to each other at
the bottom, as shown in Fig. P3-70. The two parts are held

together by a cable and turnbuckle placed every 3 m along
the length of the trough. Calculate the tension in each cable
when the trough is filled to the rim.

1]
,—— Cable

D

=

Hinge
FIGURE P3-70

3-71 The two sides of a V-shaped water trough are hinged
to each other at the bottom where they meet, as shown in Fig.
P3-71, making an angle of 45° with the ground from both
sides. Each side is 0.75 m wide, and the two parts are held
together by a cable and turnbuckle placed every 6 m along
the length of the trough. Calculate the tension in each cable
when the trough is filled to the rim.  Answer: 5510 N

Cable

0.75m
45° 0K 45°
\>/ \Hinge
FIGURE P3-71

3-72  Repeat Prob. 3-71 for the case of a partially filled
trough with a water height of 0.4 m directly above the hinge.

3-73 A retaining wall against a mud slide is to be con-
structed by placing 0.8-m-high and 0.2-m-wide rectangular
concrete blocks (p = 2700 kg/m?) side by side, as shown in
Fig. P3-73. The friction coefficient between the ground and
the concrete blocks is f = 0.3, and the density of the mud is
about 1800 kg/m?. There is concern that the concrete blocks
may slide or tip over the lower left edge as the mud level
rises. Determine the mud height at which (a) the blocks will

0.2m
T b
0.8 m Mud T
P ’l‘
FIGURE P3-73
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overcome friction and start sliding and (b) the blocks will tip
over.

3-74 Repeat Prob. 3-73 for 0.4-m-wide concrete blocks.

3-75 %@;’ A 4-m-long quarter-circular gate of radius 3 m

and of negligible weight is hinged about its
upper edge A, as shown in Fig. P3-75. The gate controls the
flow of water over the ledge at B, where the gate is pressed
by a spring. Determine the minimum spring force required to
keep the gate closed when the water level rises to A at the
upper edge of the gate.

FIGURE P3-75

3-76 Repeat Prob. 3-75 for a radius of 4 m for the gate.
Answer: 314 kN

Buoyancy

3-77C What is buoyant force? What causes it? What is the
magnitude of the buoyant force acting on a submerged body
whose volume is V? What are the direction and the line of
action of the buoyant force?

3-78C Consider two identical spherical balls submerged in
water at different depths. Will the buoyant forces acting on
these two balls be the same or different? Explain.

3-79C Consider two 5-cm-diameter spherical balls—one
made of aluminum, the other of iron—submerged in water.
Will the buoyant forces acting on these two balls be the same
or different? Explain.

3-80C Consider a 3-kg copper cube and a 3-kg copper ball
submerged in a liquid. Will the buoyant forces acting on
these two bodies be the same or different? Explain.

3-81C Discuss the stability of (a) a submerged and (b) a
floating body whose center of gravity is above the center of
buoyancy.

3-82 The density of a liquid is to be determined by an old
1-cm-diameter cylindrical hydrometer whose division marks
are completely wiped out. The hydrometer is first dropped in
water, and the water level is marked. The hydrometer is then
dropped into the other liquid, and it is observed that the mark
for water has risen 0.5 cm above the liquid—air interface. If
the height of the water mark is 10 cm, determine the density
of the liquid.

—

Mark for
water

1
IO.S cm

Unknown
liquid 10em
N
FIGURE P3-82

3-83E A crane is used to lower weights into a lake for an
underwater construction project. Determine the tension in the
rope of the crane due to a 3-ft-diameter spherical steel block
(density = 494 1bm/ft®) when it is (a) suspended in the air
and (b) completely immersed in water.

3-84 The volume and the average density of an irregularly
shaped body are to be determined by using a spring scale.
The body weighs 7200 N in air and 4790 N in water. Deter-
mine the volume and the density of the body. State your
assumptions.

3-85 Consider a large cubic ice block floating in seawater.
The specific gravities of ice and seawater are 0.92 and 1.025,
respectively. If a 10-cm-high portion of the ice block extends
above the surface of the water, determine the height of the ice
block below the surface. Answer: 87.6 cm

IIO cm

B Cubic
ice block h
FIGURE P3-85

3-86 A 170-kg granite rock (p = 2700 kg/m?) is dropped
into a lake. A man dives in and tries to lift the rock. Deter-
mine how much force the man needs to apply to lift it from
the bottom of the lake. Do you think he can do it?

3-87 It is said that Archimedes discovered his principle
during a bath while thinking about how he could determine if
King Hiero’s crown was actually made of pure gold. While in
the bathtub, he conceived the idea that he could determine

WWW. Engmocm% EBOOKS Pdf.com



cen72367_ch03.gxd 10/29/04 2:22 PM Page 112

o

Printed freen POF by LPS

FLUID MECHANICS

the average density of an irregularly shaped object by weigh-
ing it in air and also in water. If the crown weighed 3.20 kgf
(= 31.4 N) in air and 2.95 kgf (= 28.9 N) in water, deter-
mine if the crown is made of pure gold. The density of gold
is 19,300 kg/m3. Discuss how you can solve this problem
without weighing the crown in water but by using an ordi-
nary bucket with no calibration for volume. You may weigh
anything in air.

3-88 One of the common procedures in fitness programs is
to determine the fat-to-muscle ratio of the body. This is based
on the principle that the muscle tissue is denser than the fat
tissue, and, thus, the higher the average density of the body,
the higher is the fraction of muscle tissue. The average density
of the body can be determined by weighing the person in air
and also while submerged in water in a tank. Treating all tis-
sues and bones (other than fat) as muscle with an equivalent
density of p, e obtain a relation for the volume fraction of
body fat xg,. Answer: X, = (Pruscie = Pave)Pruscie — Prat)-

Submerged
person

FIGURE P3-88E

3-89 The hull of a boat has a volume of 150 m?, and the
total mass of the boat when empty is 8560 kg. Determine
how much load this boat can carry without sinking (a) in a
lake and (b) in seawater with a specific gravity of 1.03.

Fluids in Rigid-Body Motion

3-90C Under what conditions can a moving body of fluid
be treated as a rigid body?

3-91C Consider a glass of water. Compare the water pres-
sures at the bottom surface for the following cases: the glass
is (a) stationary, (b) moving up at constant velocity, (¢) mov-
ing down at constant velocity, and (d) moving horizontally at
constant velocity.

3-92C Consider two identical glasses of water, one station-
ary and the other moving on a horizontal plane with constant
acceleration. Assuming no splashing or spilling occurs, which
glass will have a higher pressure at the (a) front, (b) mid-
point, and (c) back of the bottom surface?

3-93C Consider a vertical cylindrical container partially
filled with water. Now the cylinder is rotated about its axis at
a specified angular velocity, and rigid-body motion is estab-
lished. Discuss how the pressure will be affected at the mid-
point and at the edges of the bottom surface due to rotation.

3-94 A water tank is being towed by a truck on a level
road, and the angle the free surface makes with the horizontal
is measured to be 15°. Determine the acceleration of the
truck.

3-95 Consider two water tanks filled with water. The first
tank is 8 m high and is stationary, while the second tank is 2
m high and is moving upward with an acceleration of 5 m/s.
Which tank will have a higher pressure at the bottom?

3-96 A water tank is being towed on an uphill road that
makes 20° with the horizontal with a constant acceleration of
5 m/s? in the direction of motion. Determine the angle the
free surface of water makes with the horizontal. What would
your answer be if the direction of motion were downward on
the same road with the same acceleration?

3-97E A 2-ft-diameter vertical cylindrical tank open to the
atmosphere contains 1-ft-high water. The tank is now rotated
about the centerline, and the water level drops at the center
while it rises at the edges. Determine the angular velocity at
which the bottom of the tank will first be exposed. Also
determine the maximum water height at this moment.

FIGURE P3-97E

3-98 A 60-cm-high, 40-cm-diameter cylindrical water tank
is being transported on a level road. The highest acceleration
anticipated is 4 m/s?. Determine the allowable initial water
height in the tank if no water is to spill out during accelera-
tion. Answer: 51.8 cm

3-99 A 40-cm-diameter, 90-cm-high vertical cylindrical
container is partially filled with 60-cm-high water. Now the
cylinder is rotated at a constant angular speed of 120 rpm.
Determine how much the liquid level at the center of the
cylinder will drop as a result of this rotational motion.

3-100 A fish tank that contains 40-cm-high water is moved
in the cabin of an elevator. Determine the pressure at the bot-
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tom of the tank when the elevator is (a) stationary, (b) mov-
ing up with an upward acceleration of 3 m/s?, and (c) moving
down with a downward acceleration of 3 m/s>.

3-101 A 3-m-diameter vertical cylindrical milk tank rotates
at a constant rate of 12 rpm. If the pressure at the center of
the bottom surface is 130 kPa, determine the pressure at the
edge of the bottom surface of the tank. Take the density of
the milk to be 1030 kg/m.

3-102 Milk with a density of 1020 kg/m? is transported on
a level road in a 7-m-long, 3-m-diameter cylindrical tanker.
The tanker is completely filled with milk (no air space), and
it accelerates at 2.5 m/s?. If the minimum pressure in the
tanker is 100 kPa, determine the maximum pressure and its
location.  Answer: 47.9 kPa

FIGURE P3-102

3-103 Repeat Prob. 3-102 for a deceleration of 2.5 m/s.

3-104 The distance between the centers of the two arms of
a U-tube open to the atmosphere is 25 cm, and the U-tube
contains 20-cm-high alcohol in both arms. Now the U-tube is
rotated about the left arm at 4.2 rad/s. Determine the eleva-
tion difference between the fluid surfaces in the two arms.

Qo

20 cm

25 cm

FIGURE P3-104

3-105 A 1.2-m-diameter, 3-m-high sealed vertical cylinder
is completely filled with gasoline whose density is 740 kg/m?.
The tank is now rotated about its vertical axis at a rate of
70 rpm. Determine (a) the difference between the pressures

o
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at the centers of the bottom and top surfaces and (b) the dif-
ference between the pressures at the center and the edge of

the bottom surface.
|

1.20 m 3m

FIGURE P3-105

3-106 3 Reconsider Prob. 3-105. Using EES (or other)

Sal software, investigate the effect of rotational
speed on the pressure difference between the center and the
edge of the bottom surface of the cylinder. Let the rotational
speed vary from O rpm to 500 rpm in increments of 50 rpm.
Tabulate and plot your results.

3-107E A 20-ft-long, 8-ft-high rectangular tank open to the
atmosphere is towed by a truck on a level road. The tank is
filled with water to a depth of 6 ft. Determine the maximum
acceleration or deceleration allowed if no water is to spill
during towing.

3-108E An 8-ft-long tank open to the atmosphere initially
contains 3-ft-high water. It is being towed by a truck on a
level road. The truck driver applies the brakes and the water
level at the front rises 0.5 ft above the initial level. Determine
the deceleration of the truck. Answer: 4.08 ft/s?

‘Water

| 8 ft

FIGURE P3-108E

WWW.Enqineerm%‘ EBooksPdf.com



cen72367_ch03.gxd 10/29/04 2:22 PM Page 114

o

Printed freen PDF Dy LPS

FLUID MECHANICS

3-109 A 3-m-diameter, 7-m-long cylindrical tank is com-
pletely filled with water. The tank is pulled by a truck on a
level road with the 7-m-long axis being horizontal. Deter-
mine the pressure difference between the front and back ends
of the tank along a horizontal line when the truck (a) acceler-
ates at 3 m/s? and (b) decelerates at 4 m/s2.

Review Probhlems

3-110 An air-conditioning system requires a 20-m-long
section of 15-cm-diameter ductwork to be laid underwater.
Determine the upward force the water will exert on the duct.
Take the densities of air and water to be 1.3 kg/m? and 1000
kg/m?, respectively.

3-111 Balloons are often filled with helium gas because it
weighs only about one-seventh of what air weighs under
identical conditions. The buoyancy force, which can be
expressed as F, = p_i.gVj 1100 Will push the balloon upward.
If the balloon has a diameter of 10 m and carries two people,
70 kg each, determine the acceleration of the balloon when it
is first released. Assume the density of air is p = 1.16 kg/m?,
and neglect the weight of the ropes and the cage. Answer:
16.5 m/s?

HELIUM
D=10m
PHe :%pair

m=140 kg

FIGURE P3-111

3-112 i Reconsider Prob. 3—111. Using EES (or other)

S software, investigate the effect of the number
of people carried in the balloon on acceleration. Plot the
acceleration against the number of people, and discuss the
results.

3-113 Determine the maximum amount of load, in kg, the
balloon described in Prob. 3-111 can carry. Answer:
520.6 kg

3-114E The pressure in a steam boiler is given to be 75
kgf/cm?. Express this pressure in psi, kPa, atm, and bars.

3-115 The basic barometer can be used as an altitude-
measuring device in airplanes. The ground control reports a
barometric reading of 753 mmHg while the pilot’s reading is
690 mmHg. Estimate the altitude of the plane from ground
level if the average air density is 1.20 kg/m3.  Answer: 714 m

3-116 The lower half of a 10-m-high cylindrical container
is filled with water (p = 1000 kg/m?) and the upper half with
oil that has a specific gravity of 0.85. Determine the pressure
difference between the top and bottom of the cylinder.
Answer: 90.7 kPa

WATER

FIGURE P3-116

3-117 A vertical, frictionless piston—cylinder device con-
tains a gas at 500 kPa. The atmospheric pressure outside is
100 kPa, and the piston area is 30 cm?. Determine the mass
of the piston.

3-118 A pressure cooker cooks a lot faster than an ordinary
pan by maintaining a higher pressure and temperature inside.
The lid of a pressure cooker is well sealed, and steam can
escape only through an opening in the middle of the lid. A
separate metal piece, the petcock, sits on top of this opening

P, =101 kPa
Petcock

A =4 mm?

L

PRESSURE
COOKER

——— i

FIGURE P3-118
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and prevents steam from escaping until the pressure force
overcomes the weight of the petcock. The periodic escape of
the steam in this manner prevents any potentially dangerous
pressure buildup and keeps the pressure inside at a constant
value. Determine the mass of the petcock of a pressure
cooker whose operation pressure is 100 kPa gage and has an
opening cross-sectional area of 4 mm? Assume an atmos-
pheric pressure of 101 kPa, and draw the free-body diagram
of the petcock. Answer: 40.8 g

3-119 A glass tube is attached to a water pipe, as shown in
Fig. P3-119. If the water pressure at the bottom of the tube is
115 kPa and the local atmospheric pressure is 92 kPa, deter-
mine how high the water will rise in the tube, in m. Assume
g = 9.8 m/s? at that location and take the density of water to
be 1000 kg/m>.

Pym=92 kPa

atm

=
1}
)

Water

FIGURE P3-119

3-120 The average atmospheric pressure on earth is
approximated as a function of altitude by the relation P,
= 101.325 (1 — 0.022562)>*®, where P,,,, is the atmospheric
pressure in kPa and z is the altitude in km with z = 0 at sea
level. Determine the approximate atmospheric pressures at
Atlanta (z = 306 m), Denver (z = 1610 m), Mexico City (z
= 2309 m), and the top of Mount Everest (z = 8848 m).

3-121 When measuring small pressure differences with a
manometer, often one arm of the manometer is inclined to
improve the accuracy of reading. (The pressure difference is
still proportional to the vertical distance and not the actual
length of the fluid along the tube.) The air pressure in a cir-

Air

FIGURE P3-121

cular duct is to be measured using a manometer whose open
arm is inclined 35° from the horizontal, as shown in Fig.
P3-121. The density of the liquid in the manometer is 0.81
kg/L, and the vertical distance between the fluid levels in the
two arms of the manometer is 8 cm. Determine the gage
pressure of air in the duct and the length of the fluid column
in the inclined arm above the fluid level in the vertical arm.

3-122E Consider a U-tube whose arms are open to the
atmosphere. Now equal volumes of water and light oil (p
= 49.3 Ibm/ft®) are poured from different arms. A person
blows from the oil side of the U-tube until the contact surface
of the two fluids moves to the bottom of the U-tube, and thus

FIGURE P3-122E

the liquid levels in the two arms are the same. If the fluid
height in each arm is 30 in, determine the gage pressure the
person exerts on the oil by blowing.

3-123 Intravenous infusions are usually driven by gravity
by hanging the fluid bottle at sufficient height to counteract
the blood pressure in the vein and to force the fluid into the
body. The higher the bottle is raised, the higher the flow rate
of the fluid will be. (a) If it is observed that the fluid and the
blood pressures balance each other when the bottle is 1.2 m
above the arm level, determine the gage pressure of the
blood. (b) If the gage pressure of the fluid at the arm level
needs to be 20 kPa for sufficient flow rate, determine how
high the bottle must be placed. Take the density of the fluid
to be 1020 kg/m>.

FIGURE P3-123
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3-124 A gasoline line is connected to a pressure gage
through a double-U manometer, as shown in Fig. P3-124. If
the reading of the pressure gage is 370 kPa, determine the
gage pressure of the gasoline line.

0il SG=0.79

Gasoline SG=0.70

FIGURE P3-124

3-125 Repeat Prob. 3-124 for a pressure gage reading of
240 kPa.

3-126E A water pipe is connected to a double-U manome-
ter as shown in Fig. P3—1026E at a location where the local
atmospheric pressure is 14.2 psia. Determine the absolute
pressure at the center of the pipe.

FIGURE P3-126E

3-127 The pressure of water flowing through a pipe is mea-
sured by the arrangement shown in Fig. P3—127. For the val-
ues given, calculate the pressure in the pipe.

o
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Py=30kPa

FIGURE P3-127

3-128 Consider a U-tube filled with mercury except the
18-cm-high portion at the top, as shown in Fig. P3—128. The
diameter of the right arm of the U-tube is D = 2 c¢m, and the
diameter of the left arm is twice that. Oil with a specific
gravity of 2.72 is poured into the left arm, forcing some mer-
cury from the left arm into the right one. Determine the max-
imum amount of oil that can be added into the left arm.
Answer: 0.256 L

oil
SG=2.72 \

18 cm

2D D=2cm

Mercury
SG=13.6

FIGURE P3-128
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3-129 A teapot with a brewer at the top is used to brew tea,
as shown in Fig. P3-129. The brewer may partially block the
vapor from escaping, causing the pressure in the teapot to
rise and an overflow from the service tube to occur. Disre-
garding thermal expansion and the variation in the amount of
water in the service tube to be negligible relative to the
amount of water in the teapot, determine the maximum cold-
water height that would not cause an overflow at gage pres-
sures of up to 0.32 kPa for the vapor.

P, <0.32 kPa (gage)
Vapor

40° 12 cm

4 cm

A A A A A A 4
VR g ¥

FIGURE P3-129

3-130 Repeat Prob. 3—-129 by taking the thermal expansion
of water into consideration as it is heated from 20°C to the
boiling temperature of 100°C.

3-131 It is well known that the temperature of the atmo-
sphere varies with altitude. In the troposphere, which extends
to an altitude of 11 km, for example, the variation of temper-
ature can be approximated by 7' = T;, — Bz, where T}, is the
temperature at sea level, which can be taken to be 288.15 K,
and B = 0.0065 K/m. The gravitational acceleration also
changes with altitude as g(z) = g/(1 + 2/6,370,320)> where
g = 9.807 m/s? and z is the elevation from sea level in m.
Obtain a relation for the variation of pressure in the tropo-
sphere (a) by ignoring and (b) by considering the variation of
g with altitude.

3-132 The variation of pressure with density in a thick gas
layer is given by P = Cp", where C and n are constants. Not-

ing that the pressure change across a differential fluid layer
of thickness dz in the vertical z-direction is given as dP
= —pg dz, obtain a relation for pressure as a function of ele-
vation z. Take the pressure and density at z = 0 to be P, and
Po» respectively.

3-133 Pressure transducers are commonly used to measure
pressure by generating analog signals usually in the range of
4 mA to 20 mA or 0 V-dc to 10 V-dc in response to applied
pressure. The system whose schematic is shown in Fig.
P3-133 can be used to calibrate pressure transducers. A rigid
container is filled with pressurized air, and pressure is mea-
sured by the manometer attached. A valve is used to regulate
the pressure in the container. Both the pressure and the elec-
tric signal are measured simultaneously for various settings,
and the results are tabulated. For the given set of measure-
ments, obtain the calibration curve in the form of P = al
+ b, where a and b are constants, and calculate the pressure
that corresponds to a signal of 10 mA.

Ah, mm 28.0 181.5 297.8 413.1 765.9
I, mA 4.21 5.78 6.97 8.15 11.76
Ah, mm 1027 1149 1362 1458 1536
I, mA 14.43 15.68 17.86 18.84 19.64
Multimeter
nnnnn
uuuuy
Pressure
transducer
Pressurized
air, P
Rigid container Afl
— —Manometer
Mercury
SG=13.56

FIGURE P3-133
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3-134 A system is equipped with two pressure gages and a
manometer, as shown in Fig. P3—-134. For Ak = 8§ cm, deter-
mine the pressure difference AP = P, — P,.

Air

Manometer
fluid

Oil
SG =0.87

FIGURE P3-134

3-135 An oil pipeline and a 1.3-m? rigid air tank are con-
nected to each other by a manometer, as shown in Fig.
P3-135. If the tank contains 15 kg of air at 80°C, determine
(a) the absolute pressure in the pipeline and () the change in
Ah when the temperature in the tank drops to 20°C. Assume
the pressure in the oil pipeline to remain constant, and the air
volume in the manometer to be negligible relative to the vol-
ume of the tank.

1.3m?
Air, 80°C

FIGURE P3-135

3-136 The density of a floating body can be determined by
tying weights to the body until both the body and the weights
are completely submerged, and then weighing them sepa-

rately in air. Consider a wood log that weighs 1540 N in air.
If it takes 34 kg of lead (p = 11,300 kg/m®) to completely
sink the log and the lead in water, determine the average den-
sity of the log.  Answer: 835 kg/m®

3-137 %7& The 200-kg, 5-m-wide rectangular gate shown

in Fig. P3—137 is hinged at B and leans against
the floor at A making an angle of 45° with the horizontal.
The gate is to be opened from its lower edge by applying a
normal force at its center. Determine the minimum force F
required to open the water gate. Answer: 520 kN

‘Water

45°

A

FIGURE P3-137

3-138 Repeat Prob. 3-137 for a water height of 1.2 m
above the hinge at B.

3-139 A 3-m-high, 6-m-wide rectangular gate is hinged at
the top edge at A and is restrained by a fixed ridge at B.
Determine the hydrostatic force exerted on the gate by the
5-m-high water and the location of the pressure center.

<1

il

Water ‘ A
3m ||~ Gate
e

FIGURE P3-139

3-140 Repeat Prob. 3-139 for a total water height of 2 m.

3-141E A semicircular 30-ft-diameter tunnel is to be built
under a 150-ft-deep, 800-ft-long lake, as shown in Fig.
P3-141E. Determine the total hydrostatic force acting on the
roof of the tunnel.
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3-144 A U-tube contains water in the right arm, and
Water another liquid in the left arm. It is observed that when the U-
tube rotates at 30 rpm about an axis that is 15 cm from the
150 ft right arm and 5 cm from the left arm, the liquid levels in both
arms become the same. Determine the density of the fluid in
Tunnel the left arm.

I

30— Q)
FIGURE P3-141E

3-142 A 50-ton, 6-m-diameter hemispherical dome on a
level surface is filled with water, as shown in Fig. P3-142.
Someone claims that he can lift this dome by making use of
Pascal’s law by attaching a long tube to the top and filling it
with water. Determine the required height of water in the
tube to lift the dome. Disregard the weight of the tube and
the water in it.  Answer: 0.77 m T

‘._,.—+
5cm 15 cm

j FIGURE P3-144
h 3-145 A l-m-diameter, 2-m-high vertical cylinder is com-
pletely filled with gasoline whose density is 740 kg/m?. The
tank is now rotated about its vertical axis at a rate of 90 rpm,
while being accelerated upward at 5 m/s”. Determine (a) the
50 ton difference between the pressures at the centers of the bottom
Water J/ and top surfaces and (b) the difference between the pressures
at the center and the edge of the bottom surface.

e 6m ——

!
FIGURE P3-142 @

5 m/s?
3-143 The water in a 25-m-deep reservoir is kept inside by —_

a 150-m-wide wall whose cross section is an equilateral tri-
angle, as shown in Fig. P3-143. Determine (a) the total force
(hydrostatic + atmospheric) acting on the inner surface of
the wall and its line of action and (b) the magnitude of the
horizontal component of this force. Take P,,, = 100 kPa. I'm 2m

10 cm

Water T

|

25m ‘

FIGURE P3-145
60° 60°

3-146 A 5-m-long, 4-m-high tank contains 2.5-m-deep
water when not in motion and is open to the atmosphere
FIGURE P3-143 through a vent in the middle. The tank is now accelerated to
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the right on a level surface at 2 m/s?. Determine the maxi-  3-149 [7ioll Reconsider Prob. 3-148. Using EES (or other)

mum pressure in the tank relative to the atmospheric pres- software, investigate the effect of air pressure
sure. Answer: 29.5 kPa above water on the cable force. Let this pressure vary from 0.1
MPa to 10 MPa. Plot the cable force versus the air pressure.
Vent 3-150 The average density of icebergs is about 917 kg/m?.
15 mI (a) Determine the percentage of the total volume of an ice-
—1 berg submerged in seawater of density 1042 kg/m3. (b)
5 Water 2 m/s2 Although icebergs are mostly submerged, they are observed
=m tank to turn over. Explain how this can happen. (Hint: Consider
the temperatures of icebergs and seawater.)
S 3-151 A cylindrical container whose weight is 79 N is
m

inverted and pressed into the water, as shown in Fig. P3—151.
FIGURE P3-146 Determine the differential height. h of the manometer and the
force F needed to hold the container at the position shown.

3-147 [7M Reconsider Prob. 3—146. Using EES (or other)

software, investigate the effect of acceleration
on the slope of the free surface of water in the tank. Let the
acceleration vary from 0 m/s? to 5 m/s? in increments of 0.5
m/s2. Tabulate and plot your results.

3-148 An elastic air balloon having a diameter of 30 cm is
attached to the base of a container partially filled with water L J

=

at +4°C, as shown in Fig. P3-148. If the pressure of air

above water is gradually increased from 100 kPa to 1.6 MPa, Manometer fluid

will the force on the cable change? If so, what is the percent Air SG=21
change in the force? Assume the pressure on the free surface

and the diameter of the balloon are related by P = CD", D =30cm

where C is a constant and n = —2. The weight of the balloon v

and the air in it is negligible. Answer: 98.4 percent
20 cm Water

FIGURE P3-151

P, = 100 kPa

20 cm

Design and Essay Problems

3-152  Shoes are to be designed to enable people of up to

80 kg to walk on freshwater or seawater. The shoes are to be
50 cm made of blown plastic in the shape of a sphere, a (American)

football, or a loaf of French bread. Determine the equivalent

diameter of each shoe and comment on the proposed shapes

from the stability point of view. What is your assessment of
i A the marketability of these shoes?

‘ 50 cm ‘ 3-153 The volume of a rock is to be determined without
using any volume measurement devices. Explain how you
FIGURE P3-148 would do this with a waterproof spring scale.
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MASS, BERNOULLI, AND
ENERGY EQUATIONS

his chapter deals with three equations commonly used in fluid

mechanics: the mass, Bernoulli, and energy equations. The mass equa-

tion is an expression of the conservation of mass principle. The
Bernoulli equation is concerned with the conservation of kinetic, potential,
and flow energies of a fluid stream and their conversion to each other in
regions of flow where net viscous forces are negligible and where other
restrictive conditions apply. The energy equation is a statement of the con-
servation of energy principle. In fluid mechanics, it is found convenient to
separate mechanical energy from thermal energy and to consider the con-
version of mechanical energy to thermal energy as a result of frictional
effects as mechanical energy loss. Then the energy equation becomes the
mechanical energy balance.

We start this chapter with an overview of conservation principles and the
conservation of mass relation. This is followed by a discussion of various
forms of mechanical energy and the efficiency of mechanical work devices
such as pumps and turbines. Then we derive the Bernoulli equation by
applying Newton’s second law to a fluid element along a streamline and
demonstrate its use in a variety of applications. We continue with the devel-
opment of the energy equation in a form suitable for use in fluid mechanics
and introduce the concept of head loss. Finally, we apply the energy equa-
tion to various engineering systems.
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OBJECTIVES

When you finish reading this chapter, you
should be able to

Apply the mass equation to
balance the incoming and
outgoing flow rates in a flow
system

Recognize various forms of
mechanical energy, and work
with energy conversion
efficiencies

Understand the use and
limitations of the Bernoulli
equation, and apply it to solve a
variety of fluid flow problems

Work with the energy equation

expressed in terms of heads, and
use it to determine turbine
power output and pumping
power requirements
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5-1 = INTRODUCTION

You are already familiar with numerous conservation laws such as the laws
of conservation of mass, conservation of energy, and conservation of
momentum. Historically, the conservation laws are first applied to a fixed
quantity of matter called a closed system or just a system, and then extended
to regions in space called control volumes. The conservation relations are
also called balance equations since any conserved quantity must balance
during a process. We now give a brief description of the conservation of
mass, momentum, and energy relations (Fig. 5-1).

FIGURE 5-1

Many fluid flow devices such as this Conservation of Mass

Pelton wheel hydrguhc turbine are ) The conservation of mass relation for a closed system undergoing a change
analyzed by applying the conservation ¢ expregsed as my, = constant or dm,Jdt = 0, which is a statement of the

of mass, momentum, and energy
principles.

Courtesy of Hydro Tasmania, www.hydro.com.au.
Used by permission.

obvious that the mass of the system remains constant during a process. For
a control volume (CV), mass balance is expressed in the rate form as

. . . dmcy
Conservation of mass: My — Moy =
dt

(5-1)

where m;, and m, are the total rates of mass flow into and out of the con-
trol volume, respectively, and dm/dt is the rate of change of mass within
the control volume boundaries. In fluid mechanics, the conservation of mass
relation written for a differential control volume is usually called the conti-
nuity equation. Conservation of mass is discussed in Section 5-2.

Conservation of Momentum

The product of the mass and the velocity of a body is called the linear
momentum or just the momentum of the body, and the momentum of a rigid
body of mass m moving with a velocity Vis mV. Newton’s second law states
that the acceleration of a body is proportional to the net force acting on it
and is inversely proportional to its mass, and that the rate of change of the
momentum of a body is equal to the net force acting on the body. Therefore,
the momentum of a system remains constant when the net force acting on it
is zero, and thus the momentum of such systems is conserved. This is known
as the conservation of momentum principle. In fluid mechanics, Newton’s
second law is usually referred to as the linear momentum equation, which is
discussed in Chap. 6 together with the angular momentum equation.

Conservation of Energy

Energy can be transferred to or from a closed system by heat or work, and
the conservation of energy principle requires that the net energy transfer to
or from a system during a process be equal to the change in the energy con-
tent of the system. Control volumes involve energy transfer via mass flow
also, and the conservation of energy principle, also called the energy bal-
ance, is expressed as

) . dEcy
Conservation of energy: E,—E,= di

(5-2)
where Em and Eom are the total rates of energy transfer into and out of the

control volume, respectively, and dE/dt is the rate of change of energy
within the control volume boundaries. In fluid mechanics, we usually limit
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our consideration to mechanical forms of energy only. Conservation of
energy is discussed in Section 5-6.

5-2 = CONSERVATION OF MASS

The conservation of mass principle is one of the most fundamental princi-
ples in nature. We are all familiar with this principle, and it is not difficult to
understand. As the saying goes, You cannot have your cake and eat it too! A
person does not have to be a scientist to figure out how much vinegar-and-
oil dressing will be obtained by mixing 100 g of oil with 25 g of vinegar.
Even chemical equations are balanced on the basis of the conservation of
mass principle. When 16 kg of oxygen reacts with 2 kg of hydrogen, 18 kg
of water is formed (Fig. 5-2). In an electrolysis process, the water will sep-
arate back to 2 kg of hydrogen and 16 kg of oxygen.

Mass, like energy, is a conserved property, and it cannot be created or
destroyed during a process. However, mass m and energy E can be con-
verted to each other according to the well-known formula proposed by
Albert Einstein (1879-1955):

E = mc? (5-3)

where c is the speed of light in a vacuum, which is ¢ = 2.9979 X 10® m/s.
This equation suggests that the mass of a system changes when its energy
changes. However, for all energy interactions encountered in practice, with
the exception of nuclear reactions, the change in mass is extremely small and
cannot be detected by even the most sensitive devices. For example, when
1 kg of water is formed from oxygen and hydrogen, the amount of energy
released is 15,879 kJ, which corresponds to a mass of 1.76 X 10710 kg. A
mass of this magnitude is beyond the accuracy required by practically all
engineering calculations and thus can be disregarded.

For closed systems, the conservation of mass principle is implicitly used by
requiring that the mass of the system remain constant during a process. For
control volumes, however, mass can cross the boundaries, and so we must
keep track of the amount of mass entering and leaving the control volume.

Mass and Volume Flow Rates

The amount of mass flowing through a cross section per unit time is called
the mass flow rate and is denoted by n1. The dot over a symbol is used to
indicate time rate of change.

A fluid flows into or out of a control volume, usually through pipes or
ducts. The differential mass flow rate of fluid flowing across a small area
element dA, in a cross section of the pipe is proportional to dA, itself, the
fluid density p, and the component of the flow velocity normal to dA_,
which we denote as V,, and is expressed as (Fig. 5-3)

n’
om = pV, dA. (5-4)
Note that both § and d are used to indicate differential quantities, but & is
typically used for quantities (such as heat, work, and mass transfer) that are
path functions and have inexact differentials, while d is used for quantities

(such as properties) that are point functions and have exact differentials. For
flow through an annulus of inner radius r, and outer radius r,, for example,
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2ke 16 kg 18 kg
H, |7 o, || mo
FIGURE 5-2

Mass is conserved even during
chemical reactions.

Control surface \

FIGURE 5-3

The normal velocity V, for a surface

is the component of velocity
perpendicular to the surface.
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V,

avg i
1 > n
i )
T >/
1
FIGURE 54
The average velocity V,,, is defined

avg
as the average speed through a cross

section.

Cross section

FIGURE 5-5

The volume flow rate is the volume of
fluid flowing through a cross section
per unit time.

2 2
J dA,=A,— A, = w3 —r?) but j Om = My, (total mass flow rate
1 1

through the annulus), not n1, — m1,. For specified values of r; and r,, the
value of the integral of dA_ is fixed (thus the names point function and exact
differential), but this is not the case for the integral of ém (thus the names
path function and inexact differential).

The mass flow rate through the entire cross-sectional area of a pipe or
duct is obtained by integration:

= J S = J pV,dA,  (kg/s) (5-5)
A,

A

While Eq. 5-5 is always valid (in fact it is exact), it is not always practi-
cal for engineering analyses because of the integral. We would like instead
to express mass flow rate in terms of average values over a cross section of
the pipe. In a general compressible flow, both p and V, vary across the pipe.
In many practical applications, however, the density is essentially uniform
over the pipe cross section, and we can take p outside the integral of Eq.
5-5. Velocity, however, is never uniform over a cross section of a pipe
because of the no-slip condition at the walls. Rather, the velocity varies
from zero at the walls to some maximum value at or near the centerline of
the pipe. We define the average velocity V, , as the average value of V,
across the entire cross section of the pipe (Fig. 5-4),

1
Vive = 7 J vV, dA,
A

¢,

Average velocity: (5-6)
where A, is the area of the cross section normal to the flow direction. Note
that if the speed were V,,, all through the cross section, the mass flow rate
would be identical to that obtained by integrating the actual velocity profile.
Thus for incompressible flow or even for compressible flow where p is uni-
form across A,, Eq. 5-5 becomes

m = pVy,A. (kg/s) (5-7)

For compressible flow, we can think of p as the bulk average density over the
cross section, and then Eq. 57 can still be used as a reasonable approximation.
For simplicity, we drop the subscript on the average velocity. Unless other-
wise stated, V denotes the average velocity in the flow direction. Also, A,
denotes the cross-sectional area normal to the flow direction.

The volume of the fluid flowing through a cross section per unit time is
called the volume flow rate V (Fig. 5-5) and is given by
(m?/s)

vg e (5-8)

V= f V,dA, = V,,A, = VA,
AA
An early form of Eq. 5-8 was published in 1628 by the Italian monk Bene-
detto Castelli (circa 1577-1644). Note that many fluid mechanics textbooks
use Q instead of V for volume flow rate. We use V to avoid confusion with
heat transfer.
The mass and volume flow rates are related by

v

17'1=p\./=;

(5-9)

V\/WW.EHQ[HOOH% %BOOKS Pdf.com



cen72367_ch05.gxd 10/29/04 2:25 PM Page 175

o

where v is the specific volume. This relation is analogous to m = pV =
/v, which is the relation between the mass and the volume of a fluid in a
container.

Conservation of Mass Principle

The conservation of mass principle for a control volume can be expressed
as: The net mass transfer to or from a control volume during a time interval
At is equal to the net change (increase or decrease) in the total mass within
the control volume during At. That is,

(Total mass entering) _ (Total mass 1eaving) _ ( Net change in mass )
the CV during Az the CV during Az within the CV during Az,

or
My = Moy = Amcy (kg) (5-10)

where Amcy = Mg, — Mipea 1S the change in the mass of the control vol-
ume during the process (Fig. 5-6). It can also be expressed in rate form as

My, — Mgy = dmey/dt (kgls) (5-11)

where m1;, and m, are the total rates of mass flow into and out of the con-
trol volume, and dmy/dt is the rate of change of mass within the control
volume boundaries. Equations 5-10 and 5-11 are often referred to as the
mass balance and are applicable to any control volume undergoing any
kind of process.

Consider a control volume of arbitrary shape, as shown in Fig. 5-7. The
mass of a differential volume dV/ within the control volume is dm = p dV.
The total mass within the control volume at any instant in time ¢ is deter-
mined by integration to be
Total mass within the CV: Mey = J pdV (5-12)

Ccv
Then the time rate of change of the amount of mass within the control vol-
ume can be expressed as

dm, d
v_Z J pdV (5-13)
dt dt v

For the special case of no mass crossing the control surface (i.e., the control
volume resembles a closed system), the conservation of mass principle
reduces to that of a system that can be expressed as dmcy/dt = 0. This rela-
tion is valid whether the control volume is fixed, moving, or deforming.
Now consider mass flow into or out of the control volume through a differ-
ential area dA on the control surface of a fixed control volume. Let 77 be the
outward unit vector of dA normal to dA and V be the flow velocity at dA rel-
ative to a fixed coordinate system, as shown in Fig. 5-7. In general, the
velocity may cross dA at an angle 6 off the normal of dA, and the mass flow
rate is proportional to the normal component of velocity V, = Vcos 6 rang-
ing from a maximum outflow of V for 6 = 0 (flow is normal to dA) to a min;
imum of zero for & = 90° (flow is tangent to dA) to a maximum inflow of V
for & = 180° (flow is normal to dA but in the opposite direction). Making

Rate of change of mass within the CV:
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FIGURE 5-6
Conservation of mass principle
for an ordinary bathtub.

- -~
- \
I,A A —_—
Matd\ "! N
1
i N i
|| dm
L dA )
[ v S
I Control ,z’ 14
\_ . volume (CV)
\\\-._‘- 7
So-T N7
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FIGURE 5-7

The differential control volume dV
and the differential control surface
dA used in the derivation of the
conservation of mass relation.
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e
(@
Buys _ 4 b dV b(V+ 1) dA
il + pb(V+n)
Ccv ‘ CS ‘
B=m b=1 b=1
y R
sy _ 4 dv Vi) dA
o S| P p(V 1)
(6\% CS
FIGURE 5-8

The conservation of mass equation
is obtained by replacing B in the
Reynolds transport theorem by
mass m, and b by 1 (m per unit
mass = m/m = 1).

use of the concept of dot product of two vectors, the magnitude of the nor-
mal component of velocity can be expressed as

Normal component of velocity: V,=Vcosf = Vi (5-14)

The mass flow rate through dA is proportional to the fluid density p, normal
velocity V,, and the flow area dA, and can be expressed as

Differential mass flow rate:  6m = pV,,dA = p(V cos 0) dA = p(\7 -n)dA  (5-15)

The net flow rate into or out of the control volume through the entire con-
trol surface is obtained by integrating ém over the entire control surface,
Net mass flow rate:

Fitn = J S = J PV, dA = f p(V - 1) dA (5-16)
CS CS

(&}

Note that V- 7 = V cos 6 is positive for 6 < 90° (outflow) and negative for
6 > 90° (inflow). Therefore, the direction of flow is automatically
accounted for, and the surface integral in Eq. 5-16 directly gives the net
mass flow rate. A positive value for 1, indicates net outflow, and a nega-
tive value indicates a net inflow of mass.

Rearranging Eq. 5-11 as dmcy/dt + my, — m;, = 0, the conservation of
mass relation for a fixed control volume can then be expressed as

(5-17)

d S
General conservation of mass: — f pdV + J p(V-n)dA =0
dt Joy cs

It states that the time rate of change of mass within the control volume plus
the net mass flow rate through the control surface is equal to zero.

The general conservation of mass relation for a control volume can also
be derived using the Reynolds transport theorem (RTT) by taking the prop-
erty B to be the mass m (Chap. 4). Then we have b = 1 since dividing the
mass by mass to get the property per unit mass gives unity. Also, the mass
of a system is constant, and thus its time derivative is zero. That is, dmSys /dt
= 0. Then the Reynolds transport equation reduces immediately to Eq.
5-17, as shown in Fig. 5-8, and thus illustrates that the Reynolds transport
theorem is a very powerful tool indeed. In Chap. 6 we apply the RTT to
obtain the linear and angular momentum equations for control volumes.

Splitting the surface integral in Eq. 5-17 into two parts—one for the out-
going flow streams (positive) and one for the incoming streams (negative)—
the general conservation of mass relation can also be expressed as

d
,J pdV+ EJandA— ZJandA=O
dr Ccv A

out in Jy

(5-18)

where A represents the area for an inlet or outlet, and the summation signs
are used to emphasize that all the inlets and outlets are to be considered.
Using the definition of mass flow rate, Eq. 5-18 can also be expressed as

EJ’ pdV= 211'1—217'1 or 217'1—2/1'1
dt ov in

in out out
There is considerable flexibility in the selection of a control volume when
solving a problem. Several control volume choices may be correct, but some
are more convenient to work with. A control volume should not introduce
any unnecessary complications. The proper choice of a control volume can
make the solution of a seemingly complicated problem rather easy. A simple

dmey

= (5-19)
dt
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rule in selecting a control volume is to make the control surface normal to
flow at all locations \ghere it crosses fluid flow, whenever possible. This
way the dot product V- 7 simply becomes the magnitude of the velocity,

and the integral J’ p(‘_} - 1) dA becomes simply pVA (Fig. 5-9).

A

Moving or Deforming Control Volumes

Equations 5-17 and 5-18 are also valid for moving or deforming control
volumes provided that the absolute velocity V is replaced by the relative
velocity V,, which is the fluid velocity relative to the control surface (Chap.
4). In the case of a nondeforming control volume, relative velocity is the
fluid velocity observed by a person moving with the control volume and is
expressed as V. = V — V., where Vis the fluid velocity and Vg is the
velocity of the control volume, both relative to a fixed point outside. Again
note that this is a vector subtraction.

Some practical problems (such as the injection of medication through the
needle of a syringe by the forced motion of the plunger) involve deforming
control volumes. The conservation of mass relations developed can still be
used for such deforming control volumes provided that the velocity of the
fluid crossing a deforming part of the control surface is expressed relative to
the control surface (that is, the fluid velocity should be expressed relative to
a reference frame attached to the deforming part of the control surface). The
relative velocity in this case at any point on the control surface is expressed
as V.=V — Vg, where V4 is the local velocity of the control surface at that
point relative to a fixed point outside the control volume.

Mass Balance for Steady-Flow Processes
During a steady-flow process, the total amount of mass contained within a
control volume does not change with time (m¢y = constant). Then the con-
servation of mass principle requires that the total amount of mass entering a
control volume equal the total amount of mass leaving it. For a garden hose
nozzle in steady operation, for example, the amount of water entering the
nozzle per unit time is equal to the amount of water leaving it per unit time.
When dealing with steady-flow processes, we are not interested in the
amount of mass that flows in or out of a device over time; instead, we are
interested in the amount of mass flowing per unit time, that is, the mass flow
rate m. The conservation of mass principle for a general steady-flow system
with multiple inlets and outlets can be expressed in rate form as (Fig. 5-10)

Em: El‘h

in out

Steady flow: (kg/s) (5-20)
It states that the total rate of mass entering a control volume is equal to the
total rate of mass leaving it.

Many engineering devices such as nozzles, diffusers, turbines, compres-
sors, and pumps involve a single stream (only one inlet and one outlet). For
these cases, we denote the inlet state by the subscript 1 and the outlet state
by the subscript 2, and drop the summation signs. Then Eq. 5-20 reduces,
for single-stream steady-flow systems, to

Steady flow (single stream): m=m, — pViA, = p,VLA, (5-21)
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V,=Vcos 6

m = p(Vcos 0)(A/cos 0) = pVA

(a) Control surface at an angle to flow

4 v
T i
I i |/
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|
m=pVA

(b) Control surface normal to flow

FIGURE 5-9

A control surface should always be
selected normal to flow at all locations
where it crosses the fluid flow to avoid
complications, even though the result
is the same.

my =y +my =5 kels

FIGURE 5-10

Conservation of mass principle
for a two-inlet—one-outlet
steady-flow system.
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my =2 kgls
V,=0.8 m/s

compressor

=~
I
I
I
!
I

m, =2 Kg/s
Vi=14ms
FIGURE 5-11

During a steady-flow process,
volume flow rates are not necessarily
conserved although mass flow

rates are.

FIGURE 5-12
Schematic for Example 5-1.

Special Case: Incompressible Flow

The conservation of mass relations can be simplified even further when the
fluid is incompressible, which is usually the case for liquids. Canceling the
density from both sides of the general steady-flow relation gives

Steady, incompressible flow: 2 V= E v (m?/s) (5-22)
in out

For single-stream steady-flow systems it becomes

Steady, incompressible flow (single stream): VI = Vz - VA, = VA, (5-23)

It should always be kept in mind that there is no such thing as a “conserva-
tion of volume” principle. Therefore, the volume flow rates into and out of a
steady-flow device may be different. The volume flow rate at the outlet of
an air compressor is much less than that at the inlet even though the mass
flow rate of air through the compressor is constant (Fig. 5-11). This is due
to the higher density of air at the compressor exit. For steady flow of lig-
uids, however, the volume flow rates, as well as the mass flow rates, remain
constant since liquids are essentially incompressible (constant-density) sub-
stances. Water flow through the nozzle of a garden hose is an example of
the latter case.

The conservation of mass principle is based on experimental observations
and requires every bit of mass to be accounted for during a process. If you
can balance your checkbook (by keeping track of deposits and withdrawals,
or by simply observing the “conservation of money” principle), you should
have no difficulty applying the conservation of mass principle to engineer-
ing systems.

EXAMPLE 5-1 Water Flow through a Garden Hose Nozzle

A garden hose attached with a nozzle is used to fill a 10-gal bucket. The
inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle
exit (Fig. 5-12). If it takes 50 s to fill the bucket with water, determine
(a) the volume and mass flow rates of water through the hose, and (b) the
average velocity of water at the nozzle exit.

SOLUTION A garden hose is used to fill a water bucket. The volume and
mass flow rates of water and the exit velocity are to be determined.
Assumptions 1 Water is an incompressible substance. 2 Flow through the
hose is steady. 3 There is no waste of water by splashing.

Properties We take the density of water to be 1000 kg/m3® = 1 kg/L.
Analysis (a) Noting that 10 gal of water are discharged in 50 s, the volume
and mass flow rates of water are

10 gal (3.7854 L
v_0De (73 785 ) = 0.757 L/s
1 gal

T At 50s
= pV = (1 kg/L)(0.757 Lis) = 0.757 ke/s

(b) The cross-sectional area of the nozzle exit is

A, = 7r2 = 7(0.4 cm)® = 0.5027 cm? = 0.5027 X 10~ * m?
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The volume flow rate through the hose and the nozzle is constant. Then the
average velocity of water at the nozzle exit becomes
v V. 0757Lks ( 1 m’
¢ A, 0.5027 X 10"*m? \1000 L

Discussion |t can be shown that the average velocity in the hose is 2.4 m/s.
Therefore, the nozzle increases the water velocity by over six times.

) = 15.1 m/s

EXAMPLE 5-2 Discharge of Water from a Tank <

A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open to the
atmosphere is initially filled with water. Now the discharge plug near the bot-
tom of the tank is pulled out, and a water jet whose diameter is 0.5 in
streams out (Fig. 5-13). The average velocity of the jet is given by
V = V/2gh, where h is the height of water in the tank measured from the
center of the hole (a variable) and g is the gravitational acceleration. Deter-
mine how long it will take for the water level in the tank to drop to 2 ft from h1 hy

leel

EEEEEEEEEEERN
=

the bottom.

SOLUTION The plug near the bottom of a water tank is pulled out. The 0 1 Diank 1 x
time it will take for half of the water in the tank to empty is to be deter-
mined.
Assumptions 1 Water is an incompressible substance. 2 The distance FIGURE 5-13
between the bottom of the tank and the center of the hole is negligible com- Schematic for Example 5-2.
pared to the total water height. 3 The gravitational acceleration is 32.2 ft/s2.
Analysis We take the volume occupied by water as the control volume. The
size of the control volume decreases in this case as the water level drops,
and thus this is a variable control volume. (We could also treat this as a
fixed control volume that consists of the interior volume of the tank by disre-
garding the air that replaces the space vacated by the water.) This is obvi-
ously an unsteady-flow problem since the properties (such as the amount of
mass) within the control volume change with time.
The conservation of mass relation for a control volume undergoing any
process is given in the rate form as

dmcy
out dt

During this process no mass enters the control volume (m;,, = 0), and the
mass flow rate of discharged water can be expressed as

moul = (pVA)oul =pV 2ghAjet (2)

ity — 1 )

where Ay, = wDZ%/4 is the cross-sectional area of the jet, which is constant.
Noting that the density of water is constant, the mass of water in the tank at
any time is

mey = pV = pAgah 3

where A, = D%, /4 is the base area of the cylindrical tank. Substituting
Egs. 2 and 3 into the mass balance relation (Eq. 1) gives

d(pA ih DE./4) dh
—p\ /ZghAje( = %_) —p\ /2gh(7TDj2ﬂ/4) - %
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Canceling the densities and other common terms and separating the vari-

ables give
Dl dh
dt = ——
Djel V 2gh

Integrating from ¢t = O at which h = hy to t = t at which h = h, gives
det:_ Dl J’”ﬂ . t:\/hi—\/h?(@)z
0 Djze[\/ZE o Vh \/gTZ D
Substituting, the time of discharge is determined to be
. V4 ft - \/ﬁ(m 12in
V32272 fys> \ 0.5in

Therefore, half of the tank will be emptied in 12.6 min after the discharge
hole is unplugged.

Discussion Using the same relation with h, = O gives t = 43.1 min for the
discharge of the entire amount of water in the tank. Therefore, emptying the
bottom half of the tank takes much longer than emptying the top half. This
is due to the decrease in the average discharge velocity of water with
decreasing h.

2
) =757 s = 12.6 min

5-3 = MECHANICAL ENERGY AND EFFICIENCY

Many fluid systems are designed to transport a fluid from one location to
another at a specified flow rate, velocity, and elevation difference, and the
system may generate mechanical work in a turbine or it may consume
mechanical work in a pump or fan during this process. These systems do
not involve the conversion of nuclear, chemical, or thermal energy to
mechanical energy. Also, they do not involve any heat transfer in any signif-
icant amount, and they operate essentially at constant temperature. Such
systems can be analyzed conveniently by considering the mechanical forms
of energy only and the frictional effects that cause the mechanical energy to
be lost (i.e., to be converted to thermal energy that usually cannot be used
for any useful purpose).

The mechanical energy can be defined as the form of energy that can be
converted to mechanical work completely and directly by an ideal mechani-
cal device such as an ideal turbine. Kinetic and potential energies are the
familiar forms of mechanical energy. Thermal energy is not mechanical
energy, however, since it cannot be converted to work directly and com-
pletely (the second law of thermodynamics).

A pump transfers mechanical energy to a fluid by raising its pressure, and
a turbine extracts mechanical energy from a fluid by dropping its pressure.
Therefore, the pressure of a flowing fluid is also associated with its mechan-
ical energy. In fact, the pressure unit Pa is equivalent to Pa = N/m?> =
N - m/m?® = J/m3, which is energy per unit volume, and the product Pv or
its equivalent P/p has the unit J/kg, which is energy per unit mass. Note that
pressure itself is not a form of energy. But a pressure force acting on a fluid
through a distance produces work, called flow work, in the amount of P/p
per unit mass. Flow work is expressed in terms of fluid properties, and it is
convenient to view it as part of the energy of a flowing fluid and call it flow
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energy. Therefore, the mechanical energy of a flowing fluid can be
expressed on a unit-mass basis as (Fig. 5-14).
PV

emech:;+7+gz

where P/p is the flow energy, V%2 is the kinetic energy, and gz is the poten-
tial energy of the fluid, all per unit mass. Then the mechanical energy
change of a fluid during incompressible flow becomes

P=Py V3V
P 2

+ g(zo — z1) (kJ/kg) (5-24)

Aemech =
Therefore, the mechanical energy of a fluid does not change during flow if
its pressure, density, velocity, and elevation remain constant. In the absence
of any losses, the mechanical energy change represents the mechanical
work supplied to the fluid (if Ae > () or extracted from the fluid (if
Ae o < 0).

Consider a container of height 4 filled with water, as shown in Fig. 5-15,
with the reference level selected at the bottom surface. The gage pressure
and the potential energy per unit mass are, respectively, P, = 0 and pe,
= gh at point A at the free surface, and Py = pgh and pey = 0 at point B at
the bottom of the container. An ideal hydraulic turbine would produce the
same work per unit mass wy.,.. — g7 whether it receives water (or any
other fluid with constant density) from the top or from the bottom of the
container. Note that we are also assuming ideal flow (no irreversible losses)
through the pipe leading from the tank to the turbine. Therefore, the total
mechanical energy of water at the bottom is equivalent to that at the top.

The transfer of mechanical energy is usually accomplished by a rotating
shaft, and thus mechanical work is often referred to as shaft work. A pump
or a fan receives shaft work (usually from an electric motor) and transfers it
to the fluid as mechanical energy (less frictional losses). A turbine, on the
other hand, converts the mechanical energy of a fluid to shaft work. In the
absence of any irreversibilities such as friction, mechanical energy can be
converted entirely from one mechanical form to another, and the mechani-
cal efficiency of a device or process can be defined as (Fig. 5-16)

mech

Mechanical energy output  E ech out E e, toss
: PR —1- (5-25)
Mechanical energy input  E, . in E peen, in

Mmech =

A conversion efficiency of less than 100 percent indicates that conversion is
less than perfect and some losses have occurred during conversion. A

Winax = 1igh Winax = 1igh

0 B P=pgh !
pe=0 i
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=2 kgls

. . P—P, . pgh .
Wmax:mpiam :mT =mgh

= (2 kg/s)(9.81 m/s?)(10 m)
=196 W

FIGURE 5-14

In the absence of any changes in flow
velocity and elevation, the power
produced by an ideal hydraulic turbine
is proportional to the pressure drop

of water across the turbine.

FIGURE 5-15

The mechanical energy of water

at the bottom of a container is equal
to the mechanical energy at any
depth including the free surface

of the container.
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Fan
0w E i = 0.50 ke/s
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V,=0, V=12 m/s
1=
P =P,

Manech. fan = AE:mech, fluid - mV%/Z
' Wehatt, in Wenatt, in
_(0.50 kg/s)(12 m/s)*/2
N 50 W

=0.72

FIGURE 5-16

The mechanical efficiency of a fan
is the ratio of the kinetic energy
of air at the fan exit to the
mechanical power input.

Murbine = 0.75 MNgenerator = 0.97

Turbine == Generator

MNturbine-gen = Mturbinel generator
=0.75%x0.97
=0.73

FIGURE 5-17

The overall efficiency of a turbine—
generator is the product of the
efficiency of the turbine and the
efficiency of the generator, and
represents the fraction of the
mechanical energy of the fluid
converted to electric energy.
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mechanical efficiency of 97 percent indicates that 3 percent of the mechani-
cal energy input is converted to thermal energy as a result of frictional heat-
ing, and this will manifest itself as a slight rise in the temperature of the
fluid.

In fluid systems, we are usually interested in increasing the pressure,
velocity, and/or elevation of a fluid. This is done by supplying mechanical
energy to the fluid by a pump, a fan, or a compressor (we will refer to all of
them as pumps). Or we are interested in the reverse process of extracting
mechanical energy from a fluid by a turbine and producing mechanical
power in the form of a rotating shaft that can drive a generator or any other
rotary device. The degree of perfection of the conversion process between
the mechanical work supplied or extracted and the mechanical energy of the
fluid is expressed by the pump efficiency and turbine efficiency, defined as

Mechanical energy increase of the fluid B AE peeh, fuid - W pump, u

mp T 1 ©-28)
Mpump Mechanical energy input W shatt, in W pump

where AEmeCh, fluid = Emech, out — Emech, in 18 the rate of increase in the mechan-
ical energy of the fluid, which is equivalent to the useful pumping power
W supplied to the fluid, and

pump, u
Mechanical energy output W ghatt, out W urbine 5-27)
- : = == 5-27
Turbine = Mechanical energy decrease of the fluid  |AE, . nual ~ Wiarbine, e
where |AE . il = Emechin — Emeeh. one 18 the rate of decrease in the

mechanical energy of the fluid, which is equivalent to the mechanical power
extracted from the fluid by the turbine W, ;.. ., and we use the absolute
value sign to avoid negative values for efficiencies. A pump or turbine
efficiency of 100 percent indicates perfect conversion between the shaft
work and the mechanical energy of the fluid, and this value can be
approached (but never attained) as the frictional effects are minimized.

The mechanical efficiency should not be confused with the motor
efficiency and the generator efficiency, which are defined as

Mechanical power output — Wpag ou

Motor: = " " - (5-28)
Tmtor Electric power input Woateet in
and
Electric power output We]ea, out
Generator: T gencrator = =— (5-29)

Mechanical power input W

shaft, in

A pump is usually packaged together with its motor, and a turbine with its
generator. Therefore, we are usually interested in the combined or overall
efficiency of pump-—motor and turbine—generator combinations (Fig. 5-17),
which are defined as

o Wpump. u AEmech, fluid
npump—momr - npump Nmotor = - -

W, 114

(5-30)
elect, in elect, in

and

WCICCL out Wclcc[, out

nlurbinc—gcn = TNwrbine ngcncmlur = = - (5-31)
Wlurhme, e |AEmech. fluid‘

All the efficiencies just defined range between 0 and 100 percent. The
lower limit of O percent corresponds to the conversion of the entire
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mechanical or electric energy input to thermal energy, and the device in
this case functions like a resistance heater. The upper limit of 100 percent
corresponds to the case of perfect conversion with no friction or other irre-

versibilities, and thus no conversion of mechanical or electric energy to
thermal energy.

: EXAMPLE 5-3 Performance of a Hydraulic Turbine-Generator

® The water in a large lake is to be used to generate electricity by the installa-
@ tion of a hydraulic turbine-generator at a location where the depth of the
m Wwater is 50 m (Fig. 5-18). Water is to be supplied at a rate of 5000 kg/s. If
m the electric power generated is measured to be 1862 kW and the generator
B efficiency is 95 percent, determine (a) the overall efficiency of the tur-
® bine-generator, (b) the mechanical efficiency of the turbine, and (c) the
: shaft power supplied by the turbine to the generator.

SOLUTION A hydraulic turbine-generator is to generate electricity from the
water of a lake. The overall efficiency, the turbine efficiency, and the shaft
power are to be determined.

Assumptions 1 The elevation of the lake remains constant. 2 The mechani-
cal energy of water at the turbine exit is negligible.

Properties The density of water can be taken to be p = 1000 kg/m3.
Analysis (a) We take the bottom of the lake as the reference level for conve-
nience. Then kinetic and potential energies of water are zero, and the
change in its mechanical energy per unit mass becomes

P , 1ki/kg
emech, in — emech_ out — ; - 0 = gh = (9.81 l’Il/S )(50 m) m = 0.491 kJ/kg

Then the rate at which mechanical energy is supplied to the turbine by the
fluid and the overall efficiency become

‘AEmech, ﬂuid| = m(emech, in emech, oul) = (5000 kg/s)(0491 kJ/kg) = 2455 kW
_ _ Welect, out _ 1862 kW
MNoverall nlurbine—gen | A E‘mechv ﬂuid‘ 2455 kW

(b) Knowing the overall and generator efficiencies, the mechanical efficiency
of the turbine is determined from

=0.76

nlurbinefgen 0.76
nturbinefgen = Nwrbine ngenerator — Nturbine — 0
n generator o 95

(c) The shaft power output is determined from the definition of mechanical
efficiency,

Wshafl, out — nturbine|AEmech,ﬂuid| = (080)(2455 kW) = 1964 kW

1 T Ll Ngenerator = 0.95
h=50m
J
FIGURE 5-18
B Schematic for Example 5-3.
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Discussion Note that the lake supplies 2455 kW of mechanical energy to
the turbine, which converts 1964 kW of it to shaft work that drives the gen-
erator, which generates 1862 kW of electric power. There are irreversible
losses through each component.

EXAMPLE 54 Conservation of Energy for
an Oscillating Steel Ball

The motion of a steel ball in a hemispherical bowl of radius h shown in Fig.
5-19 is to be analyzed. The ball is initially held at the highest location at
point A, and then it is released. Obtain relations for the conservation of
energy of the ball for the cases of frictionless and actual motions.

SOLUTION A steel ball is released in a bowl. Relations for the energy bal-
ance are to be obtained.

Assumptions The motion is frictionless, and thus friction between the ball,
the bowl, and the air is negligible.

Analysis When the ball is released, it accelerates under the influence of
gravity, reaches a maximum velocity (and minimum elevation) at point B at
the bottom of the bowl, and moves up toward point C on the opposite side.
In the ideal case of frictionless motion, the ball will oscillate between points
A and C. The actual motion involves the conversion of the kinetic and poten-
tial energies of the ball to each other, together with overcoming resistance to
motion due to friction (doing frictional work). The general energy balance for
any system undergoing any process is

Ein - Eout - AE‘system
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

Then the energy balance for the ball for a process from point 1 to point 2
becomes
~Weicion = (K€ + pey) — (ke; + pe,)

or
j + 97, = K% + 272, + Weice
9 821 2 82> friction
since there is no energy transfer by heat or mass and no change in the inter-
nal energy of the ball (the heat generated by frictional heating is dissipated to

Steel
A/ ball

A

FIGURE 5-19
Schematic for Example 5-4. 0 B @
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the surrounding air). The frictional work term W0, IS Often expressed as €,

to represent the loss (conversion) of mechanical energy into thermal energy.
For the idealized case of frictionless motion, the last relation reduces to

V§+ —V§+ V2+ =C= tant

2 8z = 2 82, or 2 gz = C = constan!

where the value of the constant is C = gh. That is, when the frictional

effects are negligible, the sum of the kinetic and potential energies of the

ball remains constant.

Discussion This is certainly a more intuitive and convenient form of the

conservation of energy equation for this and other similar processes such as

the swinging motion of the pendulum of a wall clock. The relation obtained

is analogous to the Bernoulli equation derived in Section 5-4.

Most processes encountered in practice involve only certain forms of

energy, and in such cases it is more convenient to work with the simplified v
versions of the energy balance. For systems that involve only mechanical
forms of energy and its transfer as shaft work, the conservation of energy Steady 11
. . . ca ow
principle can be expressed conveniently as v M V.
="
— =z1+h
Emechﬁ in Emech, out AEmech. system + Emech, loss (5-32) ZE 1_
Pl - PZ - Pa[m
where E, ., 1o T€Presents the conversion of mechanical energy to thermal Ennech. = Emech. out + Emech 1o

energy due to irreversibilities such as friction. For a system in steady i

g > Wump + 111821 = 11822 + Exnech. 1oss
operation, the mechanical energy balance becomes E = E e e o
+E

mech, in mech, out W =mgh+ Emech loss

(Fig. 5-20). pump

mech, loss
FIGURE 5-20
54 = THE BERNOULLI EQUA‘"ON Most fluid flow problems involve
mechanical forms of energy only, and
The Bernoulli equation is an approximate relation between pressure,  such problems are conveniently solved
velocity, and elevation, and is valid in regions of steady, incompressible by using a mechanical energy balance.
flow where net frictional forces are negligible (Fig. 5-21). Despite its sim-
plicity, it has proven to be a very powerful tool in fluid mechanics. In this
section, we derive the Bernoulli equation by applying the conservation of
linear momentum principle, and we demonstrate both its usefulness and its
limitations.
The key approximation in the derivation of the Bernoulli equation is that

viscous effects are negligibly small compared to inertial, gravitational, and %
pressure effects. Since all fluids have viscosity (there is no such thing as an
\
———

Bernoulli equation valid

“inviscid fluid”), this approximation cannot be valid for an entire flow field
of practical interest. In other words, we cannot apply the Bernoulli equation
everywhere in a flow, no matter how small the fluid’s viscosity. However, it

. . . . . . Bernoulli equation not valid
turns out that the approximation is reasonable in certain regions of many Wi equation mof valt

practical flows. We refer to such regions as inviscid regions of flow, and we FIGURE 5-21
stress that they are not regions where the fluid itself is inviscid or friction- The Bernoulli equation is an
less, but rather they are regions where net viscous or frictional forces are approximate equation that is valid
negligibly small compared to other forces acting on fluid particles. only in inviscid regions of flow where

Care must be exercised when applying the Bernoulli equation since it iS  net viscous forces are negligibly small
an approximation that applies only to inviscid regions of flow. In general, compared to inertial, gravitational, or
frictional effects are always important very close to solid walls (boundary pressure forces. Such regions occur
layers) and directly downstream of bodies (wakes). Thus, the Bernoulli  outside of boundary layers and wakes.
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approximation is typically useful in flow regions outside of boundary layers
and wakes, where the fluid motion is governed by the combined effects of
pressure and gravity forces.

The motion of a particle and the path it follows are described by the
velocity vector as a function of time and space coordinates and the initial
position of the particle. When the flow is steady (no change with time at a
specified location), all particles that pass through the same point follow the
same path (which is the streamline), and the velocity vectors remain tangent
to the path at every point.

Acceleration of a Fluid Particle
Often it is convenient to describe the motion of a particle in terms of its dis-
tance s along a streamline together with the radius of curvature along the
streamline. The velocity of the particle is related to the distance by V
= ds/dt, which may vary along the streamline. In two-dimensional flow, the
acceleration can be decomposed into two components: streamwise accelera-
tion a, along the streamline and normal acceleration a,, in the direction nor-
mal to the streamline, which is given as a, = V2/R. Note that streamwise
acceleration is due to a change in speed along a streamline, and normal
acceleration is due to a change in direction. For particles that move along a
straight path, a, = 0 since the radius of curvature is infinity and thus there
is no change in direction. The Bernoulli equation results from a force bal-
ance along a streamline.
One may be tempted to think that acceleration is zero in steady flow since
acceleration is the rate of change of velocity with time, and in steady flow
f there is no change with time. Well, a garden hose nozzle tells us that this
understanding is not correct. Even in steady flow and thus constant mass
flow rate, water accelerates through the nozzle (Fig. 5-22 as discussed in

FIGURE 5-22 Chap. 4). Steady simply means no change with time at a specified location,
During steady flow, a fluid may not but the value of a quantity may change from one location to another. In the
accelerate in time at a fixed point, but ~ case of a nozzle, the velocity of water remains constant at a specified point,
it may accelerate in space. but it changes from the inlet to the exit (water accelerates along the nozzle).

Mathematically, this can be expressed as follows: We take the velocity V
of a fluid particle to be a function of s and z. Taking the total differential of
V(s, t) and dividing both sides by dt give

wv v dv _avds 9V

dV=—ds +—dt and

= (5-33)
Js ot dt  ds dt ot

In steady flow dV/dtr = 0 and thus V = V(s), and the acceleration in the s-
direction becomes
_dv_avds 9V dav

BTy 4 5-34
ST a " osdi os ds ©-39

where V = ds/dt if we are following a fluid particle as it moves along a
streamline. Therefore, acceleration in steady flow is due to the change of
velocity with position.

Derivation of the Bernoulli Equation
Consider the motion of a fluid particle in a flow field in steady flow
described in detail in Chap. 4. Applying Newton’s second law (which is
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Steady flow along a streamline

(P +dP)dA

ds dz
dx
FIGURE 5-23
The forces acting on a fluid
x particle along a streamline.

referred to as the conservation of linear momentum relation in fluid
mechanics) in the s-direction on a particle moving along a streamline gives

> F, = ma, (5-35)

In regions of flow where net frictional forces are negligible, the significant
forces acting in the s-direction are the pressure (acting on both sides) and
the component of the weight of the particle in the s-direction (Fig. 5-23).
Therefore, Eq. 5-35 becomes
. dav
PdA = (P +dP)dA = Wsin0 = mV — (5-36)
A
where 6 is the angle between the normal of the streamline and the vertical z-
axis at that point, m = pV = p dA ds is the mass, W = mg = pg dA ds is
the weight of the fluid particle, and sin 6 = dz/ds. Substituting,

d. av
—dPdA — pgdA dsZE = pdads v & (5-37)
ds ds
Canceling dA from each term and simplifying,
—dP — pgdz = pVdV (5-38)
Noting that V dV = % d(V?) and dividing each term by p gives - (Sle?dy flow along 2SEEEES
eneral:
dP
7 + %d(vz) +gdz=0 (5-39) J%—P + ij + gz = constant
Integrating (Fig. 5-24),
& & ( & ) s Incompressible flow (p = constant):
dPp VvV
Steady flow: J ? + > + gz = constant (along a streamline) (5-40) FP o VTZ + gz = constant

since the last two terms are exact differentials. In the case of incompressible
flow, the first term also becomes an exact differential, and its integration
gives FIGURE 5-24
P 2 The Bernoulli equation is derived

Steady, incompressible flow: ; + B + gz = constant (along a streamline) (5-41) assuming incompressible flow,
and thus it should not be used

This is the famous Bernoulli equation, which is commonly used in fluid
mechanics for steady, incompressible flow along a streamline in inviscid
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FIGURE 5-25

The Bernoulli equation states that the
sum of the kinetic, potential, and flow
energies of a fluid particle is constant
along a streamline during steady flow.

regions of flow. The value of the constant can be evaluated at any point on
the streamline where the pressure, density, velocity, and elevation are
known. The Bernoulli equation can also be written between any two points
on the same streamline as

Steady, incompressible flow: = % +—+ g2 (5-42)

The Bernoulli equation is obtained from the conservation of momentum
for a fluid particle moving along a streamline. It can also be obtained from
the first law of thermodynamics applied to a steady-flow system, as shown
in Section 5-7.

The Bernoulli equation was first stated in words by the Swiss mathemati-
cian Daniel Bernoulli (1700-1782) in a text written in 1738 when he was
working in St. Petersburg, Russia. It was later derived in equation form by
his associate Leonhard Euler in 1755. We recognize V?/2 as kinetic energy,
gz as potential energy, and P/p as flow energy, all per unit mass. Therefore,
the Bernoulli equation can be viewed as an expression of mechanical energy
balance and can be stated as follows (Fig. 5-25):

The sum of the kinetic, potential, and flow energies of a fluid particle is

constant along a streamline during steady flow when the compressibility
and frictional effects are negligible.

The kinetic, potential, and flow energies are the mechanical forms of
energy, as discussed in Section 5-3, and the Bernoulli equation can be
viewed as the “conservation of mechanical energy principle.” This is equiva-
lent to the general conservation of energy principle for systems that do not
involve any conversion of mechanical energy and thermal energy to each
other, and thus the mechanical energy and thermal energy are conserved sep-
arately. The Bernoulli equation states that during steady, incompressible flow
with negligible friction, the various forms of mechanical energy are con-
verted to each other, but their sum remains constant. In other words, there is
no dissipation of mechanical energy during such flows since there is no fric-
tion that converts mechanical energy to sensible thermal (internal) energy.

Recall that energy is transferred to a system as work when a force is
applied to a system through a distance. In the light of Newton’s second law
of motion, the Bernoulli equation can also be viewed as: The work done by
the pressure and gravity forces on the fluid particle is equal to the increase
in the kinetic energy of the particle.

Despite the highly restrictive approximations used in its derivation, the
Bernoulli equation is commonly used in practice since a variety of practical
fluid flow problems can be analyzed to reasonable accuracy with it. This is
because many flows of practical engineering interest are steady (or at least
steady in the mean), compressibility effects are relatively small, and net
frictional forces are negligible in regions of interest in the flow.

Force Balance across Streamlines

It is left as an exercise to show that a force balance in the direction n normal
to the streamline yields the following relation applicable across the stream-
lines for steady, incompressible flow:

P [V
-+ J ?dn + gz = constant (across streamlines) (5-43)

p

S
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For flow along a straight line, R — o and thus relation (Eq. 5-44) reduces
to Plp + gz = constant or P = —pgz + constant, which is an expression
for the variation of hydrostatic pressure with vertical distance for a station-
ary fluid body. Therefore, the variation of pressure with elevation in steady,
incompressible flow along a straight line is the same as that in the stationary
fluid (Fig. 5-26).

Unsteady, Compressible Flow

Similarly, using both terms in the acceleration expression (Eq. 5-33), it can
be shown that the Bernoulli equation for unsteady, compressible flow is

dp J av v

Unsteady, compressible flow: J 7 + Eds + > + gz = constant (5-44)

Static, Dynamic, and Stagnation Pressures

The Bernoulli equation states that the sum of the flow, kinetic, and potential
energies of a fluid particle along a streamline is constant. Therefore, the
kinetic and potential energies of the fluid can be converted to flow energy
(and vice versa) during flow, causing the pressure to change. This pheno